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Abstract 

Background  The incidence of human infections caused by arthropod-borne viruses, such as the chikungunya virus 
(CHIKV), has increased globally due to a number of factors, such as climate change and globalization. The exotic 
mosquito species Aedes albopictus is a significant vector for CHIKV, raising concerns about its transmission potential 
in temperate regions, including Central Europe. We have therefore investigated the vector competence of Ae. albop-
ictus for CHIKV at constant and fluctuating temperatures between 15 °C and 24 °C to assess the transmission risk 
in Europe.

Methods  Aedes albopictus mosquitoes were reared and artificially infected with CHIKV. Infection rates and transmis‑
sion efficiencies (TEs) were determined after 14 days of incubation at constant and fluctuating (± 5 °C) mean tempera‑
tures of 15 °C, 18 °C, 21 °C and 24 °C. In addition, mosquito locomotor activity was measured under the same fluctuat‑
ing temperature conditions. A risk map for CHIKV transmission in Europe was generated combining temperature data 
and the current distribution of Ae. albopictus.

Results  CHIKV transmission was observed at all tested temperatures. The highest TEs were recorded at fluctuating 
temperatures of 18 °C (54.3%) and 21 °C (58.6%), while the lowest TE was observed at a constant temperature of 15 °C 
(5.6%). TEs at fluctuating temperatures of 15 °C and 24 °C were the same (32.5%). Mosquito activity showed a noc‑
turnal unimodal activity pattern with a peak during the start of the scotophase (hour 20). The proportion of active 
mosquitoes per hour increased with temperature and was nearly zero at 15 °C. The risk map indicated that regions 
in Southern and Central Europe, including recently invaded areas north of the Alps, have temperatures theoretically 
allowing CHIKV transmission for at least some days per year.

Conclusions  While CHIKV can be transmitted by Ae. albopictus at 15 °C, the activity of this mosquito is strongly 
decreased at this temperature, likely reducing the transmission risk. These findings emphasize the importance of con‑
sidering both vector competence and mosquito activity when assessing the risk of arbovirus transmission in temper‑
ate regions. Further studies are needed to validate these laboratory findings under field conditions.
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Background
Over the last decades, human infections caused by 
arthropod-borne viruses (arboviruses) have increased 
worldwide, as shown by significant outbreaks of den-
gue virus, chikungunya virus (CHIKV) and Zika virus 
[1]. This increase can be attributed to various factors 
linked to globalization and global change, such as climate 
warming and land-use change, which favor the spread 
and establishment of invasive mosquito species as well as 
the introduction of arboviruses to areas where they were 
not reported previously [2].

From the public health perspective, CHIKV is one 
of the most important virus species within the family 
Togaviridae (genus Alphavirus). This family of viruses 
is characterized by a single-stranded positive-sense 
RNA genome organized in spherical enveloped virions 
[3]. Human CHIKV infections are associated with fever 
and severe, debilitating arthralgia, both of which can 
become chronic for years [4]. The first CHIKV epidem-
ics were observed in 1952–1953 at the border region 
between Mozambique and Tanzania [5]. Historically, 
CHIKV predominantly circulates on the African and 
Asian continent, but over the last decades it has signifi-
cantly expanded its range, with huge outbreaks in India, 
the Indian Ocean islands and the Americas involving 
millions of human infections [1, 6]. Although CHIKV is 
not endemic in Europe, autochthonous transmission  has 
been reported to have led to several outbreaks, with up to 
300 infected individuals, caused by regular introductions 
of CHIKV by infected travelers [7].

CHIKV circulates in an enzootic cycle between forest-
dwelling Aedes species and non-human primates, but 
an urban transmission cycle between humans and other 
Aedes species has been well established in the last dec-
ades [8]. Aedes aegypti is considered to be the primary 
vector of CHIKV. However, mutations of the East/Cen-
tral/South African (ECSA) strain of CHIKV has facili-
tated transmission by Ae. albopictus 40-fold, making this 
latter species an important vector [9, 10]. Aedes albop-
ictus has been established in Italy since the 1980s, at 
first spreading around the Mediterranean Sea, but also 
expanding its range towards Central Europe, including 
the establishment of populations north of the Alps in 
Germany [11, 12]. High vector densities in Italy, Spain 
and France enabled smaller and larger outbreaks of 
CHIKV, dengue virus and Zika virus [2, 13].

Although CHIKV is an arbovirus of global relevance, 
a systematic literature study only identified eight stud-
ies analyzing the CHIKV vector competence of Ae. 
aegypti and Ae. albopictus [14], highlighting the current 
lack of knowledge on the interaction between tempera-
ture and CHIKV transmission. Previous studies on the 
risk of CHIKV circulation in Europe under constant 

experimental temperature conditions demonstrated that 
the areas under risk might be predominantly associated 
with the presence and abundance of the vector species as 
high CHIKV transmission rates were also observed at low 
temperatures of 18  °C [15]. This observation led to the 
question of whether transmission can also be observed 
at even lower temperatures and if the Asian tiger mos-
quito still shows flight activity at these temperatures. 
The aim of the study reported here was to assess vector 
competence of Ae. albopictus from Germany at constant 
and fluctuating (± 5 °C) temperatures (15 °C, 18 °C, 21 °C, 
24  °C) that better represent natural conditions. In addi-
tion, we also measured locomotor activity under the 
same fluctuating temperature conditions to give a more 
comprehensive assessment of spatial CHIKV transmis-
sion risk in Europe.

Methods
To establish a colony of Ae. albopictus from Germany, 
eggs were collected in summer 2015 in Freiburg, Ger-
many. Mosquitoes were reared at 26 °C and 80% humid-
ity, under a light:dark photoperiod of 12:12 h, including 
30  min twilight. Ten randomly selected specimens of 
the F4 generation were tested by pan-PCRs and found 
to be negative for flavi-, alpha- and orthobunyaviruses 
to exclude natural infections [16–18]. For the experi-
ments, a total of 241 females (4–14 days old) of genera-
tion F8-F12 were analyzed. Mosquitoes were infected 
as described in detail by Heitmann et al. [19]. Briefly, 20 
specimens were starved for 24 h in Drosophila breeding 
vials (Carl Roth, Karlsruhe, Germany) before  feeding 
on an infectious blood meal for 3 h, offered in two 50-µl 
droplets pipetted onto the bottom of the vials. The final 
concentration of CHIKV (strain CNR_24/2014, sup-
plied by the European Virus Archive goes Global Pro-
ject [EVAg], ECSA-lineage, originally isolated from a 
human case in France, 5th passage) in the blood meal 
was 106 plaque-forming units per milliliter (PFU/ml). 
Engorged females were subsequently sorted and incu-
bated for 14  days at constant temperatures of 15  °C, 
18 °C, 21 °C or 24 °C, as described in part by Heitmann 
et  al. [15], and at fluctuating temperatures (± 5  °C) of 
15 ± 5 °C, 18 ± 5 °C, 21 ± 5 °C, 24 ± 5 °C or 27 ± 5 °C, with 
a relative humidity of 70%. At the population level it 
has been modeled that > 99% of specimens exposed to 
temperatures ranging from  15 °C to 24 °C are expected 
to survive at least 14  days [19]. A salivation assay was 
conducted for each mosquito specimen as described in 
[15, 20]. In short, mosquitoes were anesthetized with 
CO2 and immobilized. To induce salivation, the mos-
quito’s proboscis was inserted into a filter tip contain-
ing 10 µl of phosphate-buffered saline (PBS) for 30 min, 
following which the saliva was incubated on Vero cells 
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for 4 days. The cells were monitored for cytopathic 
effects (CPE). The supernatant from the CPE-positive 
cells was collected, and RNA copies were detected with 
the RealStar Chikungunya RT-PCR Kit 2.0 (Altona 
Diagnostics, Hamburg, Germany) after extraction with 
the QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Ger-
many). All experiments were performed at least twice 
independently for each condition. Replicates were only 
included if a randomly selected, engorged female at 
day zero was infected with viable CHIKV, i.e. showing 
CPE-positive cells validated by reverse transcription 
PCR (RT-PCR) by the methods described above. Infec-
tion rates (number of virus-positive mosquito bodies 
per number of fed females) and transmission efficien-
cies (TEs, number of virus-positive saliva per number 
of fed specimens) were calculated as described by Heit-
mann et  al. [15]. A binomial generalized linear model 
(GLM) was fitted with TE as the response and a Gauss-
ian GLM was fitted with titer as response variable, both 
with mean temperature and the factor fluctuating/non-
fluctuating as predictors.

Mosquito activity was measured using the LAM25H-3 
Locomotor Activity Monitor (LAM; TriKinetics Inc, 
Waltham, MA, USA) with three board stack monitors at 
three axial positions per tube. Single females aged from 
2 to 14 days were anesthetized with CO2 and placed into 
the glass tubes of the LAM. The tubes were closed on 
each side with ceapren plugs (Greiner Bio-One, Krems-
münster, Austria) that had been cut through the middle 
to enable placement of a dental Monoart cotton roll (size 
1; Euronda GmbH, Altenberge, Germany) into the vial. 
The cotton rolls were soaked with an 8% fructose solu-
tion to ensure continuous sustenance with fructose on 
both sides of the vial. The tubes were inserted horizon-
tally into the LAM, which was placed into an incuba-
tor maintained at 70% humidity and a 12:12 h light:dark 
photoperiod, with fluctuating temperatures of 15 ± 5  °C, 
18 ± 5  °C, 21 ± 5  °C, 24 ± 5  °C, mimicking a day/night 
rhythm, with the peak temperature in the middle of the 
light period. Measurements were started on the follow-
ing day. Over 3 days the number of beam-crossing events 
were measured in 1-min intervals with the DAMSystem3 
program (v3.12.1; TriKinetics Inc). Experiments were 
repeated 3 times independently. For each tube and min-
ute, mosquitoes were counted as active if one of the three 
monitors per tube recorded a signal. The proportion of 
active mosquito specimens per 10-min interval and the 
proportion of 10-min intervals showing mosquito activity 
were calculated per LAM, averaged for 60-min intervals 
and finally averaged over the three experiments. Spear-
man’s rank order correlation test was applied to analyze 
the correlation between temperature and the mean mos-
quito activity for the main activity phase and the peak of 

activity. The correlation between mean temperature and 
the proportion of active specimens in the main activity 
phase (hour 15 to 23) and at the peak of activity (hour 
20.5) was analyzed with Spearman rank correlation.

The risk map for CHIKV transmission in Europe was 
estimated by identifying areas in Europe presenting the 
temperature data used in the vector competence stud-
ies and specifically presenting the areas already colo-
nized by Ae. albopictus. Daily mean temperature data 
(European re-analysis and observations for monitoring; 
E-OBS, v29.0e) were obtained from http://​www.​ecad.​eu 
[21]. These E-OBS data, available on a 0.1° regular lati-
tude–longitude grid, were extracted for a 5-year period 
from 2019 to 2023. For each grid cell, the number of days 
per year with the preceding 14 days having a mean daily 
temperature of ≥ 15 °C, ≥ 18 °C, ≥ 21 °C and ≥ 24 °C were 
calculated. The annual values were then averaged over 
the 5-year period. The distribution data of Ae. albopic-
tus at the regional administrative level (NUTS3) as of 28 
August 2023 were obtained from the European Centre 
for Disease Prevention and Control [22].

All calculations and visualizations were conducted with 
the program R [23], using the following packages: dplyr 
[24], tidyr [25], ggplot2 [26], stringr [27], plyr [28], lubri-
date [29], terra [30], tidyterra [31], RcppRoll [32], geodata 
[33] and ggpubr [34].

Results
Infection rates of 100% were observed for all experi-
ments (Table  1). Virus transmission was observed at all 
temperatures, both under the constant or fluctuating 
temperature conditions (Table 1; Fig. 1). Highest TEs of > 
50% were observed for the fluctuating 18 °C (54.3%) and 
21 °C (58.6%) temperature conditions, while for the same 
mean temperatures TEs were lower for constant condi-
tions (18 °C: 50.0%; 21 °C: 39.1%). TEs at 24 °C (constant 
temperature: 37.5%, fluctuating temperature: 32.5%) and 
15 °C (fluctuating temperature: 32.5%) were similar, while 
the lowest TE was observed for the 15 °C constant tem-
perature condition (5.6%). However, there was no statis-
tically significant impact of temperature (GLM, df = 1, 
deviance = 0.06, P = 0.89) whether the temperature was 
constant or fluctuating (GLM, df = 1, deviance = 0.11, 
P = 0.74) or the interaction of both variables (GLM, 
df = 1, deviance = 0.07, P = 0.78). The mean log10 CHIKV 
RNA copies per mosquito specimen ranged from 7.7 to 
11.4 (Additional file 1: Figure S1), but again no statistical 
differences were found between the different temperature 
conditions (GLM, df = 1, P > 0.05).

Aedes albopictus females showed a nocturnal unimodal 
activity pattern (Fig. 2). Mosquito activity for all tempera-
tures started to increase in the middle of the photophase 
(hour 15) and peaked during the start of the scotophase 

http://www.ecad.eu
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(hour 20) followed by a rapid decline over the following 
3 h. The mean proportion of specimens active per 10-min 
interval between hour 15 and hour 23 significantly 
increased with increasing temperature from 2.5% at 15 °C 
to 29.7% at 24 °C (ρ = 0.99, p-value = 0.002). In the same 
way, the proportion significantly increased for the activ-
ity peak with increasing temperature (hour 20), showing 
an average of 2.5% at 15 °C and 58.5% at 24 °C (ρ = 0.99, 
p-value = 0.004), as did the proportion of 10-min inter-
vals per hour with mosquito activity, increasing from 
1.0% at 15 °C to 14.2% at 24 °C.

The average number of days per raster cell (2019–2023) 
with the preceding 14 days having a mean daily tempera-
ture ≥ 15  °C, ≥ 18  °C, ≥ 21  °C and ≥ 24  °C, respectively, 
showed a clear gradient from the Mediterranean to 

Central Europe (Fig.  3). Regarding the current distribu-
tion of Ae. albopictus in Europe,  we documented at least 
a few suitable days for all four temperatures, including 
the recently invaded areas north of the Alps. However, 
areas with historic CHIKV outbreaks in southern France 
or at Italy’s east coast showed relatively higher numbers 
of days compared to more recently invaded areas, also for 
the temperatures 21 °C and 24 °C.

Discussion
Previous studies demonstrated that CHIKV can be trans-
mitted at constant temperatures as low as 18  °C, which 
has led to the interpretation that the risk of CHIKV 
transmission in Europe is predominantly limited by the 
distribution and abundance of Ae. albopictus as a highly 

Table 1  Vector competence of Aedes albopictus females from Germany for chikungunya virus

Temperature condition (°C) Number of mosquitoes tested Positive saliva Infection rate [%] Transmission 
efficiency [%]

15 18 1 100 [18/18] 5.56 [1/18]

15 ± 5 40 13 100 [40/40] 32.5 [13/40]

18 32 16 100 [32/32] 50 [16/32]

18 ± 5 35 19 100 [35/35] 54.3 [19/35]

21 23 9 100 [23/23] 39.1 [9/23]

21 ± 5 29 17 100 [29/29] 58.6 [17/29]

Fig. 1  Mean transmission efficiency with 95% confidence intervals (whiskers) of Aedes albopictus from southern Germany under four different 
fluctuating (± 5 °C) and not fluctuating (constant) temperature conditions. Numbers at the top of the graph indicate the number of specimens 
analyzed
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susceptible vector [15]. These results are confirmed in the 
experiments conducted in the present study, which were 
repeated under fluctuating temperature conditions and 
also included an average temperature of 15  °C. CHIKV 
transmission was observed at all temperatures ranging 
from 15 °C to 24 °C at both constant and fluctuating (± 5 
°C) temperatures. Several studies have confirmed that 
CHIKV can be experimentally transmitted by Ae. albop-
ictus at relatively low incubation temperatures compared 
to other arboviruses, such as dengue virus or Zika virus, 
with CHIKV transmission detected for constant temper-
ature conditions of 22  °C [35], 20  °C [36, 37] and 18  °C 
[15, 38] or for a fluctuating temperature condition of 
20 ± 6 °C [36].

TEs were higher at 18 °C and 21 °C than at 24 °C, while 
the TE was similar at the fluctuating temperatures of 
15  °C   and 24  °C. Although our results are not statisti-
cally significant and previous results from different stud-
ies indicate that  increasing temperature correlates with 
increasing vector competence [14], our findings support 
previous observations of a positive impact of low tem-
peratures on CHIKV vector competence for Ae. albop-
ictus laboratory colonies from Germany, Italy and West 
Africa [15, 39]. The underlying theory is that some mos-
quito species may exhibit a reduced capacity to control 

viral infections at low temperatures, likely due to a tem-
perature-dependent deficiency in their antiviral immune 
response [39]. Specifically, RNA silencing is inhibited 
in mosquitoes exposed to cooler conditions. For exam-
ple, Ae. aegypti mosquitoes reared at lower tempera-
tures show impairments in the RNA interference (RNAi) 
pathway, which is crucial for controlling viral infections. 
While it is well established that RNAi impairments 
occur downstream of the initial dicing step, the precise 
relationship between temperature and virus replication 
requires further investigation.

Fluctuating temperatures provide a more realistic 
simulation of the real-world temperatures observed in 
the field [40]. However, surprisingly few studies have 
systematically compared vector competence under con-
stant and fluctuating temperatures. The range of fluctua-
tion relative to the mean temperature around which the 
fluctuation takes place is considered to have a significant 
impact on vector competence [40]. For example, large 
temperature fluctuations at high temperatures was found 
to  result in reduced vector competence of Ae. aegypti 
for dengue virus, while the fluctuation range at low tem-
peratures increased vector competence [40, 41]. In con-
trast, fluctuating temperatures around 28 °C with a range 
of 11  °C and 15  °C did not affect transmission rates for 
Culex tarsalis and Culex quinquefasciatus for West Nile 
virus [42]. In comparison to constant temperatures, in 
our study mean TEs at fluctuating temperatures were 
higher at 15 °C, 18 °C and 21 °C, with the reverse true for 
24 °C, but the differences were not statistically significant, 
as also demonstrated for Ae. albopictus from Florida [43].

Average temperatures of at least 15 °C over 14 days are 
very common in Europe,  including areas north of the 
Alps, which have been recently by the Asian tiger mos-
quito [12]. When only temperature-dependent vector 
competence is considered alone, we found a high CHIKV 
transmission risk for the entire current distribution of Ae. 
albopictus in Europe. However, although we observed 
relatively high TEs for CHIKV at fluctuating tempera-
tures of 15 °C, mosquito activity nearly dropped to zero 
at this temperature. Thus, although CHIKV can develop 
within the mosquito at very low temperatures, this does 
not mean that Ae. albopictus can actually transmit the 
virus at these temperatures in the field. The authors of 
different studies concluded that a mean daily tempera-
ture of 13  °C is the threshold allowing Ae. albopictus 
activity in the field [44]. Thus, the areas with a substantial 
number of days per year allowing CHIKV transmission 
and sufficient activity are probably restricted to Southern 
Europe.

Linking laboratory data to the actual situation in the 
field must be interpreted with caution. Mosquitoes are 
known to actively visit microclimates, such as resting 

Fig. 2  Average locomotor activity of Aedes albopictus from southern 
Germany across at least three independent experiments 
as percentage of specimens moving (lower panel) under four 
different fluctuating temperatures (upper panel)
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sites, which do not necessarily represent the available 
large-scale temperature data based on weather stations 
[44–47]. Therefore, it is unclear how the presented labo-
ratory data are transferable to field conditions. Further-
more, several general conditions of the experiments need 
to be considered when interpreting the results. We used 
female mosquitoes that varied greatly in age from 2 to 
14 days for the vector competence and activity experi-
ments; however, vector competence may be reduced in 
older specimens, as observed with malaria parasites [48]. 
Furthermore, the activity of mosquitoes was recorded 
in the absence of stimuli, such as host presence or other 
factors known to affect vector activity, including infec-
tion status [49]. Although only engorged specimens were 
selected after feeding on an infectious blood meal, the 
CHIKV body titer per female at day zero was unknown. 
However, it is well known that the size of the female mos-
quito also has an impact on the size of the blood meal 
[50], and the CHIKV titer might also be affected by the 

form of administration of the blood meals as droplets 
at room temperature. In addition, the mosquito colony 
used in the present study is relatively old (F8-F12 genera-
tion), and it is therefore possible that the results do not 
reflect the transmission phenotype of field mosquitoes 
[51]. Finally, a larger sample size might result in statisti-
cally significant differences, although we assume that epi-
demiologically relevant differences in vector competence 
should be seen within the sample size of approximately 30 
specimens per temperature condition.

Conclusions
Vector capacity is a multifactorial integral summariz-
ing the different parameters that enable arthropods to 
be vectors of pathogens [52]. For example, for CHIKV, 
it has been demonstrated that the vector competence of 
Ae. albopictus is affected by a combination of mosquito 
population, viral strain and temperature [37]. Our study 

Fig. 3  Average number of days per year with the preceding 14 days having a mean daily temperature ≥ 15 °C, ≥ 18 °C, ≥ 21 °C and ≥ 24 °C, 
respectively, for the period 2018–2023 for the current distribution of Aedes albopictus in Europe
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confirmed that vector competence is not the only vari-
able which should be considered when estimating the 
temperature-dependent transmission risk. In particu-
lar, when evaluating the vector competence at the lower 
range of temperatures, information on vector activity 
should be also included in the interpretation of results.
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