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Transformers significantly improve splice
site prediction

Check for updates

Benedikt A. Jónsson 1,2, Gísli H. Halldórsson 1, Steinþór Árdal1,2, Sölvi Rögnvaldsson1,
Eyþór Einarsson 1, Patrick Sulem 1, Daníel F. Guðbjartsson 1,2, Páll Melsted1,2,
Kári Stefánsson 1,2 & Magnús Ö. Úlfarsson 1,2

Mutations that affectRNAsplicing significantly impact humandiversity anddisease.Herewepresent a
method using transformers, a type of machine learning model, to detect splicing from raw 45,000-
nucleotide sequences. We generate embeddings with residual neural networks and apply hard
attention to select splice site candidates, enabling efficient training on long sequences. Our method
surpasses the leading tool, SpliceAI, in detecting splice sites in GENCODE and ENSEMBL
annotations. Using extensive RNA sequencing data froman Icelandic cohort of 17,848 individuals and
the Genotype-Tissue Expression (GTEx) project, our method demonstrates superior performance in
detecting splice junctions compared to SpliceAI-10k (PR-AUC = 0.834 vs. PR-AUC = 0.820) and is
more effective at identifying disease-related splice variants in ClinVar (PR-AUC = 0.997 vs. PR-
AUC = 0.996). These advancements hold promise for improving genetic research and clinical
diagnostics, potentially leading to better understanding and treatment of splicing-related diseases.

RNA splicing is a major source of genetic diversity and a primary link
between genetic variation and disease1,2. Although the biochemical
mechanism of splicing is fairly well understood it remains difficult to
identify splice variants outside the essential GT and AG dinucleotides
positioned at exon-intron boundaries3,4. Pathogenic variants in non-
coding regions play a significant role in rare genetic diseases, however,
they have largely been overlooked in clinical practice due to difficulties in
determining their impact5. Such variants can be detected from biological
samples using functional assays6 and RNA-Sequencing (RNA-Seq)7.
Splicing quantitative trait loci (sQTLs) are a common class of variants
that are associated with the usage of alternative splice sites in RNA and
can be detected using RNA-Seq. However, developing computational
methods that can accurately detect such variants would be more cost-
effective, since they do not require the collection and processing of
biological samples. Such methods are therefore well suited for large-scale
analysis and variant prioritization. Recently, splice site prediction
methods, such as SpliceAI8, have been shown to be effective at detecting
splice site variants. SpliceAI is a deep neural network, based on a con-
volutional neural network (CNN) architecture and it has been shown to
outperform other methods8,9 and to improve pathogenicity predictions of
sequence variants10. The detection of sequence variants causing aberrant
splicing can further be improved by integrating the SpliceAI predictions
with RNA-Seq data11 and by training the SpliceAI architecture on col-
lapsed versions of transcripts12. The latter is in line with the observation
that accounting for long-range sequence determinants improves splice

site predictions8. While CNNs can learn long-range dependencies by
using large convolution kernels or by using multiple convolutional layers
and pooling operations, they are not efficient at modeling long-range
dependencies13. Other architectures, such as transformers, are in prin-
ciple better suited for learning long-range dependencies, since they allow
each input element to interact with every other input element, enabling
transformers to capture complex relationships between distant
elements14. Transformers have been highly successful in natural language
processing15 and other diverse tasks such as image recognition, protein
folding, prediction of gene expression, and recently in human
genomics16–19. Methods such as the Nucleotide Transformer19 and
DNABERT-220 can perform accurate splice site prediction, however,
currently, it is difficult to scale them to long sequence context. This is
because self-attention scales quadratically with sequence length.

Allowing transformers to scale well with long contexts is an active
research area21–26. However, learning from input sequences longer than
10,000 elements remains challenging27. Recently, alternative archi-
tectures such as RetNet28 and Hyena29 have been proposed to handle
larger than 10,000 element contexts. However, they are either untested at
splice site prediction or have not been demonstrated to be effective30.
Another method used to increase the context size in transformers is to
aggregate the input sequence by chunking it into k-mers or using
tokenizers19,20. However, single nucleotide variations can have a large
impact on splicing, and by aggregating, information on the single
nucleotide level is lost30.
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We hypothesize that large contexts are essential for tracking other
splice sites in the pre-mRNAsequence and that the usage of these splice sites
depends on the simultaneous utilization of other splice sites. Based on these
assumptions, we propose using hard attention31,32 to select a set of candidate
acceptors anddonors splice sites before passing themto a transformer.Hard
attention selects a single or a few discrete elements from the input sequence
by making a binary decision on which parts of the input to attend to while
soft attention, which is used in transformers, computes a weighted average
over all elements of the input sequence. Using hard attention allows us to
shorten the sequences that the transformer receives and to reduce the
memory required to train the transformer (see “Model architecture and loss
function” section for more details). In our experiments, we show that a
transformer equippedwith the proposedhard attentionmodule and trained
to utilize 45 knt sequence contexts, predicts splice sites with higher accuracy
than SpliceAI-10k. We show CREBRF as an example of a gene where the
transformer model detects a splice site that SpliceAI-10k fails to detect.
Additionally, we validate our method on RNA-Seq data from a large Ice-
landic cohort of RNA sequenced blood samples collected from 17,848
individuals and GTEx V833, which consists of 15,201 RNA-Seq samples
from 49 tissues and 838 individuals, and demonstrate that it has greater
accuracy than SpliceAI-10k detecting splice junctions not present in
ENSEMBL v87 and essential splice site sequence variants in the Icelandic
cohort, in addition to detecting pathogenic splice variants from ClinVar34

with higher accuracy than SpliceAI.

Results
Transformers improve splice site detection
We compared the performance of our model, Transformer-45k, with
SpliceAI-10k on splice site annotations from ENSEMBL transcripts35, held
out during training. The method was tested against both SpliceAI-10k
trained on GENCODE annotations that is similar to the training set from
the SpliceAI paper, and a version of SpliceAI-10k trained on the ENSEMBL
training set.Additionally,we trained amodel calledTransformer-10kwhich
has the same architecture as Transformer-45k and was trained and eval-
uated on the same 10kb sequence context as SpliceAI. The models were
trained on transcripts labeled as protein-coding and were also tested on
GENCODE transcripts held out during training. Overall, Transformer-45k
has better performance than SpliceAI-10k with regard to the metrics we
tested. It has higher PR-AUCand top-k accuracy than SpliceAI-10k onboth
datasets (Fig. 1b). Looking specifically at the decision thresholds used for
top-k accuracy calculations (Transformer-45k [acceptor: 0.446, donor:
0.485], SpliceAI-10k [acceptor: 0.460, donor: 0.507]), we see that
Transformer-45k detects 744 more splice sites (out of 179,424).

To get a clearer picture of the difference between the models, we
decided to look specifically at sites where the predictions disagree. We
measure disagreement between themodels by calculating the total variation
distance (TVD)36 between predictions and we label predictions to be in
disagreement if the TVD is higher than 0.1. In the held-out ENSEMBL set,
the models disagree on about 1 in 20,000 predictions, i.e., 32,673 out of
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Fig. 1 | A diagram showing Transformer-45k and a performance comparison
with Splice-10k. a For each position in an input DNA sequence, themethod looks at
the surrounding context region and outputs a predicted score for three options: no
splicing, acceptor, or donor. b Comparison of Transformer-45k with SpliceAI-10k
on both ENSEMBL and GENCODE annotations with regard to area under the
precision-recall curve (PR-AUC) and top-k accuracy. 95% confidence intervals (CIs)

are shown in brackets.N denotes the number of splice sites in the test set, not the total
size. E.g., the total size of the ENSEMBL test set is 664,940,000 nt. c Receiver oper-
ating characteristic (ROC) curve and precision-recall curve for cases where SpliceAI
and Transformer-45k disagree (TVD ≥0.1). d The total number of false positive and
true positive splice sites as a function of the decision threshold for cases where
SpliceAI and Transformer-45k disagree (TVD ≥0.1).
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664,940,000predictions. For this subset,weobserve thatTransformer-45k is
more likely to predict the splice sites correctly. Here, Transformer-45k has a
0.869 ROC-AUC and 0.853 PR-AUC, compared to 0.804 ROC-AUC and
0.783 PR-AUC for SpliceAI-10k (Fig. 1c). For these locations, the observed
boost in performance seems to be mainly due to Transformer-45k making
fewer false positive splice site predictions because themodelsmake about as
many true positive predictions (Fig. 1d). We can also look at the top-k
decision thresholds to look at the agreement between predicted splice sites,
here we see that the models agree on 175,825 splice sites and 664,757,322
non-splice sites, and they disagree on 3599 splice sites and 3254 non-splice
sites. For cases where the the predictions disagree, Transformer-45k has
0.609 accuracy (4172 correct sites) and SpliceAI-10k has 0.391 accuracy
(2681 correct sites).

There is a high agreement between splice site predictions made by the
two models, therefore it is important to highlight that small differences in
splice site predictions can have a large impact on downstream analysis. For
example, when predicting splice sites in CREBRF, Transformer-45k, and
SpliceAI-10k only disagree on one splice site.However, in this case, SpliceAI
completely misses the final exon of the gene (Fig. 2). In an attempt to
understand how Transformer-45k improves the predictions, we looked at
attention scores in Transformer-45k for known splice sites and observed
that when making predictions for sites that are labeled as splice sites it
primarily attends to other annotated splice sites in the same gene. E.g., in
CFTR other known splice sites have the highest attention scores (Fig. S4).

Fine-tuning on RNA-Seq data
To examine how well the predicted splice site agreed with splice sites
observed in RNA-Seq data, we looked at RNA-Seq data from a large Ice-
landic cohort gathered by deCODE genetics and data fromGTExV833. The
Icelandic cohort consists of RNA-Seq samples from 17,848 individuals,
collected from blood, and GTEx V8 is comprised of 15,201 RNA-Seq
samples collected from 49 tissues of 838 individuals. By combining data
from these two sources we were able to construct splice site annotations for
17,239 protein-coding genes, consisting of 360,601 acceptors and 359,934
donors in total. To accurately predict these splice site annotations, we found
that it was necessary to fine-tune the models on the RNA-Seq splice site
annotations.Herewe split the RNA-Seq splice site annotations into training
and test set by chromosome in the same fashion as in the previous section
and fine-tuned models for four epochs. We found that with fine-tuning,
Transformer-45k has higher splice site prediction accuracy than SpliceAI-
10k on the held-out set (Table 1). Additionally, we fine-tuned the models

using the same procedure exclusively on GTEx RNA-Seq splice sites and
observed that Transformer-45k continued to outperform SpliceAI-10k
(Table 2).

Next, using the models fine-tuned on both GTEx and the Icelandic
cohort, we tested their ability to detect unannotated splice junctions, i.e.,
splice junctions not present in the ENSEMBL v87 database, and sQTLs in
the Icelandic RNA-Seq data and compared there performance to that of
SpliceAI-10k with pre-trained weights. In the Icelandic cohort, there were
351,546 splice sites detected from RNA-Seq spliced alignments, 160,591
(45.7%) of which were not in an annotated transcript in the ENSEMBL v87
database. Using 0.1 as the decision threshold, to ensure high recall
(Table S2), our method detects 98.5% of junctions annotated in ENSEMBL
and 71.8% of unannotated junctions, while SpliceAI-10k with pre-trained
weights detects 96.6% of the annotated junctions and 53.8% of unannotated
junctions. In comparison, Transformer-45kfine-tuned only onGTEx splice
site annotations detects 98.1% of junctions annotated in ENSEMBL and
67.6% of unannotated junctions.
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Fig. 2 | A comparison of Transformer-45k and SpliceAI-10k splice site predictions for CREBRF. The predictions are mostly in agreement, except SpliceAI-10k does not
detect the acceptor for the final exon.

Table 1 | Transformer-45k and SpliceAI-10k performance on
splice junctions from all tissues in GTEx V8 and Icelandic
blood samples

PR-AUC [95% CI] Top-k accuracy [95%CI]

Transformer-45k fine-
tuned on RNA-Seq
annotations

0.834 [0.833, 0.835] 0.744 (147;949198;984)
[0.742, 0.745]

SpliceAI-10k fine-tuned on
RNA-Seq annotations

0.832 [0.830, 0.833] 0.741 (147;400198;984)
[0.739, 0.742]

SpliceAI-10k pre-trained
weights

0.820 [0.819, 0.821] 0.732 (145;666198;984)
[0.731, 0.734]

SpliceAI-10k trained on
ENSEMBL

0.753 [0.751, 0.754] 0.686 (136;550198;984)
[0.685, 0.688]

Transformer-45k trained
on ENSEMBL

0.750 [0.749, 0.752] 0.691 (137;595198;984)
[0.690, 0.693]

The fine-tuning was done on the combined RNA-Seq splice sites, however, the results are only
shown for chromosomes left out during training, here the combined number of splice sites is
198,984. The performancemetrics are PR-AUC and top-k accuracy. 95%confidence intervals (CIs)
are shown in brackets and the best score displayed in bold.
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Again using the fined-tuned Transformer-45k, we compute delta
scores from splice site predictions to quantify the effect of variants on
splicing. Filtering the sQTLs based on the distance to the closest annotated
splice site reveals that the accuracy of the delta score is highly dependent on
the proximity of sQTLs to splice sites (Fig. 3a). We also looked at classifi-
cation performance for classifying splice-disrupting and splice-creating
variants, these are variants that are observed to changeGT/AGsplicemotifs,

and are therefore highly likely to truly affect splicing. Here, our method has
0.991 PR-AUC detecting essential splice site variants, where SpliceAI-10k
has 0.981 PR-AUC (Fig. 3b). Selecting 0.1 as a decision threshold, our
method detects 88.604% (out of 351) of splice-disrupting variants, and
88.698% of splice-creating variants (out of 699), where SpliceAI-10k detects
81.148% of splice-disrupting variants and 79.828% of splice-creating
variants.

We evaluated the classification performance of the Transformer-45k
model on 35,464 pathogenic splice variants from ClinVar. The
Transformer-45k achieved a PR-AUCof 0.997, compared to SpliceAI’s PR-
AUC of 0.996 (Fig. 3c). To further analyze the predictive performance, we
plotted a scatter plot of delta scores for these variants. The results indicate
that pathogenic splice variants predominantly have delta scores around one,
signifying high confidence in predictions. Non-splicing variants, on the
other hand, cluster around a delta score of zero, indicating a low likelihood
of splicing disruption. Interestingly, benign splice variants, though fewer in
number (n = 1001), exhibit a wider distribution of delta scores, which are
less consistently clustered around zero and one (Fig. 3d). This variability
suggests a more complex prediction landscape for benign splice variants.

Discussion
In this study, we have looked at predicting splice sites with transformers and
shown that they can learn to utilize long sequence contexts to predict
splicing with better classification accuracy than the current best splice site
prediction methods in the literature. We tested our method on splice site
annotations from ENSEMBL and GENCODE and showed that it was able
topredict splicingwith greater accuracy thanSpliceAI-10k, bothwith regard

Table 2 | Transformer-45k and SpliceAI-10k performance on
GTEx V8 splice junctions

PR-AUC [95% CI] Top-k accuracy [95% CI]

Transformer-45k fine-
tuned on GTEx V8

0.849 [0.848, 0.851] 0.758 (137;139180;872)
[0.757, 0.760]

SpliceAI-10k fine-tuned
on GTEx V8

0.842 [0.841, 0.844] 0.751 (135;829180;872)
[0.750, 0.753]

SpliceAI-10k pre-trained
weights

0.836 [0.835, 0.838] 0.747 (135;112180;872)
[0.746, 0.749]

SpliceAI-10k trained on
ENSEMBL

0.775 [0.773, 0.777] 0.706 (127;737180;872)
[0.705 0.709]

Transformer-45k trained
on ENSEMBL

0.772 [0.770, 0.774] 0.711 (128;651180;872)
[0.710, 0.713]

These results are only for chromosomes left out during training, here the combined number of splice
sites is 180,872. The performance metrics are PR-AUC and top-k accuracy. 95% confidence
intervals (CIs) are shown in brackets and the best score is displayed in bold.

Fig. 3 | Classification performance for detecting sQTLs in the Icelandic RNA-Seq
using Transformer-45k and pre-trained SpliceAI-10k. a PR-AUC plotted against
maximum distance from an sQTL to the closest splice site annotation. b Precision-
recall curve for sQTLs determined to be splice-disrupting or splice-creating.

c Precision-recall curve for 35,464 pathogenic splice variants in ClinVar. dA scatter
plot showing the distribution of delta scores for non-splicing variants (n = 40,528),
benign splice variants (n = 1001), and pathogenic splice variants (n = 35,464).
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to PR-AUC and top-k accuracy. Focusing on the splice site predictions
where our method disagreed with SpliceAI-10k, we saw that our method
makes fewer false positive predictions while making about as many true
positive predictions. Byproviding the transformerwith a list of 512potential
splice sites, we enable it to produce more accurate predictions than those
achieved with SpliceAI alone. This improvement may be attributed to the
model’s ability to learn the dependencies between splice sites over a larger
sequence context, supporting the hypothesis that longer raw sequences are
beneficial for capturing splice site interactions.

When classifying unannotated splice junctions and splice variants, we
found thatfine-tuning themodel onRNA-Seqdatawasnecessary to achieve
better performance than SpliceAI-10k. This is likely due to our training set
only consisting of protein-coding ENSEMBL transcripts. Genes can have
multiple transcript annotations and splice sites observed in RNA-Seq can
come from any one of these transcripts. The ENSEMBL annotations can be
combined into a single gene annotation and this could improve perfor-
mance for detecting splice sites inRNA-Seqdata.However, thiswould result
in less training data, andmany splice sites observed in RNA-Seq would still
be missing from the annotations.

Sinceweused splice site delta scores to classify sQTLs, it is important to
note that sQTLs are associations between variations in splicing and
sequence variants and are therefore not necessarily caused by splice site
mutations. We observed that sQTLs are likelier to have a high splice delta
score if they are close to annotated splice sites. This could be due to sQTLs
with proximity to annotated splice sites being more likely to be caused by
splice site mutations and this makes it harder to interpret the classification
accuracy results. Limiting the sQTLs to sequence variants in essential splice
sites helps filter the set down to sequence variants that are highly likely to be
splicemutations. However, it should be noted that it is possible to find these
sequence variants based on splice site annotations and splice site prediction
methods are usually not necessary for detecting them. Even in these cases,
accurate splice site prediction is of interest, since current methods cannot
reliably predict whether exon-skipping, cryptic activation, or multiple
events will result from these mutations and this complicates clinical inter-
pretation of pathogenicity37.

We conducted an additional experiment in Fig. 1b to determine
whether the observed performance improvement can be attributable to
the transformer architecture or the increased sequence context. We
trained a transformer model using a 10kb context and compared its
performance to both SpliceAI and our 45kb context transformer model.
The 10kb context transformer model outperformed SpliceAI, confirm-
ing that the transformer architecture contributes to more accurate
predictions. Nevertheless, the 45kb context transformer model achieved
the highest performance, highlighting that an extended sequence con-
text is a significant factor in improvingmodel accuracy. In principle, our
method can be trained on larger contexts than 45,000 nt, and there is no
reason to assume that increasing the context further will not be bene-
ficial. The same applies to the number of selected splice sites and para-
meters such as depth and number of heads. However, these models may
need more training data or longer training to show any improvements
over our current method.

A challenge with constructing splice site annotations from RNA-Seq
data is that the quality of the annotations is likely not as high as if only
annotations from ENSEMBLwere used. Some of the splice sites detected in
RNA-Seq can be due to sequence variants and it is not possible to predict
these splice siteswithout including information about the sequence variants.
On the other hand, it has also been shown that augmenting splice site
annotations with RNA splicing measurements of multiple different species
can allow more accurate prediction of splicing in different tissue types38.

A known issue with policy gradient methods is their tendency to
exhibit high gradient variance, this can slow down convergence or prevent
the model from reaching optimal policies. Despite this, our model quickly
learned a policy that selected almost all annotated splice sites. However,
reducing gradient variance could potentially further refine the policy and
improve model performance.

In conclusion, we designed a splice site prediction method that utilizes
transformers and showed that they can significantly improve the state-of-
the-art. Ourmethod utilizes hard attention to reduce pre-mRNA sequences
to a set of potential splice sites, that have a manageable length for trans-
formers to learn long-range dependencies between splice sites. Themodel is
trained on a about four times larger context than SpliceAI and Nucleotide
Transformer v2. In our experiments, we showed that the Transformer-45k
makes fewer false positive predictions than SpliceAI while predicting about
as many true positives. We observed, that Transformer-45k primarily
attends to other annotated splice sites when performing splice site predic-
tions. Finally, when ourmethod isfine-tuned onRNA-Seq data froma large
Icelandic cohort and GTEx V8, it detects more unannotated splice junc-
tions, essential splice variants, and pathogenic splice variants than SpliceAI.

Methods
Preprocessing
The splice site annotationsweused are based ondata fromENSEMBLV8735

and GENCODE V3939. Only protein-coding transcripts with one or more
splice junctions were used and transcripts on chromosomes 1, 3, 5, 7, and 9
were held out for the test set. In ENSEMBLwe only selected transcripts with
support level 1. This resulted in an ENSEMBL training set that has 22,375
transcripts and a GENCODE training set with 13,384 transcripts. The
corresponding ENSEMBL test set includes 8955 transcripts and the GEN-
CODE test set includes 1652. Before trainingwe removed 10%of transcripts
from the training set and placed them in a validation set, in the ENSEMBL-
based annotations 21,432 splice junctions were selected into this set.
Nucleotides were one-hot encoded as as A = [1,0,0,0], C = [0,1,0,0],
G = [0,0,1,0], and T = [0,0,0,1]. The labels were encoded as ’no splicing’ =
[1,0,0], ’acceptor’ = [0,1,0], and ’donor’ = [0,0,1].

Nucleotide sequences are stored in sparse arrays split by chromosome,
where nucleotides outside of genes are stored as zeros. The array indices
correspond to nucleotide chromosome position and to deal with negative-
strand genes we reverse complement the nucleotide sequences on the fly.
This allows us to easily change the context and sequence length without
needing to write a copy of the sequence to disk.

Model architecture and loss function
The proposed method consists of three main parts, an encoding module, a
selector module, and the transformer module. All three parts of the model
are trained simultaneously from scratch and optimized with the following
loss function:

Loss ¼ Cross-entropy lossþ λ � Policy loss : ð1Þ

This combined loss function is designed to simultaneously quantify the
models' proficiency at splice site classification (Cross-entropy loss) and the
selector modules' ability to select relevant splice sites (Policy loss). The
Policy loss is scaled by a factor λ andduring training, it is set to 10−6. To train
the model we use a 2D cross-entropy loss:

Cross-entropy loss ¼
XN
i¼1

X3
j¼1

yi;j logðpi;jÞ; ð2Þ

whereN is the length of the sequence context, yi,j is a one-hot encoded splice
site label (‘no splice’, ‘acceptor’, and ‘donor’), and pi,j is a splice site
prediction.

The encoder module takes a pre-mRNA sequence as input and maps
each position in the sequence to a 32-dimensional (32D) feature space based
on its context. Nucleotides in the input sequence are one-hot encoded and
mapped using a CNN that has the same architecture as SpliceAI-10k
(Fig. 1a). By doing this, themodule can learn to encode information for each
sequence position from its surrounding 10k context. We base the encoder
architecture on SpliceAI since it has been thoroughly tested and shown to be
effective at splice site prediction. This allows us to focus on designing other
parts of the model.
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The purpose of the selector module is to reduce the sequence length
down to a manageable size for the transformer. This module receives an
encoded sequence of nucleotides and uses hard attention to select 512
candidate splice sites out of the sequence (Fig. S1). The selectormodule uses
a policy, parameterized by a feed-forward network, to fill 512 slots, that are
split evenly between acceptors and donors, with as many annotated splice
sites as possible. The policy is trainedwith a policy gradient loss40, definedas:

Policy loss ¼ � 1
S

XS
s¼1

X512
t¼1

log πθ atsjXs;C
t�1
s

� �� �
Rt
s; ð3Þ

where the policy πθ is the probability of taking action ats at step t and
trajectory s, given an embedding Xs and previous actions Ct�1

s . Ct�1
s is an

indicator vector that masks out previous actions and prevents the policy
from selecting the same splice site twice. Finally, S is the total number of
trajectories and Rt

s is the reward. In practice, we found that using one
trajectory for each sequencewas enough to achieve stable training.Wewant
the module to select the annotated splice sites and also select promising
functional splice sites that are not in the annotations, therefore, annotated
splice sites receive reward Rt

s ¼ 1 and other sites Rt
s ¼ 0. This ensures that

the policy is not penalized for selecting non-splice sites. An exception is
made if the acceptor selector selects an annotated donor, and vice versa, to
discourage the selector from selecting thewrong splice type, here aRt

s ¼ �1
penalty is given. The policy is parameterized by a fully connected feed-
forward network with 32D vector input, one hidden layer with four units
and a leaky ReLU activation, and two outputs. The policy network learns to
take embeddings from the encoder module as inputs and returns acceptor
and donor site logits as outputs. During training these logits are used to
parameterize two categorical distributions, for each splice site type, over the
45,000 nt context. The policy alternates between sampling acceptor and
donor sites from the distributions, without replacement, until it has selected
512 potential splice sites. However, during test time, we simply select the
acceptors and donors with the largest logits.

The transformer module consists of eight transformer encoders with
four heads. The input to the transformer module is the 512 sites from the
selector. These sites are embedded with the encodingmodule, as previously
described, and a fixed sinusoidal position encoding is added to them. The
transformer encoders consist of a gated multi-headed self-attention layer, a
feed-forward layer, and skip connections between them. Inputs to the self-
attention layer and feed-forward layer are pre-layer normalized with
LayerNorm41,42. The gated multi-headed self-attention layer learns key,
query, and valuematrices, where the input has dimension d = 32, and uses a
gated attention function17 (Fig. S2), defined as:

Gated attention ðQ;K;V ;GÞ ¼ σðGÞsoftmax
QKTffiffiffi

d
p

� �
V ; ð4Þ

where K,Q, and V are key, query, and value matrices and G is a 32D linear
map that is calculated from the input embedding, and σ is a sigmoid acti-
vation function. In addition, a fully connected feed-forward network is
included after each attention layer. It has input andoutput dimensions equal
to d and has one hidden layer with dimension 512 and GELU activation43.

The output of the transformer module is finally sent to the prediction
head. This is a convolutional layer with kernel size one and a softmax
activation function, it maps 32D feature maps down to three feature maps,
where the three possible outputs correspond to ‘no splice’, ‘acceptor’,
and ‘donor’.

Model training
All models were trained for 10 epochs with the AdamW optimizer44 and
with 96 samples per batch. The AdamW learning rate was set to 0.002, with
β1 = 0.9, β2 = 0.999, ϵ = 1e−08, and weight decay = 1e−05. We used linear
warm-up for the first 1000 optimization steps. Afterfive epochs the learning
rate was reduced by half each epoch. The model weights were randomly

initialized ten times and trained. Training the model for ten epochs with 3
NVIDIA A100 GPUs takes about 9 hours.

SpliceAI-10k was retrained on data and code made available by Jaga-
nathan et al.8. The original model was implemented using Keras (version
2.0.5)withTensorFlowbackendand is trainedonaGENCODEannotations
constructed by the authors. Additionally, we implemented the model using
PyTorch and constructed a training set using ENSEMBL annotations. The
reported results for the methods trained on ENSEMBL are the average
predictions of ten models.

To fine-tune the models on data from the Icelandic RNA-Seq cohort
and GTExV8, weights from the ENSEMBL dataset training runs were used
as a starting point and trained for four additional epochs on splice sites
obtained fromRNA-Seq. During fine-tuning all weights were kept trainable
and the learning rate was set to 2e−4.

Processing of RNA-Seq data
The RNA-Seq data from the Icelandic cohort consist of 17,848 samples
drawn from blood, from the same number of individuals (9784 females,
8064 males) collected using Illumina NovaSeq and HiSeq machines with
read length 2 × 125 and poly-A mRNA isolation. These samples were
aligned separately to thematernal and paternal inherited genome references
usingSTARv2.5.3a. Subsequently,we transferred the alignmentfiles (BAM)
to GRCh38 reference space (updating CIGAR and POS fields), merged the
two files into a single BAMfile, and annotated the parental alignmentwith a
higher alignment score as primary alignment. The alignment files were
scanned to detect splice sites from the CIGAR strings of primary alignment.
Alignment counts per splice site were gathered on the fragment level and
annotated with information on multi-mapping and length of sequence
overhang aligned to aside exons. Splice sites were included if one individual
fulfilled the following splice count requirements; (1) at least 4 fragments
mapped, (2) maximum of shorter overhang is larger than 7 base pairs, (3)
log2 entropy of left and right overhang length is larger or equal to two and
(4) donor or acceptor site is within annotated gene boundary. Using
aggregated data from all individuals, splice sites were filtered out if multi-
mapped alignment excited more than 20% of mapped alignments or if the
maximum fragment count was less than 5% of the expected transcript
abundance. After filtering 351,546 splice sites were used in subsequent
analysis.

The filtered splice junction counts per individual were grouped into
sets of overlapping splice junctions (SOSJ) with some shared acceptor or
donor sitesusing an amended versionof the LeafCutter algorithm, to handle
the large dataset45. These sets of splice sites allowed us to quantify alternative
splicing by calculating the percentage spliced in (PSI) per individual; the
proportion of splice count divided by the total number of fragments aligned
to any of the splice sites in the SOSJ. A cis-sQTL scan was carried out by
testing for association between PSI and sequence variants closer than 30kb
to annotated gene overlapping SOSJ. Themost significant sequence variants
associated with PSI were annotated as lead-sQTLs. The cohort was a
homogeneous population of 17,848 Icelanders (9784 females, 8064 males).
The year of birth (YOB) data was binned into 5-year intervals, with the
oldest participants born closest to 1920 and the youngest born closest to
2005. ThemedianYOB for both sexeswas 1960. In the cis-sQTL association
scan, we adjusted for both technical covariates and kinship, since the ped-
igree of Icelanders was available. Prior to the cis-sQTL analysis, PSI values
were adjusted for technical covariates (median coverage variation, mapping
rates, strand-specificity), RNA quality metrics (RIN value, concentration),
sample characteristics (storage time, blood neutrophil percentage), and
sequencing batch effects. Sex, determined from genotype data, and age was
evaluated as a potential covariate but excluded due tominimal contribution
to PSI variation. In total, we detected 257,372 lead-sQTL of which 146,372
are within genes and pass a basic quality filter (REF ≠ALT). We detect
80,976 lead-sQTLs with p-values below the Bonferroni threshold ( 0:05

146;372).
And of these, 1588 sQTLs disrupt highly conservative splice motifs GT/AG
while 2113 sQTL, create the canonical splicemotif. These variants are highly

https://doi.org/10.1038/s42003-024-07298-9 Article

Communications Biology | (2024)7:1616 6

www.nature.com/commsbio


likely to truly affect splicing andwe refer to them as splice-disrupting if they
remove a splice motif and splice-creating if they create a splice motif.
Additionally, for each lead-sQTL, we constructed a list of variants in the
vicinity of the lead-sQTL that RNA sequencing never detects to affect
splicing. To assess the ROC of the delta scores, we randomly select one of
these negative examples for each lead-sQTL.

For GTEx V8, junction counts were calculated using STAR v2.5.3a
sequence alignments provided byGTEx. Splice junctions were filtered out if
the junction did not have reads in four or more subjects, if either end of the
junction is in an ENCODE blacklist region or a simple repeat region, and if
the junctions were not a part of a LeafCutter cluster that includes canonical
splice sites45.

The splice site annotations used for fine-tuning our model were con-
structed by combining RNA-Seq splice junctions detected in all 49 tissues in
GTEx and the Icelandic blood samples. Junction reads were selected if they
were present in four or more individuals, not in blacklisted sequencing
regions, and if either end of the junction was present in the canonical
transcript for a gene. The combined set of splice site annotations consists of
360,601 acceptors and 359,934 donors from 17,239 genes. In comparison,
using the same method to construct annotations using exclusively reads
from tissues in GTEx V8, we identified 310,532 acceptors and 311,499
donors from 16,308 genes.

Statistics and reproducibility
Theoccurrence of splice sites is rare compared tonon-splice sites. Therefore,
the performance metrics we choose need to be robust to unbalanced data.
Themetricswe used to evaluate themodel performancewere area under the
precision-recall curve (PR-AUC) and top-k accuracy. Here we define the
top-k accuracy in the same way as Jaganathan et al.8. That is, as the fraction
of k positions that are correctly predicted to belong to a class, where k is the
numberof positions truly belonging to the class and thedecision threshold is
chosen so that exactly k positions are predicted for this class. To calculate
95% confidence intervals for PR-AUC and top-k accuracy we performed
bootstrapping with 1000 samples.

To find sites with disagreeing model scores, we calculated the TVD
betweenpredictions and selectedpredictionswith adistancehigher than0.1.
Since the predictions are probability distributions with a countable sample
space the TVD simplifies to36:

δðP;QÞ ¼ 1
2

X
ω2Ω

jPðfωgÞ � QðfωgÞj:

where P and Q are probability distributions, and Ω = {no
splice, acceptor, donor}.

To inspect attention patterns, we visualized the attention in transfor-
mer encoders by calculating, for a given input, the average value of all
attention matrices, in all ten transformer-45k models.

Statistical analyses were conducted to identify and replicate spli-
cing quantitative trait loci (sQTLs) in our cohort compared to those
reported in the GTEx V8 whole blood dataset. In the GTEx analysis,
significant sQTLs were determined using a false discovery rate (FDR)
threshold of 5% (q-value < 0.05) to control for multiple testing. Repli-
cates were defined as the lead-sQTLs identified in GTEx that were also
present in our dataset. We assessed replication by testing these variants
for association with the corresponding splicing events in our cohort. A
replication was considered successful if the variant showed a significant
association at a Bonferroni-adjusted p-value threshold ( 0:051;972).
The majority (94.2% [1858 out of 1972]) of lead-sQTLs from GTEx
were replicated in our cohort, indicating high reproducibility of the
findings.

Delta score
To compute the delta score we followed the procedure outlined by Jaga-
nathan et al.8.Wefirst calculate the difference between the predictions for an
alternative sequence that includes a sequence variant and the prediction for

the reference sequence. Then the location and splice site with the highest
absolute difference in either the acceptor or donor site predictions is located.
This difference is defined as the delta score and if the score is sufficiently
high, it indicates a splice site gain or loss at that location.

ClinVar variants
We downloaded the ClinVar variants in variant call format and selected
variants that were marked as splice variants. These variants were then
labeled as pathogenic if their clinical significance was annotated as patho-
genic or likely pathogenic and benign if their clinical significance was
annotated as benign or likely benign. This resulted in 35,464 variants labeled
as pathogenic and 1001 labeled as benign. To calculate PR-AUC for delta
scores we used 40,528 variants as negative examples, that had been deter-
mined to be highly unlikely to affect splicing based on differential splicing
analysis in whole blood.

Ethics and inclusion statement
This research received approval from the National Bioethics Committee of
Iceland (approval number VSN 14-015) and was conducted in accordance
with guidelines from the Icelandic Data Protection Authority
(PV_2017060950þS/–). Informed consent was obtained from all partici-
pants, and an external party encrypted all personal identifiers before they
were added to the deCODE database. All ethical regulations relevant to
human research participants were followed.

Local researchers from deCODE genetics in Iceland were actively
involved throughout the research process, including study design, imple-
mentation, and authorship of the publication. The research was developed
in collaboration with local partners to ensure its relevance to the Icelandic
population and the broader scientific community. The study did not involve
any activities that are restricted or prohibited in the researchers’ setting.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The data used in this study was generated from gene annotations obtained
from ENSEMBL, GENCODE, and RNA-Seq data obtained through the
GTEx Portal (https://gtexportal.org/home/datasets) and from an Icelandic
cohort sequenced by deCODE genetics. ClinVar variants are available
through https://ftp.ncbi.nlm.nih.gov/pub/clinvar/. The supplementary
datasets, includingmodel predictions and splice site annotations used in this
study, are publicly available in the Zenodo repository at https://doi.org/10.
5281/zenodo.1410986846, and the underlying source data for Figs. 1–3 are
available at https://doi.org/10.6084/m9.figshare.2760705647. The Icelandic
RNA-Seq data used in this study are not publicly available due to infor-
mation, containedwithin them, that could compromise researchparticipant
privacy, and releasing this informationpublicly is against Icelandic state law.
Other data supporting the findings of this study are available from the
corresponding authors upon reasonable request.

Code availability
The code for preparing data, trainingmodels, andmodel evaluation, as well
as the trainedmodelweights, can be found in ourGitHub repository https://
github.com/benniatli/Spliceformer48. Usage examples for our pre-trained
model are provided in a Google Colab notebook.
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