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ABSTRACT: Accurate estimation of atmospheric chemical con-
centrations from multiple observations is crucial for assessing the
health effects of air pollution. However, existing methods are limited
by imbalanced samples from observations. Here, we introduce a
novel deep-learning model-measurement fusion method
(DeepMMF) constrained by physical laws inferred from a chemical
transport model (CTM) to estimate NO2 concentrations over the
Continental United States (CONUS). By pretraining with
spatiotemporally complete CTM simulations, fine-tuning with
satellite and ground measurements, and employing a novel
optimization strategy for selecting proper prior emission, DeepMMF
delivers improved NO2 estimates, showing greater consistency and
daily variation alignment with observations (with NMB reduced
from −0.3 to −0.1 compared to original CTM simulations). More importantly, DeepMMF effectively addressed the sample
imbalance issue that causes overestimation (by over 100%) of downwind or rural concentrations in other methods. It achieves a
higher R2 of 0.98 and a lower RMSE of 1.45 ppb compared to surface NO2 observations, overperforming other approaches, which
show R2 values of 0.4−0.7 and RMSEs of 3−6 ppb. The method also offers a synergistic advantage by adjusting corresponding
emissions, in agreement with changes (−10% to −20%) reported in the NEI between 2019 and 2020. Our results demonstrate the
great potential of DeepMMF in data fusion to better support air pollution exposure estimation and forecasting.
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1. INTRODUCTION
Atmospheric chemicals play a crucial role in air quality,
climate, and ecosystems. Fully understanding their spatiotem-
poral variation is essential for assessing their impacts on human
health1 and climate change2 and for supporting effective
control strategies. In recent years, an increasing number of
observations have become available,3 ranging from enhanced
ground-based measurements for real-time in situ concentration
monitoring to the deployment of advanced satellites for
providing extensive global coverage. Additionally, advanced
methods for estimating atmospheric chemical concentrations
from satellite and ground monitors coupled with numerical
model simulations have been continuously developed,
particularly driven by the growth of machine learning
techniques.4 However, challenges still exist in accurately
estimating the surface concentration due to spatial and
temporal discontinuities in observations and limitations in
the data fusion methods used to interpolate data from multiple
sources. Specifically, ground monitors are densely located in
urban areas, leading to a sample imbalance in the spatial

distribution between training and prediction data sets, which
hampers the accuracy of spatial interpolation using traditional
machine learning methods.5 Additionally, satellite measure-
ments capture specific conditions only at certain cloud-free
overpassing times of the day, making it challenging to fill in
data for those missing hours.6 This issue is particularly
problematic for species with strong diurnal variations, such as
NO2.

7 Additionally, machine learning models, often seen as
black boxes, can artificially adjust concentration fields without
considering physical realities, such as increasing the concen-
tration levels in rural areas with limited emission sources.8 It is
important to make an accurate adjustment of corresponding
emissions to match with the fused concentration, following the
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physical connections as in an assimilation study.9 Therefore, a
numerical model based on physical laws, like the chemistry
transport model (CTM), is crucial to provide a robust
scientific basis for reasonably fusing the limited observations.
Some machine learning studies incorporate numerical
simulation as an additional feature for training, enabling the
interpolation of observations.10 Alternatively, some studies
estimate surface concentrations directly from satellite measure-
ments based on the numerical model-simulated column-to-
surface ratio.11−13 Both approaches leverage the advantage of
numerical simulations to maintain spatiotemporal continuity
and capture spatial gradients, assuming the accuracy of baseline
concentration estimations. However, most of the time, the
accuracy of these simulations is often compromised in regions
with limited access to crucial input data, such as high-quality
emission data. Updating emissions periodically is labor-
intensive and time-consuming,14 hindering real-time monitor-
ing and adaptation. Such limitations also exist in traditional
numerical model-based assimilation methods,15,16 such as the
Kalman filter and Four-Dimensional Data Assimilation
(FDDA), which face additional computational challenges and
difficulties in accounting for uncertainties from various data
sources. Advanced machine-learning methods have significant
potential to enhance the fusion of multisource data sets from
various observations and numerical model simulations, while
developing effective strategies for data fusion that wisely
integrate these different types of observations is crucial.
Given the spatiotemporally limited observed data sets,

model simulations offer a significant advantage in creating data
sets for training, making them ideal for data-driven methods
such as machine learning. Using numerical model simulations
to train and develop machine learning models provides a good
physical constraint based on physical laws and can serve as a
testbed to fully evaluate the model’s ability,5 especially
considering that observations are often too limited to represent
the entire space. As demonstrated in our previous study (i.e.,
DeepSAT4D6), leveraging numerical simulations to establish
the correlation between column density and surface concen-
tration and then applying real satellite observations successfully
estimates detailed concentrations across the entire vertical
profile; however, ground measurements have not been
considered and may suffer from uncertainties in the satellite
data or numerical model. Previous deep-learning-based inverse
modeling, such as those using a deep-learning-based surrogate
chemistry transport model (DeepCTM) for autogradient
adjustment of emissions,17 or a Bayesian variational
autoencoder (VAE),8,18 can efficiently adjust emissions.
However, these methods rely solely on ground-level concen-
trations, neglecting the integration of diverse data sources and
suffering from spatiotemporal sample-imbalance problems.
As a follow-up of our previous VAE inverse modeling study,8

here, we propose a novel, deep learning model-measurement
fusion method (noted as DeepMMF) by using emissions as a
constraint for atmospheric chemical concentrations to address
the limitations of current fusion techniques, particularly the
sample-imbalance problem. Specifically, we first establish the
correlations among emissions, meteorology, and concentra-
tions, as inferred from numerical models that adhere to
physical laws. This step provides a pretrained basis for better
representing these relationships, leveraging the more abundant
data set available from numerical models compared to
observational data. Subsequently, we use the observational
data set to fine-tune the pretrained model, adjusting the

concentration estimates to align with actual measurements.
The emission will be simultaneously updated to such a
corresponding adjustment of concentration to ensure adher-
ence to physical laws, as if high concentrations are observed in
a particular location, and they can be traced to either local
emissions or external sources transported into the area,
following atmospheric dynamics like diffusion and advection,
driven by meteorological conditions. We also use numerical
model simulation data sets as a testbed to evaluate and
optimize the selection strategy for the determination of
hyperparameters associated with the new optimized VAE
model. By incorporating emission constraints into the loss
function during model training (eq 1), we avoid unrealistic
emission adjustments, such as unwarranted increases in areas
without new emission sources (e.g., rural areas). This study
applies it to the NO2 species over the Continental United
States (CONUS) domain with a 12 km × 12 km spatial
resolution at the daily average level. Noting that though the
work presented here is only suitable for the nationwide
exposure analysis for it has a relatively coarse resolution,
regional exposure, and emissions, it can easily be applied to
other pollutants, regions, and hourly resolutions with the
corresponding data sets, particularly applied at a finer (1 km)
spatial resolution, which is more suitable for assessing city-level
health impacts.

2. METHOD
2.1. The Framework of DeepMMF. The principle of the

DeepMMF is to effectively incorporate multiple data sets by
leveraging their advantages and mitigating their limitations.
The numerical model like CTM provides a better representa-
tion of atmospheric physical processes, including emissions,
diffusion, advection, and deposition and provides an
abundance of data for training. This makes it ideal for
pretraining the machine-learning model as a surrogate for the
numerical model, as demonstrated by DeepCTM in this study.
We rely on the correlations inferred by the CTM, which excels
at representing the relationships between emissions and
concentrations under specific meteorological conditions rather
than on its baseline concentration predictions. However,
discrepancies between CTM outputs and reality must be
addressed by fine-tuning with ground and satellite observa-
tions. Although these observations have limited spatial and
temporal coverage, they provide accurate, real-world measure-
ments that are crucial for calibration.
As illustrated in Figure 1, the surrogate model is first trained

using abundant simulation data to mimic the CTM and
establish relationships among emissions, concentrations, and
meteorological conditions. Two DeepCTM models (forward
models, following the same input/output variables as the
numerical model, detailed in Figure S1) are established to
provide real-time predictions of the surface concentration and
column density, respectively, inferred from CTMs but with
significantly improved computational efficiency. The replace-
ment of traditional CTMs by DeepCTM is crucial because the
following VAE optimization requires real-time calculation of
the loss function, which considers both emission changes and
concentration updates. These models use the same emissions
and meteorological variables as inputs and serve as decoders
for VAE training. The DeepCTM2 model, which predicts
column density, will also leverage surface concentration from
DeepCTM1 as an input feature, as the NO2 column density is
more challenging to estimate than surface NO2 due to the
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complex vertical distribution of NO2 in the atmosphere. By
incorporating surface NO2 and total NOx emissions, the model
gains valuable information to better capture the vertical NO2
profile, leading to more accurate predictions of the NO2
column density. Consequently, it relies on the output from
the DeepCTM1 model, which predicts the surface concen-
tration, during the VAE training process. The encoder in VAE
(backward model, emission will replace the concentration as
the output, detailed in Figure S2) is also pretrained using
multiple simulation data sets with various combinations of
emission and meteorological conditions. This approach allows
it to capture a wide range of variability, serving as an inversion
modeling method for estimating emissions from inputs of both
the surface concentration and column density. Such abundant
simulation data provide good constraints following the physical
laws. After pretraining of VAE, these simulations will be
replaced by surface measurements and satellite observations,
which have either limited spatial coverage or temporal
frequency. Eventually, the fine-tuned DeepMMF model
generates assimilated concentrations by fusing simulation
data with multiple observations and then estimates the
corresponding emissions adjusted to match the fused
concentrations. It should be noted that the inversion process
may suffer from uncertainties stemming from the CTM, the
observations, and the machine-learning model itself. Therefore,
any discrepancy between baseline emissions and posterior
emissions does not necessarily imply an error in prior
emissions. Nevertheless, the changes in the posterior emissions
between two years predicted by the DeepMMF will be helpful
for updating the year-to-year emissions in an efficient way, by
only taking the change ratio, which is mostly driven by the
variation of observations.
2.2. Data Set. The simulation data were derived by running

the Weather Research and Forecasting (WRF)19 model and
the Community Multiscale Air Quality (CMAQ)20 at a 12 km
× 12 km spatial resolution with up to 35 vertical layers using
the same configuration as our previous study.21 We conducted
a base run for the year 2019 (noted as “Baseline”) using the
U.S. EPA National Emissions Inventory (NEI) emission
inventory of 2019.22 To adequately capture the range of
emissions and meteorological variations, three additional

hypothetical scenarios were conducted: one with zero
emissions (noted as “Hypo-1”), one with double the base
emissions (“Hypo-2”), and one with updated meteorology for
2020 (noted as “Hypo-3”). At the time of our study, emissions
data for 2020 were unavailable. Directly using CMAQ
simulations to interpolate missing temporal and spatial data
for 2020 was also not feasible due to significant emission
changes during the COVID-19 pandemic. This delay in
emissions development often hinders real-time updates of
concentration fusions. Although the 2020 NEI emissions data
became available in December 2023,23 we did not incorporate
it into our numerical CTM modeling to maintain consistency
with real-time conditions, as our goal is to provide near-real-
time (NRT) fusion where emissions cannot be frequently
updated. Instead, we used the latest NEI emissions data from
2019 and 2020 from the U.S. EPA to compare with the top-
down posterior emission estimates from the DeepMMF model.
Another challenge is that using the same baseline prior
emissions to estimate emissions for two different years with
significant changes (such as during COVID-19 from 2019 to
2020) can underestimate the differences, as both years will be
nudged to the same emission level. To address this issue, we
propose a new two-stage strategy leveraging dynamic prior
emissions.
The DeepMMF hyperparameter (ω*) loss function is

optimized as follows:

* = +arg min L1(Emis , Emis ) L2

(Conc , Conc )

posteriori priori

pred obs (1)

where L1 represents the first part of the loss, which is the
divergence of posterior emissions from the prior emissions. L2
represents the second part of the loss, which is the divergence
of the predicted surface concentration and column density
from the observations. The parameter α represents the
weighting loss between L1 and L2. The parameter β represents
the dynamic level of prior emissions relative to the baseline
emissions (e.g., 2019 NEI in this study).
In the first stage, we use the same base prior emissions to

determine the optimized weighting loss between emissions and
observations (α) by sampling values over a wide range (0.1 to
100) and selecting the turning point as the optimized value.
Given that there are two observation data sets, the weighting
loss from surface concentration and column density is
determined by their respective variances according to our
previous study,8 with the sum of weighting losses from surface
concentration and column density considered as the total
observation loss. In the second stage, we select the optimized
weighting loss coefficient but with different prior emission
levels (β), such as ranging from 0 (no emissions) to 2 (double
emissions). We chose the case with the least observation loss
as the optimized prior emissions. This design allows the model
to select different levels of prior emissions for each year,
avoiding the nudging effect on their differences. Additionally,
we used the numerical simulation data as a testbed to illustrate
the nudging problem and validate the proposed strategy. By
mimicking the training and testing process with the selected
simulation data in grid cells corresponding to ground monitor
sites and time steps corresponding to satellite overpassing
times, we utilized the “ground-truth” emission data and full
spatiotemporal coverage concentrations for validation. This
testbed approach aids in validation and refining of the training

Figure 1. Framework of the proposed physically constrained deep-
learning data fusion (DeepMMF) method based on the VAE.
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strategy during the two-stay optimization process (detailed in
Text S1 and Figure S3).
The satellite-observed NO2 column density was obtained

from the Tropospheric Monitoring Instrument (TROPOMI)24

product, which has a local pass time of around 14:00 each day,
thus lacking information for the 23 h between measurements.
The TROPOMI NO2 data are filtered by its quality flag, as
defined as “qa_value” by the Algorithm Theoretical Basis
Document (ATBD), by a value of 0.50. As described by the
ATBD, a qa_value of over 0.50 represents that the NO2
column data are sufficiently good for comparisons against
models or column observations (including vertical profiles)
and include data for special situations (snow/ice or cloudy
scenes). Ground measurements were obtained from the US
EPA Air Quality System (AQS), which includes approximately
400−500 sites that measure NO2, excluding 77 near-road sites.
These sites were aggregated into around 300 12 × 12 km grid
cells. When multiple AQS sites fell within the same grid cell,
their measurements were averaged (which occurred in about
5% of the cases). They only represent a very small percentage
(<1%) of the entire CONUS domain, which comprises 117
130 grid cells (265 rows × 442 columns). In addition, AQS
sites are primarily located in urban areas with heavy sources of
pollution, leading to significant sampling imbalance. Training a
model solely based on observation data can be insufficient
because false causalities can develop with a small sample size.
To address the limitation, we only apply the observation data
during the fine-tuning process after the DeepMMF pretraining
with the simulation data set.
2.3. Training. The training of the two DeepCTM models

follows the same methodology as our previous study,6

incorporating both forward and backward directions to

account for satellite measurement times around 14:00 local
time, using the ConvLSTM model structure.25 The models
were trained using data from the first 25 days of each month
for one year (300 days/year) and tested on the remaining days.
Predictions for the 24 h time series are initiated from local time
14:00 on the previous day. For data augmentation, we
introduced random cropping of the feature maps to
dimensions of 60 rows x 60 columns. During training, we
utilized the mean squared error (MSE) loss function over a
total of 3000 epochs. This number of epochs proved sufficient
for achieving good performance in both the training and
testing phases. Our learning rate started at 0.0001 and linearly
decayed to zero by the end of the training process. We
employed the Adam optimizer26 to enhance model con-
vergence.
The DeepCTM models effectively capture spatial and

temporal variations with acceptable performance for both
surface concentration (DeepCTM1: R2 > 0.9, |NMB| < 0.05 in
training and R2 > 0.8, |NMB| < 0.25 in testing) and column
density (DeepCTM2: R2 > 0.85, |NMB| < 0.1 in training and
R2 > 0.8, |NMB| < 0.20 in testing), as shown in Figures S4−S5
and S6−S7, respectively.
For the VAE pretraining using simulation data, the trained

DeepCTM models act as the decoder to train the encoder
using the UNet-LSTM framework.17 The loss function is
carefully designed not only to consider the discrepancy
between the adjusted emissions and the prior emissions but
also to include the discrepancy between the DeepCTM1-
predicted surface concentration using β-adjusted emissions and
that using prior emissions but also the discrepancy between the
DeepCTM2-predicted column density using β-adjusted
emissions and that using prior emissions. This ensures that

Figure 2. Comparison of the observed, simulated, and fused NO2 surface concentration (unit: ppb, *the CMAQ runs for 2019 and 2020 are using
the same emissions, as “Baseline” and “Hypo-3”).
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the DeepMMF model will not simply memorize the emission
patterns, which can be quite similar each day in prior emissions
for each scenario. This design is similar to the traditional VAE
structure with direct surface-level observation training, as used
in our previous study.8 The trained model successfully
reproduces emission variations under different scenarios

(“Baseline” and “Hypo-2”) with acceptable performance (R2

> 0.9, |NMB| < 0.15), as presented in Figure S8.
During fine-tuning, ground measurement and satellite

observation data replace the simulated surface concentration
and column density to account for the loss from the
discrepancy between their predictions with β-adjusted
emissions. Additionally, we extend the constraint on emissions

Figure 3. Comparison of prior NEI emission changes (2020−2019) used in CMAQ and posterior emission adjusted by DeepMMF (*the
DeepMMF predicted DC is 205%, which is not shown in the figure).
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from total emissions used in pretraining to sectoral emissions.
This ensures that the β-adjusted emissions follow sectoral
patterns and align more closely with reality, although the same
weighting for each sector is simply applied in this study. It
should be noted that these constraints have limitations,
particularly for wildfires, which may differ significantly from
prior emissions. Furthermore, uncertainties in wildfire
emissions are extremely large, even in prior emissions.

3. RESULTS AND DISCUSSION
3.1. Fused Concentration. In general, the surface

concentrations predicted by DeepMMF exhibit spatial patterns
consistent with those from the original CMAQ model.
However, DeepMMF shows higher concentrations of NO2,
fused by AQS measurements, than those simulated by CMAQ
(Figure 2). This suggests that the original CMAQ may
underestimate surface NO2 concentrations,

27 with the largest
low biases (NMB over −0.36) in March 2020 during the
COVID-19 period, as the reduction of anthropogenic
emissions stemming from the shutdown was not considered
in the prior emissions used for simulations. The negative biases
were reduced by DeepMMF across the year, and also, there
were no systemically low biases in March (NMB = −0.1, which
is at the same level as other months from −0.08 to −0.14),
implying to be more consistent toward the AQS observations,
and DeepMMF has well captured the reduction of emission
during the COVID-19 period. It does not exactly match with
AQS, constrained by the discrepancy from the prior emissions,
considering the uncertainties from the model itself, also the
systematic errors from the comparison stemming from the
factors including coarse model spatial resolutions,28 and the
CMAQ model mechanism such as the uncounted canopy
effects29 from plant or building structures, which may also
contribute to the biases in simulating gaseous species like NO2.
Additionally, the significant reduction observed in AQS

measurements in the eastern US is also reflected in DeepMMF,
where the reduction is more pronounced than that in the
original CMAQ runs with the same prior emissions but
different meteorological conditions. It is evident that the
change in emissions between 2019 and 2020 is the dominant
factor driving the change in surface NO2 concentration, though
meteorological variations also contribute slightly to this
change. The DeepMMF successfully reflected the day-to-day
variation in surface NO2, and it also captured the reduction
during the COVID period in March 2020, with NME reduced
from 0.87 to 0.15.
Satellite observations also contribute to the differences in

DeepMMF-predicted NO2 column density compared to the
original CMAQ simulations (Figure S9). The fusion with
satellite data leads more consistent column density estimated
by DeepMMF toward the satellite than the original CMAQ,
demonstrated by the slighted decrease of |NMB| from <0.33 in
CMAQ to <0.18 in DeepMMF. With large underestimation in
CMAQ from March to September, besides the uncertainties in
emissions, such biases might be related to missing emission
sources such as lightning and aircraft, or downwelling of
stratospheric NOy produced from N2O near tropopause30

where a regional model like CMAQ fails to capture such extra
increase. The constraints by other factors like prior emission
and ground measurement in DeepMMF prevent DeepMMF
from artificially adjusting toward the satellite observations with
a suspicious increase of NOx emission to compensate the low
biases, which are not mainly driven by the ground emissions.

The incorporation of satellite data in DeepMMF also results in
a more pronounced reduction in column density than that seen
in the original CMAQ in the southeastern US and changes the
trend from an increase to a decrease in the northeastern US.
Consistent with AQS measurements, the changes in column
density observed by the satellite indicate reductions in
emissions between 2019 and 2020.
The DeepMMF is still able to capture well the day-to-day

variation of the NO2 column density observed by the satellite,
while it suffers significant underestimation from March to
September, ensuring its ability to estimate the emission
changes from the fusion with observations. Such results
suggest that DeepMMF successfully integrates information
from both AQS and satellite measurements into the original
CMAQ, providing a more accurate representation of the
spatiotemporal pattern of surface NO2 concentrations.
3.2. Emission Adjustment. The advantage of DeepMMF

lies in its fused concentration, which is naturally correlated
with changes in emissions interacting with meteorological
factors rather than artificially increasing concentrations without
any constraints on emissions. To further evaluate the
performance of DeepMMF in estimating top-down emissions
using the inverse method, we compared the prior emissions
used in the original CMAQ simulation to the posterior
emissions adjusted by DeepMMF to match the fused
observations. As shown in Figure 3, the results indicate higher
emissions in the southeastern US, which is expected because
the fused concentration in DeepMMF is also enhanced,
primarily driven by satellite observations. The NO2 column
density simulated with CMAQ tends to be substantially
underestimated compared to satellite observations in the
southeastern US (Figure S9a). Conversely, lower emissions are
observed in the northern US due to the lower satellite-
observed column density compared to that simulated with
prior emissions in CMAQ. The DeepMMF also captures
changes in emissions from 2019 to 2020, showing reductions
mostly in the eastern US due to the COVID-19 shutdown,
with its influence lasting from March until September (up to
30%, as shown in Figure 3b), and increases in the western US
due to wildfires. Emissions in the northeastern US are also
reduced according to DeepMMF, despite satellite measure-
ments indicating an increase from 2019 to 2020. This increase
is mainly driven by meteorological conditions rather than
emissions, as the increase ratio is even larger in the CMAQ
simulation between 2019 and 2020 with the same emission
levels (Figure S9a). These results demonstrate DeepMMF’s
ability to separate the driving factors for changes in
concentration, whether they stem from emissions or
meteorological conditions.
We also compared the DeepMMF-adjusted top-down

emissions with the bottom-up 2019 NEI from the U.S. EPA
and estimated 2020 pandemic emissions using human activity
information (Figure 3c).31,32 In general, DeepMMF reflects the
overall increase or decrease patterns across the states. For
instance, most states in the west and southwest regions show
an expected increase in NOx emissions driven by no traffic-
related (NEI-other) sources (e.g., wildfire activities), which
largely offset the reductions driven by traffic sectors. The
DeepMMF exhibits either an increase or decrease in NOx
emissions depending on the net effects from nontraffic and
traffic factors; however, uncertainties, particularly from wildfire
emission sources, may also contribute to biases in the bottom-
up emissions in NEI. On the other hand, most states in the
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northeast and southeast regions exhibit strong reductions in
NOx emissions. The DeepMMF effectively captures this
reduction, exhibiting a comparable decreasing ratio of around
−10% to −20%. However, a suspiciously large increase ratio
was found in DC by DeepMMF, likely due to the smaller
baseline emission (see Figure S11), whereas NEI shows a
significant decrease ratio. This discrepancy likely arises from
uncertainties in the observations and spatial resolution, as the
changes of NOx emissions are mainly contributed by on-road
traffic in DC, which requires much higher resolution to observe
than satellite or AQS measurements, which are usually away
from highways. Thus, further improvement using a high-
density observation network with ultrafine downscaling
modeling is necessary to improve performance and achieve
consistent estimations between top-down and bottom-up
methods.
3.3. Sensitivity to the Prior Emissions Selections. The

testbed analysis underscores the importance of dynamically
selecting prior emissions for accurately estimating emission
changes (Text S1 and Figure S3). Directly using the 2019 NEI
as a prior emission for another year, such as 2020, may not be
suitable. To address this, we conducted a sensitivity analysis by
comparing the results of DeepMMF using fixed prior emissions
versus dynamic β-adjusted emissions during the fine-tuning
process. The selection of prior emissions is detailed in Text S2
and Figure S10.
We compared the differences between using fixed prior

emissions (based on the baseline emission) for both years and
dynamic prior emissions (i.e., baseline for 2019 and a smaller

emission level, 0.8 times the baseline, for 2020). The results
suggest that using fixed priors results in smaller changes in
emissions compared with dynamic priors in most states
(Figure S11). Clearly, dynamic prior emissions are crucial for
accurately estimating changes in emissions; otherwise, changes
in emissions will be significantly underestimated. Our
proposed two-stage strategy allows for more flexibility in
applying the model in years where prior emissions data may
not be available, enhancing its usefulness.
3.4. Interpretation of DeepMMF in Estimating

Emissions from Various Features. Although the
DeepMMF machine learning model lacks transparency in its
data handling compared to a physical model, it is still possible
to investigate its underlying calculations. This can be achieved
through sensitivity analysis by individually modulating the
input and observing the model’s predictive responses.
Following the same strategy as in our previous studies,33 we
reduced the input features by 20% (e.g., decreasing ground T
by 2 degrees) and regarded the difference from the base case as
the contribution to the feature, as shown in Figure 4, which
illustrates this correlation between emissions and concen-
trations under different meteorological conditions. For
instance, the lower measured NO2 levels indicate smaller
emissions, which is consistent with our expectations, and these
correlations are also affected by meteorological variables,
particularly the planetary boundary layer height (PBL), wind
speed (WS), and short-wave radiation (SWR); their reduction
leads to a reduced estimation of emissions. This is because
smaller PBL and WS imply relatively stable atmospheric

Figure 4. Sensitivity analysis for the importance in features (monthly average).
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dispersion conditions and lower SWR implies relatively weak
atmospheric oxidation capacity (oxidize NO2 to nitrate acid,
acting as a loss), thus requiring smaller emission sources to
maintain the same concentration levels. Therefore, the
estimated emissions will be smaller. Such insights into the
DeepMMF response to changes in individual features
demonstrate its reasonability in dealing with the correlations
between the inputs and output, adhering to the physical laws,
as expected.
The results demonstrate the significant contribution from

the satellite observations (noted as “sat” in Figure 4) and the
AQS data set, accounting for more than more than 50% of the
total response.
Another interesting finding is that satellite observations play

a more important role on a regional scale, particularly in areas
such as the Great Plains, Midsouth, and Southeast, where
ground measurements are limited. However, they are less
important in regions with dense AQS coverage, such as the
Northeast, Southwest, and at city grid cells (proximate to the
city area to represent the urban environment), influenced by
the different weighting between ground measurements (with
24 hourly records per day) and satellite columns (with 1 h
record per day). The DeepMMF model successfully balances
the weighting and role of multiple observations.
3.5. Comparison of Fused Concentrations Among

Different Methods. One of the advantages of DeepMMF is
its ability to address the limitations of traditional fusion
methods, which often suffer from a limited observation data set
that either faces sample imbalance problems or is not
efficiently fused with observations. We compared the results
of fused concentrations obtained by using different methods.
The first two methods are traditional machine learning

models based on either decision trees (LightGBM)8 or deep
neural networks (ResNet).5 These models aim to establish
correlations between column and surface concentrations using
features, such as meteorological and geographical variables.
However, they suffer from sample imbalance problems, as most
ground measurements are located in urban areas with high
pollution levels. This imbalance can lead to overestimations in
downwind and rural areas, even when neighborhood features
or additional samples from the simulation data are added to
the training set.
Another method is the machine learning-based column-

surface ratio method (DeepSAT4D),6 which uses the column-
surface ratio simulated by a numerical model to estimate
surface concentration from column density. This method has
advantages over traditional column-surface ratio methods
because it does not require additional CTM simulations,
having already been trained with deep learning. However, it
heavily depends on the accuracy of the numerical model and
does not utilize ground-based measurements from AQS.
In contrast, DeepMMF addresses these issues more

effectively, providing a more accurate and robust fusion of
observations and model simulations. As presented in Figure 5,
DeepMMF excels in effectively fusing concentration data from
both the satellite column and AQS ground measurements,
capturing variations in concentration between years, with a
larger R2 of 0.98 and a smaller RMSE of 1.45 ppb than others
with an R2 of 0.4−0.7 and an RMSE of 3−6 ppb. The grid-to-
grid scatter plot comparing the annual mean levels of surface
NO2 across AQS sites is provided in Figure S13, and multiple
AQS observations within a single grid cell (approximately 5%
of the total cases) are averaged into a single value. Without

AQS fusion, DeepSAT4D predictions significantly under-
estimate concentrations, closely resembling the original
CMAQ simulation. Conversely, the sample imbalance problem
causes significant overestimations in both LightGBM and
ResNet predictions (see Figure S12), although their
predictions at monitor sites are closer to AQS measurements
than DeepSAT4D. The DeepMMF successfully constrains its
predictions to align with the original CMAQ (without
suspicious large increases on a regional scale like other
methods) while remaining consistent with AQS measurements
at monitor sites, demonstrating a successful fusion result.
Additionally, the DeepMMF captures the changes during
2019−2020 in AQS concentrations much better than other
methods, as the |NMB| in DeepMMF is 0.02, which is smaller
than other models over 0.6.
3.6. Implication and Future Work. In summary, the

DeepMMF model exhibits excellent performance in fusing
multiple data sets from different sources, including simulations
and various observational data with different temporal and
spatial coverage. It also provides an insightful example of
effectively coupling a machine learning model with a physical
model through physically constrained machine learning.
Machine learning, as a data-driven method, requires an
abundant data set for training to better capture nonlinear
systems like atmospheric chemistry. Physical models have the
advantage of generating data under various conditions, which is
crucial for better training machine learning models. Unlike
most previous studies that directly feed physical model
simulation data into the machine learning model structure as
a feature or input, the physical constraints on the machine
learning defined in this study involve integrating the simulated
data into the training process during pretraining. This
approach can effectively avoid uncertainties in the physical
model itself while maintaining the machine learning model as
an efficient, CTM-free model for the applications. Another
advantage of using physical models to assist machine learning
is their role as a testbed, which can efficiently validate and
improve the machine learning model. This study demonstrates
this benefit through a two-stage optimization strategy and the
selection of prior emissions and its ground-to-column ratio in
one typical city (taking Austin as an example, all 18 cities can
be found in Figure S14).
While this study focuses on a national scale, leveraging the

availability of CMAQ simulations at a 12 km resolution, we
strongly recommend applying this method at the 1 km urban
scale in future studies. Doing so would enhance human
exposure assessments and reduce uncertainties stemming from

Figure 5. Comparison of fused concentration and changes using
different methods and settings (the model with “-s” represents only
selecting the grids that match with the AQS sites; the statistics for
each model are provided at the bottom, highlighted in red).
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sample imbalance. Data fusion at finer scales is particularly
prone to these uncertainties, given the steep emission gradients
(e.g., diffusion from sources), more complex meteorological
conditions, urban canopy effects, and fewer ground measure-
ments for training. These factors make it even more
challenging for sparse ground measurements to represent
broader spatial patterns accurately, as seen in Figure 6; the
AQS sites are sparse and the spatial gradient is seeable even at
the 12 km resolution in 18 major US cities, though the
DeepMMF can keep similar spatial pattern as original CMAQ
for both ground and column density (and the ground-to-
column ratio, noted as GCr), implying its ability in dealing
with the urban-rural differences in vertical profiles, as high
ground-level concentrations are typically indicative of denser
urban emissions; future applications could benefit from higher-
resolution CMAQ simulations,28 supported by increased
observations, such as hourly satellite data (e.g., TEMPO34)
and ground-level measurements from low-cost sensors. While
training the machine learning model with higher resolution
requires a large memory resource, the DeepCTM we designed
previously for the vertical profile of NO2 has difficulty being
applyied in this study, which has much higher spatial/vertical
resolutions and limited the accuracy particularly for applying
the averaging kernel to better calculate the NO2 column due to
the different sensitivity of the satellite signal to each vertical
layer. While considering that we mainly constrain the NO2 for
rural based on the satellite but the urban is mostly constrained
by the ground measurement, the uncertainties might be not
that important but it should be considered in future if the
computational resources are enough to support the full vertical
structure of NO2 prediction for this study.
This enhancement could also improve its ability to adjust

emissions by sector-level. In this study, emissions were
constrained with the same weight ratio for each sector despite
potential differences in uncertainties among sectors (e.g., point
sources versus wildfires). Future developments could incorpo-
rate uncertainties in emissions based on factors such as
emission factors and activity information used in prior
emission calculations. Besides, optimizing column and surface
weighting, considering these uncertainties, is crucial for

accurately quantifying emissions. The uncertainty of satellite
retrievals can be assessed through technical reports on remote
sensing algorithms used for satellite signal retrievals. Ground
measurements typically have smaller uncertainties due to high-
accuracy equipment but may suffer from representativeness
issues within a modeling grid cell, particularly in areas with
heterogeneous emission distributions (e.g., near large point
sources or roadsides with higher concentrations than down-
wind areas). Careful design and balance of weighting factors
for each component, along with more abundant observations
of high accuracy and additional spatial surrogate information,
are necessary to enhance the reliability of the inversion study
of DeepMMF in the future.
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