Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 May 15;188(2):381–385. doi: 10.1042/bj1880381

High concentration of RNA polymerase I is responsible for the high rate of nucleolar transcription.

F L Yu
PMCID: PMC1161880  PMID: 6156675

Abstract

When isolated rat liver nuclei and nucleoli are compared for RNA synthesis in vitro, the rate of nucleolar RNA synthesis is found to be more than 10 times higher. In order to understand this high rate of nucleolar transcription, DNA from both nuclear and nucleolar fractions was isolated and compared for the ability to direct RNA synthesis with homologous RNA polymerases. No difference between these two templates is evident. On the other hand, when the total nuclear and nucleolar RNA polymerases are isolated and compared on a per-unit-weight-of-DNA basis, it becomes clear that the nucleolus has a 10-fold higher RNA polymerase concentration than the nucleus. This result suggests that RNA polymerase I concentration rather than the nucleolar DNA template efficiency is responsible for the observed high rate of nucleolar transcription under the normal steady-state condition.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. P., Goodman J. I. RNA synthesis and RNA polymerase activity in hepatic nuclei isolated from rats fed the carcinogen 2-acetylaminofluorene. Biochem Biophys Res Commun. 1976 Feb 9;68(3):850–857. doi: 10.1016/0006-291x(76)91223-7. [DOI] [PubMed] [Google Scholar]
  2. Andersen M. W., Ballal N. R., Busch H. Nucleoli of thioacetamide-treated liver as a model for studying regulation of preribosomal RNA synthesis. Biochem Biophys Res Commun. 1977 Sep 9;78(1):129–135. doi: 10.1016/0006-291x(77)91230-x. [DOI] [PubMed] [Google Scholar]
  3. BROWN D. D., GURDON J. B. ABSENCE OF RIBOSOMAL RNA SYNTHESIS IN THE ANUCLEOLATE MUTANT OF XENOPUS LAEVIS. Proc Natl Acad Sci U S A. 1964 Jan;51:139–146. doi: 10.1073/pnas.51.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dahmus M. E., Bonner J. Nucleoproteins in regulation of gene function. Fed Proc. 1970 May-Jun;29(3):1255–1260. [PubMed] [Google Scholar]
  5. Darnell J. E., Jr Ribonucleic acids from animal cells. Bacteriol Rev. 1968 Sep;32(3):262–290. doi: 10.1128/br.32.3.262-290.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fodor E. J., Doty P. Highly specific transcription of globin sequences in isolated reticulocyte nuclei. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1478–1485. doi: 10.1016/s0006-291x(77)80145-9. [DOI] [PubMed] [Google Scholar]
  7. Fuhrman S. A., Gill G. N. Adrenocorticotropic hormone regulation of adrenal RNA polymerases. Stimulation of nuclear RNA polymerase III. Biochemistry. 1976 Dec 14;15(25):5520–5527. doi: 10.1021/bi00670a016. [DOI] [PubMed] [Google Scholar]
  8. Hentschel C. C., Tata J. R. Differential activation of free and template-engaged RNA polymerase I and II during the resumption of development of dormant Artemia gastrulae. Dev Biol. 1977 Jun;57(2):293–304. doi: 10.1016/0012-1606(77)90216-0. [DOI] [PubMed] [Google Scholar]
  9. Kellas B. L., Austoker J. L., Beebee T. J., Butterworth P. H. Forms AI and AII DNA-dependent RNA polymerases as components of two defined pools of polymerase activity in mammalian cells. Eur J Biochem. 1977 Feb;72(3):583–594. doi: 10.1111/j.1432-1033.1977.tb11281.x. [DOI] [PubMed] [Google Scholar]
  10. Keshgegian A. A., Furth J. J. Comparison of transcription of chromatin by calf thymus and E. coli RNA polymerases. Biochem Biophys Res Commun. 1972 Aug 21;48(4):757–763. doi: 10.1016/0006-291x(72)90671-7. [DOI] [PubMed] [Google Scholar]
  11. Mohan J., Dunn A., Casola L. Ribosomal DNA in the rat. Nature. 1969 Jul 19;223(5203):295–296. doi: 10.1038/223295a0. [DOI] [PubMed] [Google Scholar]
  12. Okuhara E. Preparation of mammalian deoxyribonucleic acid by SDS-phenol treatment. Anal Biochem. 1970 Sep;37(1):175–178. doi: 10.1016/0003-2697(70)90274-5. [DOI] [PubMed] [Google Scholar]
  13. Paul J., Gilmour R. S. Organ-specific restriction of transcription in mammalian chromatin. J Mol Biol. 1968 Jul 14;34(2):305–316. doi: 10.1016/0022-2836(68)90255-6. [DOI] [PubMed] [Google Scholar]
  14. Perry R. P. THE CELLULAR SITES OF SYNTHESIS OF RIBOSOMAL AND 4S RNA. Proc Natl Acad Sci U S A. 1962 Dec;48(12):2179–2186. doi: 10.1073/pnas.48.12.2179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. RITOSSA F. M., SPIEGELMAN S. LOCALIZATION OF DNA COMPLEMENTARY TO RIBOSOMAL RNA IN THE NUCLEOLUS ORGANIZER REGION OF DROSOPHILA MELANOGASTER. Proc Natl Acad Sci U S A. 1965 Apr;53:737–745. doi: 10.1073/pnas.53.4.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Roeder R. G., Rutter W. J. Specific nucleolar and nucleoplasmic RNA polymerases. Proc Natl Acad Sci U S A. 1970 Mar;65(3):675–682. doi: 10.1073/pnas.65.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Soeiro R., Vaughan M. H., Warner J. R., Darnell J. E., Jr The turnover of nuclear DNA-like RNA in HeLa cells. J Cell Biol. 1968 Oct;39(1):112–118. doi: 10.1083/jcb.39.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Steele W. J. Localization of deoxyribonucleic acid complementary to ribosomal ribonucleic acid and preribosomal ribonucleic acid in the nucleolus of rat liver. J Biol Chem. 1968 Jun 25;243(12):3333–3341. [PubMed] [Google Scholar]
  19. Warner J. R., Soeiro R., Birnboim H. C., Girard M., Darnell J. E. Rapidly labeled HeLa cell nuclear RNA. I. Identification by zone sedimentation of a heterogeneous fraction separate from ribosomal precursor RNA. J Mol Biol. 1966 Aug;19(2):349–361. doi: 10.1016/s0022-2836(66)80009-8. [DOI] [PubMed] [Google Scholar]
  20. Yu F. L. An improved method for the quantitative isolation of rat liver nuclear RNA polymerases. Biochim Biophys Acta. 1975 Jul 7;395(3):329–336. doi: 10.1016/0005-2787(75)90204-x. [DOI] [PubMed] [Google Scholar]
  21. Yu F. L., Feigelson P. Cortisone stimulation of nucleolar RNA polymerase activity. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2177–2180. doi: 10.1073/pnas.68.9.2177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yu F. L., Grunberger D. Multiple sites of action of N-hydroxy-2-acetylaminofluorene rat hepatic nuclear transcription. Cancer Res. 1976 Oct;36(10):3629–3633. [PubMed] [Google Scholar]
  23. Yu F. L. Increased levels of rat hepatic nuclear free and engaged RNA polymerase activities during liver regeneration. Biochem Biophys Res Commun. 1975 Jan 2;64(3):1107–1115. doi: 10.1016/0006-291x(75)90161-8. [DOI] [PubMed] [Google Scholar]
  24. Yu F. L. Mechanism of aflatoxin B1 inhibition of rat hepatic nuclear RNA synthesis. J Biol Chem. 1977 May 25;252(10):3245–3251. [PubMed] [Google Scholar]
  25. Yu F. L. Two functional states of the RNA polymerases in the rat hepatic nuclear and nucleolar fractions. Nature. 1974 Sep 27;251(5473):344–346. doi: 10.1038/251344a0. [DOI] [PubMed] [Google Scholar]
  26. Zasloff M., Felsenfeld G. Use of mercury-substituted ribonucleoside triphosphates can lead to artefacts in the analysis of in vitro chromatin transcrits. Biochem Biophys Res Commun. 1977 Apr 11;75(3):598–603. doi: 10.1016/0006-291x(77)91514-5. [DOI] [PubMed] [Google Scholar]
  27. Zoncheddu A., Viarengo A., Accomando E., Fugassa E., Orunesu M. Increased RNA polymerase activity in isolated liver nucleoli from thyroidectomized rats treated with triiodothyronine. Endocrinology. 1977 Jul;101(1):209–214. doi: 10.1210/endo-101-1-209. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES