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The genetic landscape of autism spectrum
disorder in an ancestrally diverse cohort
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Kimberly Goodspeed**®’, Patricia Evans**®’ & Maria H. Chahrour ® "3

Autism spectrum disorder (ASD) comprises neurodevelopmental disorders with wide variability in
genetic causes and phenotypes, making it challenging to pinpoint causal genes. We performed whole
exome sequencing on a modest, ancestrally diverse cohort of 195 families, including 754 individuals
(222 with ASD), and identified 38,834 novel private variants. In 68 individuals with ASD (~30%), we
identified 92 potentially pathogenic variants in 73 known genes, including BCORL1, CDKL5,
CHAMP1, KAT6A, MECP2, and SETD1B. Additionally, we identified 158 potentially pathogenic
variants in 120 candidate genes, including DLG3, GABRQ, KALRN, KCTD16, and SLC8A3. We also
found 34 copy number variants in 31 individuals overlapping known ASD loci. Our work expands the
catalog of ASD genetics by identifying hundreds of variants across diverse ancestral backgrounds,
highlighting convergence on nervous system development and signal transduction. These findings
provide insights into the genetic underpinnings of ASD and inform molecular diagnosis and potential

therapeutic targets.

Autism spectrum disorder (ASD) is a collection of neurodevelopmental
disorders manifested by impaired social communication, repetitive behaviors,
and restricted interests'. In addition to these primary symptoms, individuals
with ASD often experience comorbidities like intellectual disability, anxiety,
depression, attention disorders, and epilepsy’. About 1 in 36 children has been
identified with ASD according to the latest estimates from CDC’s Autism and
Developmental Disabilities Monitoring (ADDM) Network’.

ASD etiology includes a substantial genetic component, with a large
population-based study including 2 million individuals suggesting that
approximately 80% of the variation in the phenotype is attributable to
genetic factors’. Recent genetic analyses have uncovered that rare variations
disrupting gene function, identified through whole exome and whole gen-
ome sequencing, have large effect sizes on the disorder’”. However, the
genetic variants identified to date only account for a small fraction of the
overall disease burden’, and each of the currently known ASD genes
accounts for less than ~2% of cases’. Although hundreds of ASD suscept-
ibility genes have been identified, research suggests that there may be
400-1000 genes associated with ASD susceptibility'®'’. Thus, fully

understanding the genetic architecture of ASD will require continuous
efforts to sequence samples from ASD cohorts. Importantly, the majority of
studies are focused on single ancestries—most frequently European ancestry
—which limits genetic discovery, introduces bias, and misses ancestry-
specific effects, reducing generalizability.

We enrolled a modest familial ASD cohort from diverse ancestral
backgrounds and performed whole exome sequencing (WES) on a total of
754 individuals from 195 families, including 222 probands with ASD and
their family members without ASD. We focused on spontaneous and
inherited rare deleterious variants as pathogenic candidates. In total, we
identified 92 potentially pathogenic variants in 73 genes that have been
previously implicated in ASD or other neurodevelopmental disorders, and
158 potentially pathogenic coding variants in 120 candidate ASD genes. We
also identified 34 copy number variants (CNVs) in all individuals with ASD
that overlap with known loci. Through this study in a multi-ancestral ASD
cohort, we identified potentially pathogenic variants in known ASD or
neurodevelopmental disease genes enriched for nervous system develop-
ment and neurogenesis and novel genes enriched for regulation of signal
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transduction. Our study underscores the significance of genetic diversity in
ASD research and highlights the roles of the identified genes in brain
development.

Results

Clinical characteristics of the ASD cohort

A total of 195 simplex and multiplex families who have at least one child
diagnosed with ASD were enrolled in our study (Supplementary Data 1).

M African

M African American
North African

M Asian
East Asian

The enrolled families represent diverse ancestral backgrounds, including
African American, Asian, Hispanic, Middle Eastern, Native American, and
European (Fig. 1A). We used principal component analysis (PCA) to
explore the ancestry of the families in the cohort (Fig. 1B). Our cohort
clustered across the different subpopulations of the 1000 Genomes project
(1000G)". Given that our cohort does not comprise a specific population,
this finding is consistent with expectations. The cohort included a total of
222 individuals with ASD and their family members without ASD (165
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Fig. 1 | Ancestral diversity and phenotypic spectrum of the ASD cohort. A Pie
chart depicting the ancestral diversity of the ASD cohort. Multiple refers to indivi-
duals with multiple ancestries. B Principal component analysis (PCA) of the ASD
cohort samples combined with the 1000G populations, using the entire ASD cohort
(left), the pedigree founders (middle), or the unrelated probands (right). The ASD
cohort is represented in yellow. The 1000G populations are: ACB African Car-
ibbeans in Barbados, ASW Americans of African Ancestry in Southwest USA, ESN
Esan in Nigeria, GWD Gambian in Western Divisions in Gambia, LWK Luhya in
Webuye, Kenya, MSL Mende in Sierra Leone, YRI Yoruba in Ibadan, Nigeria, CLM
Colombians from Medellin, Colombia, MXL Mexican Ancestry from Los Angeles,
USA, PEL Peruvians from Lima, Peru, PUR Puerto Ricans from Puerto Rico, CDX

Chinese Dai in Xishuangbanna, China, CHB Han Chinese in Beijing, China, CHS
Southern Han Chinese, JPT Japanese in Tokyo, Japan, KHV Kinh in Ho Chi Minh
City, Vietnam, CEU Utah Residents (CEPH) with Northern and Western European
Ancestry, FIN Finnish in Finland, GBR British in England and Scotland, IBS Iberian
Population in Spain, TSI Toscani in Italia, BEB Bengali from Bangladesh, GIH
Gujarati Indian from Houston, Texas, ITU Indian Telugu from the UK, PJL Punjabi
from Lahore, Pakistan, STU Sri Lankan Tamil from the UK. Population abbrevia-
tions are also defined in Supplementary Data 11. C The prevalence of neurodeve-
lopmental and neuropsychiatric conditions in the ASD cohort. ASD was diagnosed
in all 222 probands (100%). Language impairment was the most commonly reported
phenotype (91.72%).

fathers, 188 mothers, 5 grandmothers, and 174 siblings), and we observed a
male-to-female ratio of 2.7:1 (162 males, 60 females) among individuals
with ASD. This is slightly lower than the more recent estimates of ~3:1"*"* or
previous estimates of ~4:1". Parental age, which is a possible risk factor for
ASD", was not significantly different at the time of birth of individuals with
ASD compared to offspring with no ASD (Supplementary Fig. 1). A stan-
dardized medical questionnaire was collected from each of the 195 parti-
cipating families and reviewed along with available medical records for the
presence of clinical comorbidities commonly associated with ASD and other
neurodevelopmental disorders, including attention deficit/hyperactivity
disorder (ADHD), language delay or impairment, cognitive impairment
including intellectual disability, specific learning disability, aggression or
challenging behaviors, mood disorders (i.e., anxiety, depression, obsessive-
compulsive disorder (OCD), bipolar disorder), seizures, and sleep problems.
There were 222 individuals diagnosed with ASD and 532 participants
without ASD. Of those individuals with ASD where complete information
for a specific phenotype was available, 91.72% had language impairment,
83.21% had developmental delay, 71.31% had learning disability, 65.81%
had behavioral problems, 49.55% had ADHD, 49.54% had intellectual
disability, 27.45% had seizures, and 25% had OCD (Fig. 1C). Other medical
comorbidities were seen at lower frequencies, including environmental and
food allergies, and respiratory, gastrointestinal, and vision problems.
Demographics and clinical information for the cohort are provided in Fig. 1,
Table 1 and Supplementary Data 1.

Whole exome sequencing and variant discovery in the

ASD cohort

We performed WES on samples from 754 individuals, including 222
individuals with ASD. The average read depth was 46X, with no differences
in depth of sequencing with respect to phenotypic status, sex, or family
relationships (Supplementary Fig. 2A-C). On average, 99.29% and 93.9% of
bases were covered at a mean read depth of at least 10X and 20X, respectively
(Supplementary Fig. 2D). An average of 86,215 total variants were identified
per exome, of which an average of 73,132 were single nucleotide variants
(SNVs) and 13,083 were insertions or deletions (indels) (Supplementary
Data 2). After applying read depth and quality filters, 77,075 variants per
exome remained, of which an average of 65,907 were SNVs and 11,168 were
indels (Supplementary Data 2). A detailed summary of our WES data
processing and variant filtration pipeline is shown in Fig. 2. We filtered for
rare variants with a minor allele frequency (MAF) < 1% in all annotated
population databases ((1000G)"’, Genome Aggregation Database
(gnomAD)'*", the Greater Middle East Variome project (GME)'®, and The
Exome Aggregation Consortium (ExAC)"), identifying on average 8433
rare variants per exome, of which 7002 were heterozygous and 1431 were
homozygous (Supplementary Data 2). We defined potentially damaging
variants as the subset of rare exonic or splice site (referred to as coding)
variants that are also predicted to be damaging by at least 1 of the 2 algo-
rithms used: SIFT and PolyPhen-2 HumVar. There was no significant
difference in the number of potentially damaging variants between sexes for
individuals with ASD in the cohort (Supplementary Fig. 3). To assess for an
excess of potentially damaging variants in individuals with ASD compared
to individuals without ASD, we performed a burden analysis. We found no

difference between individuals with or without ASD in the burden of rare
variants with total coding, nondisrupting, missense damaging, or loss of
function effects (Supplementary Fig. 4). This outcome is expected, given our
modest sample size and the fact that ASD comprises individually rare dis-
eases with genetic heterogeneity, caused by rare alleles of substantial impact.
Therefore, observing an excess of these variations requires studying much
larger cohorts capable of capturing this heterogeneity. We discovered an
average of 5959 novel variants per exome that have not been reported in any
of the populations in the public databases that we used for annotation
(Supplementary Data 2). Furthermore, we found an average of 52 novel
variants per individual that were private (71 for parents, 34 for offspring),
meaning they have not been reported in any of the annotated populations
and they were not present in any other individual in the cohort (Supple-
mentary Data 3). In total, there were 38,834 novel private variants across all
individuals in the cohort (Supplementary Data 3). As expected, more private
variants were present in parents compared with offspring (Supplementary
Fig. 5). We identified an average of 15 (20 for parents, 9 for offspring) private
coding variants per exome, of which an average of 6 (8 for parents, 4 for
offspring) per exome were nonsynonymous and predicted to be potentially
damaging by at least 1 of the 2 algorithms used, SIFT and PolyPhen-2
HumVar (Supplementary Data 3).

Identification of candidate ASD variants

For candidate ASD variant discovery, we initially focused on rare non-
synonymous exonic or splice site variants that were either de novo or seg-
regated with ASD in the family under homozygous, compound
heterozygous, or X-linked inheritance. We identified an average of 4 de novo
variants (2 coding) per offspring with ASD (Supplementary Data 4). In
addition, we identified an average of 155 inherited homozygous variants (38
coding) and 10 compound heterozygous variants in 3 genes per offspring
with ASD (Supplementary Data 4). We also identified an average of 16
recessive X-linked variants in male offspring with ASD (8 coding) (Sup-
plementary Data 4). We did not find a significant correlation between the
number of de novo variants and maternal or paternal age at birth of an
offspring with ASD (Supplementary Fig. 6). In total, we identified 630 genes
harboring 1503 rare nonsynonymous exonic or splice site variants that are
predicted to be potentially damaging by at least 1 of the 2 algorithms used,
SIFT and PolyPhen-2 HumVar (Supplementary Data 5). The shared
symptoms among individuals with ASD suggest the existence of a functional
convergence downstream of loci that contribute to the condition. To
investigate if there is selective expression of at least some of these 630 genes
in different brain regions, we conducted specific expression analysis (SEA)
using human transcriptomics data from the BrainSpan collection™. We
found that genes with variants detected in the individuals with ASD in our
cohort were enriched in the thalamus (p = 0.014) (Fig. 3 and Supplementary
Data 6), including AR, ATP1A3, SCNIA, and SLC7A3.

Variants in known ASD or neurodevelopmental disease genes

Table 2 summarizes the potentially pathogenic variants in 73 known ASD or
neurodevelopmental disease genes for each individual with ASD after var-
iant prioritization. Out of these genes, 40 are reported in the Simons
Foundation Autism Research Initiative (SFARI) Gene database’’, and the
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Table 1 | Demographics and clinical information for the ASD cohort

A. Demographics

Number of individuals All Males Females
Cohort (N) 754 411 343
Parents (N) 353 165 188
Age (mean, years) 441 45.3 43.0
Age (median, years) 44 44 43
Non-ASD siblings (N) 174 82 92
Age (mean, years) 15.8 15.3 16.2
Age (median, years) 15 13.5 16
Paternal age at birth 31.5 31.4 31.5
(mean, years)

Maternal age at birth 28.9 29.6 28.4
(mean, years)

Individuals with ASD (N) 222 162 60
Age (mean, years) 14.5 14.3 15.1
Age (median, years) 13 12 14
Paternal age at birth 32.4 32.2 33.0
(mean, years)

Maternal age at birth 30.0 30.2 29.4

(mean, years)

B. Ancestry

Ancestry Number of individuals % of individuals
African 2 0.3
African American 7 10.2
North African 1 0.1
Asian 1 0.1
East Asian 9 1.2
South Asian 52 6.9
Southeast Asian 13 1.7
Middle Eastern 83 11.0
Hispanic 193 25.6
European 253 33.6
Multiple 67 8.9
Unknown 3 0.4

C. Clinical information

Clinical symptoms

Number of individuals tested

Number of individuals with phenotype

% of individuals with ASD

Autism spectrum disorder (ASD) 222 222 100.00
Language impairment 145 133 91.72
Developmental delay (DD) 137 114 83.21
Learning disability (LD) 122 87 71.31
Behavioral problems 117 77 65.81
Attention deficit/hyperactivity disorder (ADHD) 111 55 49.55
Intellectual disability (ID) 109 54 49.54
Seizures 102 28 27.45
Obsessive-compulsive disorder (OCD) 96 24 25.00
Anxiety/psychosis 92 22 23.91
Bipolar/mood disorder 90 15 16.66
Depression 93 14 15.05
Mania 91 4 4.40

Age refers to current age in 2024. Multiple refers to individuals with multiple ancestries.
ASD autism spectrum disorder, DD developmental delay, LD learning disability, ADHD attention deficit/hyperactivity disorder, /D intellectual disability, OCD obsessive-compulsive disorder.
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Fig. 2 | Overview diagram of study analyses. Whole
exome sequencing (WES) was performed on 754
individuals from 195 families, including 222 pro-
bands with ASD and their family members without
ASD (165 fathers, 188 mothers, 5 grandmothers,
and 174 siblings). Single nucleotide variants (SNVs)
and small insertions or deletions (indels) were called

AGTCCCTGAATCGA

195 Families with ASD WES

using DeepVariant. Variant quality filtering was
performed as described in the Materials and Meth-
ods. Rare de novo or inherited (X-linked, homo-
zygous, and compound heterozygous) variants were
annotated to identify potentially pathogenic var-
iants. Risk genes were prioritized by disease anno-
tation, specific expression, and pathway enrichment.
MAF minor allele frequency. This figure was created
with BioRender.com.
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rest are OMIM-annotated disease genes associated with relevant pheno-
types, including neurodevelopmental disorder, intellectual disability,
developmental delay, and epilepsy. These genes were significantly enriched
in pathways involving nervous system development, neurogenesis, and
neuronal differentiation (Supplementary Data 7). We identified 92 unique
variants in 68 individuals with ASD (~1-3 per individual). Twenty-six

individuals with ASD had coding variants in 19 syndromic ASD genes:
CDKL5 (3 probands), DMD (3 probands), BCORLI (2 probands), and
SETDIB (2 probands). ARIDIB, ATP1A3, CHAMPI, CNOTI1, FRMPD4,
HUWEI, KAT6A, KMT2C, MECP2, PACS2, PHF21A, SCN1A, SLC6A1,
SMARCA2, TFE3, and ZMYM3 are other syndromic ASD genes harboring
variants in single probands. Twenty-three individuals with ASD had coding
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Fig. 3 | Enrichment of the identified ASD genes in
the thalamus. Bullseye plot of specific expression
analysis (SEA) of genes harboring the prioritized
variants across brain regions and development. SEA
revealed that genes with possibly damaging variants
detected in the ASD cohort were enriched during
young adulthood in the thalamus. The color bar
shows Benjamini-Hochberg corrected p.
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variants in 21 nonsyndromic ASD genes having a SFARI Gene’' score of 1 or
2: NEXMIF (2 probands) and NLGN4X (2 probands). AR, ARHGEFI0,
ASTN2, AUTS2, BIRC6, CACNAIF, DLG4, DYNCIH]I, ILIRAPLI1, ITPRI,
OPHN1, PCDHAS, SKI, SLC7A3, SYN1, TOP2B, WNK3, YEATS2, and
Z(C3H4 are other ASD genes harboring variants in single probands. Thirty-
two probands had other coding variants in 33 neurodevelopmental disease
genes, with 2 genes—ADGRV1 and ATP7A—having variants in 2 probands
each. ACSL4, ARHGAP31, ARMCY, ATP2B3, ATP6AP2, BCAP3l,
CCDC22, CHD5, DBR1, DCTN1, DHX37, FGDI1, HDAC6, IGBP1, KIFIC,
MINPP1, MPDZ, NOTCHI, NRGI, OBSL1, PIGG, PLXNAI1, SAMD9L,
SCN3A, SLCI13A3, SRPX2, TMEM151A, TNRC6A, TRIM71, TRNT1I, and
ZNF148 are other neurodevelopmental disease genes harboring variants in
single probands. Three probands had coding variants in two neurodeve-
lopmental genes each: MC-159-5 (ADGRVI and KIFIC), MC-161-3
(MPDZ and NRGI), and MC-172-3 (OBSLI and SAMDOL).

Variants in new candidate ASD genes

We identified 158 potentially pathogenic coding variants in 120 candidate
ASD genes after variant prioritization (Table 3). Gene ontology analysis
revealed that several of the candidate ASD genes are involved in signal
transduction and synaptic activity such as DLG3, GABRQ, KALRN,
KCTDI6, P2RX4, PKP4, SLC8A3, and TENM2 (Supplementary Data 7).
Multiple variants were observed in candidate genes: ATG4A, CNGA2,
CROCC, FAM47C, FRMPD3, GABRQ, GPRASP1, MAGEC3, MXRAS5,
OR5H1, PWWP3B, SLITRK4, TRPC5, TSPYL2, and ZNF630. Since we
observed more than one potentially pathogenic variant (in known and/or
novel genes) in some probands, we also ranked them according to their
likelihood of causing the disease in the proband (Supplementary Data 8). In
proband MC-017-3, there were two variants found in SCNIA and RBMX2.
The SCNIA variant was prioritized over the RBMX2 variant as SCNIA is a
known ASD gene, according to the SFARI Gene database’'. Similarly, in
proband MC-174-3, a variant in HUWEI, a known neurodevelopmental
disease gene””, was ranked above a variant in another known neurode-
velopmental disease gene ATP6AP2*** based on AlphaMissense scores, and
above a variant in the novel gene MTM1I.

Copy number variant analysis

Since CNVs are known to play an important role in ASD*, we analyzed
CNVs in the ASD cohort. We called CNVs in individuals with ASD using
individuals from the cohort who did not have ASD as controls, utilizing
CNVKit”. In total, we identified 539 CNVs across all individuals with ASD,
including 276 deletions and 263 duplications (Supplementary Data 9 and 10).
The average size of a CNV was 243 kb, and there were 15 CNVs encom-
passing regions that did not include any genes. Out of the identified CN'Vs, 34
overlapped with known ASD CNVs as defined by the SFARI Gene
database™, including the 3q29, 17p11.2, and 22q13.3 loci. Of the called CN'Vs,
23 also overlapped with syndromic CNVs from the DECIPHER database™.
Some of these syndromes, such as Potocki-Lupski syndrome™ and Smith-
Magenis syndrome™, are associated with neurodevelopmental phenotypes.
Although our data demonstrate an overlap between CNVs and specific
genomic regions, this does not imply that the CNVs are causal. Further
investigation is needed to establish the pathogenicity of these variants.

Discussion

We performed WES in a modest familial cohort consisting of 754 indivi-
duals from 195 families, with at least one child in each family diagnosed with
ASD by a neurologist, child psychiatrist, or psychologist. It is important to
note that the source of patient ascertainment can introduce bias; for
example, recruitment through clinical centers may be skewed towards cases
with comorbid conditions™. Furthermore, the difficulty in diagnosing ASD,
particularly in patients with severe intellectual disability’’, makes it chal-
lenging to determine whether the identified variants are exclusively asso-
ciated with ASD or if they also contribute to broader neurodevelopmental
disorders. The families enrolled in the cohort represented diverse ancestral
backgrounds, including African American, Asian, Hispanic, Middle East-
ern, Native American, and European. Sequencing a diverse cohort offered a
broader genetic landscape, reduced bias, captured population-specific
alleles, and provided wider global relevance. While our sample size limited
in-depth ancestry-specific analyses™”, future studies with larger samples can
expand on this groundwork.

In total we discovered 38,834 novel private variants in the cohort that
have not been previously reported. The lack of large public datasets for most
of the ancestries represented in our cohort can affect the incidence of
observed variants and could contribute to the number of novel private
variants detected. We employed a variant filtration and prioritization
pipeline that implements established practices in the field and aligns with
other large-scale studies*”*, including implementing filtering strategies for
all inheritance modes, utilizing deleteriousness prediction algorithms, and
incorporating gene constraint scores. Due to the modest size of our cohort,
we were unable to leverage more sophisticated methods like the Bayesian
analysis framework. Our analysis identified 92 potentially pathogenic
coding variants in 73 known neurodevelopmental disease genes. The known
genes included ASD genes BCORL1, CDKL5, MECP2, and SETD1B, among
other neurodevelopmental disease genes (e.g., ADGRV1, ATP7A, CHDS,
and SCN3A). In addition, we compared our findings to data from large-scale
cohorts®. Out of the 73 genes, we identified overlap with 11 high-confidence
ASD genes identified by Fu et al®, including ARIDIB, ATPIA3, AUTS2,
DLG4, DYNCIHI, KMT2C, PLXNAI, SCNIA, SKI, SLC6AI, and
SMARCA?2, strengthening our results. We also identified 158 potentially
pathogenic coding variants in 120 candidate ASD genes (e.g, DLG3,
GABRQ, KALRN, and NCOR2). For each of our candidate genes, we ana-
lyzed published data from Zhou et al.” to obtain P values and transmission
disequilibrium test (TDT) statistic values representing the contribution of
de novo and rare inherited loss-of-function variants to ASD risk, respec-
tively. Although the candidate genes did not reach study-wide significance
by de novo variant enrichment (requiring p < 0.001), 4 of them—ATEF7IP,
ATRNLI, HECTDI, and QSERI—passed the Zhou et al.” TDT filtering step
(TDT statistic> 1, within top 20% LOEUF, and A-risk >0.4). This is
unsurprising, given the familial nature of the cohort in this study and the
much larger case-control cohort in Zhou et al.’. In addition, 3 of the iden-
tified candidate genes—CENPV, HECTDI, and MAP2—overlapped with
high-confidence neurodevelopmental disease genes reported by Fu et al.”.

Tables 2 and 3 summarize the variants we identified in each individual
with ASD, specifically in known ASD and neurodevelopmental disease
genes, as well as in new candidate genes, respectively. Our analysis revealed
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All variants are exonic. For SFARI score, S denotes syndromic genes. LOEUF loss-of-function observed/expected upper bound fraction.

“Samples with a missing parent sample where compound heterozygous variant calling was not possible and de novo, inherited homozygous, and X-linked variant calling relied on one parent only.

distinct sets of genes that merit further investigation. Out of 222 individuals
with ASD, we identified at least one potentially pathogenic variant in 112
individuals (~50%), out of which 68 individuals have at least one potentially
pathogenic variant in a known neurodevelopmental disease gene (~30%).
One of the aims of this study was to aid in identifying causative variants in
the probands. The broad phenotypic assessment of the probands limited the
granularity of our phenotype-genotype correlations. Furthermore, complete
phenotype information was not available for all probands. Nevertheless, our
findings are consistent with previous reports on the association between
mutations in the identified genes and the observed phenotypes in probands,
with commonality in language impairment and developmental delay across
variants and probands. For example, proband MC-005-3 presented with
ASD, seizures, and learning disabilities, in line with phenotypes of patients
with pathogenic CDKL5 mutations™. SETD1B mutations have been asso-
ciated with intellectual developmental disorder with seizures and language
delay (MIM # 611055)***. Probands with variants in SETDIB presented
with language impairment (MC-146-3, MC-166-3) and seizures (MC-146-
3). For proband MC-124-6, our analysis identified a de novo stopgain
mutation in CHAMPI. Mutations in this gene are associated with neuro-
developmental phenotypes, including impaired language and speech (MIM
# 616327)”, all of which are present in the proband. MC-106-4 and MC-
170-3 have variants in GABRQ, associated with essential tremor and
ASD***'. DLG3 mutations were identified in MC-001-3 and MC-001-4, and
have been associated with X-linked intellectual disability***’. Other inter-
esting genes included HECTDI (MC-045-3) and HECW1 (MC-161-3),
which encode proteins predicted to enable ubiquitin ligase activity™.
NCOR2 (with a variant daintified in JC-24-3) encodes a nuclear receptor co-
repressor 2 that mediates transcriptional silencing of target genes by pro-
moting chromatin condensation, thus preventing access to basal tran-
scription machinery® ™. Sequencing studies in larger cohorts and additional
experimental validation will be required to establish causality for the can-
didate genes that have not been previously linked to ASD.

In conclusion, by sequencing a diverse ASD cohort of individuals from
over ten ancestries, this study breaks away from the limitations of single-
population analyses and contributes to the ongoing effort of identifying
causative genes and variants. While further functional validation is neces-
sary to pinpoint causal variants in probands, these findings provide a
valuable roadmap for more targeted future research, which will ultimately
deepen our understanding of this spectrum of disorders.

Methods

Subjects and specimens

All human studies were reviewed and approved by the institutional review
board (IRB) of the University of Texas Southwestern Medical Center
(UTSW), the research committee at the University of Jordan School of
Medicine, the ethics committee of the Jordan University Hospital, and the
IRB of the Jordan University of Science and Technology. We have complied
with all relevant ethical regulations, including the Declaration of Helsinki.
Families were primarily recruited from the Dallas Fort Worth area, with
some families recruited from Jordan, and written informed consent was
obtained from all study participants. Inclusion criteria included a diagnosis
of autism spectrum disorder (ASD) by a neurologist, child psychiatrist, or
psychologist. Patients with genetically defined syndromes, specifically Fra-
gile X syndrome, Angelman syndrome, Rett syndrome, or Tuberous
sclerosis complex, were excluded from study participation. All patients
enrolled in the study received a diagnosis of ASD from their referring
clinicians, who performed physical and behavioral assessments and admi-
nistered the following standard ASD diagnostic measures: (1) Autism
Diagnostic Observation Schedule, Second Edition (ADOS-2)—a semi-
structured, standardized assessment of communication, social interaction,
play, and restricted and repetitive behaviors; (2) The Autism Diagnostic
Interview-Revised (ADI-R)—this established assessment took ~1.5-3 h to
administer, during which an experienced clinical interviewer interviewed a
parent or caregiver familiar with the developmental history and current
behavior of the individual being evaluated; (3) Diagnostic and Statistical
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Manual of Mental Disorders (DSM-V). Since the recruitment sources
included multiple sites, there may be instances where not all three tests were
performed. This, along with inter-site differences, may present potential
sources of variance in our study. Blood samples were collected from all
available family members by peripheral venipuncture and genomic DNA
was isolated from circulating leukocytes using AutoPure (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions.

Sample preparation and sequencing

All samples were prepared for sequencing using a custom automated sample
preparation workflow developed at the Regeneron Genetics Center (RGC).
Genomic DNA libraries were created by enzymatically shearing DNA to a
mean fragment size of 200 base pairs using reagents from New England
Biolabs. A common Y-shaped adapter (IDT) was ligated to all DNA
libraries. Unique, asymmetric 10 base pair barcodes were added to the DNA
fragments during library amplification with Kapa HiFi to facilitate multi-
plexed exome capture and sequencing. Equal amounts of sample were
pooled prior to overnight exome/genotype capture with the Twist Com-
prehensive Exome panel, RGC developed Twist Diversity SNP panel, and
additional spike-ins to boost coverage at selected CHIP sites and to cover the
mitochondrial genome; all samples were captured on the same lot of oligos.
The captured DNA was PCR amplified and quantified by qPCR. The
multiplexed samples were pooled and then sequenced using 75 base pair
paired-end reads with two 10 base pair index reads on the Illumina NovaSeq
6000 platform on S4 flow cells.

Whole exome sequencing and data processing

Sequencing reads from both exome and genotyping assays in FASTQ for-
mat were generated from Illumina image data using bcl2fastq program
(IMumina). Following the OQFE (original quality functional equivalent)
protocol®, sequence reads were mapped to the human reference genome
version GRCh38 using BWA MEM" in an alt-aware manner, read dupli-
cates were marked, and additional per-read tags were added. For exome
data, single nucleotide variants (SNVs) and short insertions and deletions
(indels) were identified using a Parabricks accelerated version of Deep-
Variant v0.10 with a custom WES model and reported in per-sample
genome variant call format (gVCF) files. These exome gVCFs were aggre-
gated with GLnexus v1.4.3 using the pre-configured DeepVariantWES
setting” into joint-genotyped multi-sample project-level VCF (pVCEF),
which was converted to bed/bim/fam format using PLINK 1.9°". Depth was
calculated using mosdepth™ and coverage was assessed using custom
scripts. The percent coverage was calculated as the number of base pair
positions sequenced to a given depth divided by the total number of bases
sequenced.

VCEF files for SNVs and indels were annotated with ANNOVAR™
using allele frequencies from the 1000 Genomes project (1000G)", the
Genome Aggregation Database (gnomAD)'®"”, the Greater Middle East
Variome project (GME)", and the Exome Aggregation Consortium
(ExAC)". The variants were also annotated using the Single Nucleotide
Polymorphism Database (dbSNP)*, the database of Human Non-
synonymous SNVs and Their Functional Predictions and Annotations
(dbNSFP)”,and ClinVar™. Annotated VCF files were uploaded into an SQL
database for working storage and analysis. Exome data was stored, and
analyses were performed on the Texas Advanced Computing Center
(TACC) high-performance computing servers, a resource of the University
of Texas (Austin, TX).

Variant filtration

Variants having a read depth of > 10 and a genotype quality (GQ) score of
> 30 were retained as quality filtered. Rare variants were defined as those
with minor allele frequencies (MAF) < 1% in 1000G", gnomAD v2.1'*",
GME", and EXAC". When filtering for rare variants, we used the overall
population frequency data from the previously mentioned databases. We
further refined the analysis by applying the same cutoffs to each sub-
population within the dataset as well. Novel variants were defined as

variants that are not found in the four aforementioned public datasets.
Private variants were defined as novel variants that occurred only in a
single individual in our cohort. De novo variants were defined as het-
erozygous private variants present in individuals with ASD (absent from
the exome of the father, the mother, and the sibling(s) when available). To
minimize potential false positive de novo calls, we applied additional
filtering steps, requiring that de novo variants have the following criteria:
(1) GQ =99, (2) alternate allele depth (AD-Alt) > 10, (3) reference allele
depth (AD-Ref) > 10, (4) 0.3 < AD-Alt/read depth (DP) < 0.7, (5) Allele
Quality score>999, (6) length(Alt) <50 and length(Ref) <50. Com-
pound heterozygous variants in offspring were defined as inherited het-
erozygous variants that occurred within the same gene and that were
present in heterozygous form in one parent but not the other. All com-
pound heterozygous variants were filtered for AD-Alt > 10, AD-Ref > 10,
and 0.3 < AD-Alt/DP < 0.7. Inherited homozygous variants were required
to be present in heterozygous form in both the father and the mother,
excluding variants that are homozygous in either one of the parents or
siblings with no ASD when available, on the assumption of full pene-
trance. X-linked variants were X chromosome-specific and were required
to be present in a male offspring and heterozygous in the mother.

Variant prioritization

Rare variants that are de novo, compound heterozygous, inherited homo-
zygous, or X-linked, were considered to be possibly damaging if they met the
following criteria: (1) splice site variants, (2) exonic variants with a predicted
protein effect of frameshift indels, nonframeshift indels, stopgain, stoploss,
or unknown effect, (3) exonic nonsynonymous SNVs that were predicted to
be damaging by at least 1 of the 2 algorithms used: SIFT*"* and PolyPhen-2
HumVar”. PolyPhen-2 HumVar was chosen over PolyPhen-2 HumDiv
because the former is more appropriate for Mendelian variants with drastic
effect as we expect for ASD, while the latter is appropriate for common
variants of smaller effect size. Possibly damaging variants were compared to
the list of genes implicated in ASD from the Simons Foundation Autism
Research Initiative (SFARI) Gene 2018 database (using the 2023 Q2
release)”’. Variants were also screened for any phenotypic association in the
Online Mendelian Inheritance in Man (OMIM) database®’. Gene constraint
was assessed using pLI, LOEUF, and Z scores from gnomAD v2.1'*". To
help assess a variant’s potential pathogenicity, the variants were also
annotated with ClinVar data and the number of homozygous carriers in
gnomAD v4.1'*". To prioritize candidate disease variants (potentially
pathogenic variants), we performed the following steps: (1) If the exact same
variant was present in more than one unrelated person, it was excluded; (2)
Variants within genes that had a SFARI Gene™ score of 1, 2, or S, or were
associated with a neurological phenotype as annotated by OMIM were
considered as “known” and the rest were considered as “novel”; (3) Within
the “known” and “novel” lists, genes having multiple different variants in
different people were prioritized; (4) We prioritized loss-of-function (LoF)
variants and nonsynonymous SN'Vs with high probability of deleteriousness
based on scores from prediction tools, including SIFT, PolyPhen-2 Hum-
Var, VEST*"*>, CADD®, and phyloP*; (5) We prioritized variants within
genes with higher pLI (> 0.5) and lower LOEUF (< 0.5) scores. Steps 3-5
were performed sequentially, therefore, a variant was not required to satisfy
all subsequent steps if it passed the initial ones; (6) We filtered out variants
with ClinVar significance value as benign or likely benign; (7) We filtered
out variants having one or more homozygous carriers in gnomAD v4.1'".
The gene TTN is classified as an ASD gene in the SFARI Gene database’"
with a score of 2. However, due to the large size of TTN (coding sequence of
108 kb), we calculated the missense mutation rate for TTN in each of the five
probands with prioritized TTN variants (JC-21-3, JC-33-3, MC-014-3, MC-
053-3, and MC-061-4) to account for its size. This rate was determined by
dividing the total number of base pairs carrying missense mutations in TTN
in each proband by the total length of the TTN coding region. Subsequently,
we compared this ratio for each proband to the TTN missense mutation rate
obtained from gnomAD v4.1'*" (1.23 x 10°). We found that the TTN
missense mutation rate in each of the 5 probands (1.57 x 10™*,2.50 x 107,
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2.78x107%, 3.33 x 10, and 3.70 x 107*, respectively) exceeded the gno-
mAD rate. Consequently, we filtered out the TTN variants from the list of
prioritized variants in “known” genes, but they are retained in the list of
potentially damaging coding variants (Supplementary Data 5).

Since we observed more than one potentially pathogenic variant
(in known and/or novel genes) in some probands, we also ranked them
according to their likelihood of causing the disease in the proband. We
followed the guidelines issued by the American College of Medical
Genetics and Genomics and the Association for Molecular Pathology
for the Interpretation of Sequence Variants®’. We prioritized variants in
known genes over novel genes. Stopgain/stoploss and frameshift var-
iants were ranked over nonsynonymous SNVs, and de novo variants
were ranked over other inherited variants. We also annotated the
variants with AlphaMissense scores® and prioritized those with higher
scores.

Copy number variant (CNV) analysis

We used CNVkit” to detect CNVs based on the read depth in ASD samples
relative to the average read depth in non-ASD samples in the cohort, using
default parameters. Sample MC-064-3 was deemed as an outlier and
removed from further analysis for having an unusually high number of
CNVs (174 CNVs). The CNV calls segmentation file was filtered to include
variants with p < 0.05 and copy number =0, 1, 3, or 4. Variants were con-
sidered deletions if their log2 read depth ratio between the sample and
control was < —0.5. Variants were considered duplications if their log2 read
depth ratio was 2 0.5. If the exact same CNV existed in more than one
unrelated proband, it was filtered out. The filtered variants were annotated
with known SFARI Gene”' CNVs and DECIPHER™ CNVs. The gnomAD
structural variants v4.1'*" frequencies were used to filter out common
CNVs with a frequency >1% if the detected CNV completely overlapped
with the gnomAD structural variant.

Burden analysis

Nondisrupting variants were defined as exonic synonymous SN'V's or exonic
nonframeshift indels. The burden of rare LoF and predicted damaging
missense variants was analyzed by comparing categories of variants iden-
tified in ASD versus non-ASD samples. LoF variants were defined as var-
iants that are exonic or splice site predicted to result in a frameshift indel, a
stopgain or stoploss, or splicing error. Missense variants were defined as
nonsynonymous exonic or splice site. Missense damaging variants were
defined as nonsynonymous SN'Vs that were predicted to be damaging by at
least 1 of the 2 algorithms used: SIFT and PolyPhen-2 HumVar. Compar-
isons were made between ASD and non-ASD exomes in the above cate-
gories for all rare variants.

Principal component analysis

Principal component analysis (PCA) was carried out in PLINK version 1.9
using Phase 3 1000G" data (populations shown in Supplementary Data 11).
PCA input files from our samples were pruned for variants in linkage
disequilibrium (LD) with an r2 > 0.2 in a 50 kb window. The LD-pruned
dataset was generated using plink —indep-pairwise flag to compute the LD
variants. Variants with chromosome mismatches, position mismatches,
possible allele flips, and allele mismatches were identified and filtered out.
The set of variants that remained was extracted from the 1000 G** dataset
and these were merged with our cohort dataset. PCA was run in PLINK
using the —pca flag and the first two principal components were plotted in R.
Analysis was performed for the entire cohort, pedigree founders, and
probands.

Specific expression analysis

We performed specific expression analysis (SEA) with human tran-
scriptomics data from the BrainSpan collection™ to identify particular human
brain regions and/or developmental windows potentially related to ASD
pathophysiology along with candidate genes identified in individuals with
ASD in this study. For each cell type or brain region, transcripts specifically

expressed or enriched were identified at a specificity index (pSI) threshold of
pSI < 0.05%, These analyses were performed using the Dougherty lab server
(http://genetics.wustl.edu/jdlab/). Lists of candidate genes that overlapped
with lists of transcripts enriched in a particular cell type or brain region were
finalized using Fisher’s exact test with Benjamini-Hochberg correction. The
significance level was set at Q-value < 0.05.

Data availability

Data are available in the main text or the Supplementary Materials. The
whole exome sequencing data generated in this study are accessible through
the database of Genotypes and Phenotypes (dbGaP) (accession number
phs003603.v1.p1). Any additional information required to reanalyze the
data reported in this paper is available from the corresponding author upon
request. This study did not generate new unique reagents.

Code availability

The code used for data analysis in this study is described in the Materials and
Methods and is available on the Chahrour lab GitHub repository at: https://
github.com/chahrourlab/WES.
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