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Introduction
Polycystic ovary syndrome (PCOS) is the most common 
endocrine disorder in women of reproductive age, char-
acterized by hyperandrogenism, irregular menses, anovu-
lation, and polycystic ovaries. It is associated with an 
increased risk of infertility [1], type 2 diabetes (T2D) [2], 
hypertension [3], depression, anxiety [4, 5], and insomnia 
[6], and insulin resistance (IR) [7], which may be linked to 
impaired stress response [8]. In addition to metabolic and 
hormonal factors, the neuroendocrine system plays an 
essential and central role in the pathophysiology of PCOS 
and remains up-to-date in recent research. An imbal-
ance in the pattern of gonadotropin-releasing hormone 
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Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder occurring in women of reproductive 
age. The disease is caused by a complex interplay of genetic and environmental factors including genes encoding 
components of the hypothalamic-pituitary-adrenal (HPA) axis. We have recently reported the association of 
melanocortin receptor genes (MC1R, MC2R, MC3R, MC4R, and MC5R) with the risk of type 2 diabetes (T2D) and/or 
major depressive disorder (MDD). The latter 2 disorders are comorbid with PCOS. In this study, we used microarray 
to test 12 single nucleotide polymorphisms (SNPs) in the MC1R gene, 10 SNPs in the MC2R gene, 5 SNPs in the 
MC3R gene, 6 SNPs in the MC4R gene, and 4 SNPs in the MC5R gene in 212 original Italian families with PCOS. We 
identified 1 SNP in MC1R, 1 SNP in MC2R, 2 SNPs in MC3R, and 2 SNPs in MC5R significantly linked and/or associated 
to/with the risk of PCOS in Italian families. This is the first study to report the novel implication of melanocortin 
receptor genes (MC1R, MC2R, and MC5R) in PCOS. MC3R and MC4R were previously reported in PCOS. However, 
functional studies are needed to validate these results.
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production can lead to a disruption in the hypothalamic-
pituitary-ovarian or adrenal axis, which in turn has been 
associated with the development of PCOS [9].

The hypothalamic-pituitary-adrenal (HPA) axis, which 
regulates stress response [10], shows increased activa-
tion, pro-inflammatory mediators, and psychological 
distress and maladaptive stress-driven HPA axis acti-
vation in women with PCOS [11]. HPA dysfunction is 
implicated in the metabolic and inflammatory aspects of 
PCOS, including IR [12, 13].

In some publications on PCOS, genetic mechanisms 
are particularly emphasized, and it is stated that these 
genetic changes may be related to some metabolic con-
sequences of PCOS [13, 14]. Genes potentially contrib-
uting to HPA axis-related predisposition to T2D, major 
depressive disorder (MDD), and possibly PCOS include 
the corticotropin-releasing hormone receptors (CRHR1 
and CRHR2) [15, 16], melanocortin receptors (MC1R–
MC5R) [17], glucocorticoid receptor (NR3C1) [18], and 
mineralocorticoid receptor (NR3C2) [19]. Melanocortin 
receptor genes encode key feeding and metabolic regula-
tors (MC3R, MC4R, and MC5R) [20–23] and components 
of the HPA axis (MC2R) [24]. While MC1R is primarily 
known for its role in skin pigmentation [25], it also con-
tributes to the inflammatory response [26] and obesity 
[27]. The MC4R gene is overexpressed in the hypothala-
mus of PCOS rat models [28], and variants in MC3R 
and MC4R have been identified in Turkish and Chinese 
individuals with PCOS [29, 30]. Mutations or variations 
in the MC4R gene have also been associated with obesity 
[31], a common comorbidity in PCOS [32]. The MC4R 
gene may influence the development of insulin resistance 
[33] and hyperandrogenism [34], key features of PCOS 
[35], by affecting metabolic pathways that regulate glu-
cose and lipid metabolism [36, 37]. Dysfunction in the 
melanocortin signaling pathway can, therefore, exacer-
bate the metabolic and reproductive abnormalities seen 
in women with PCOS. This study aims to investigate 
the association of melanocortin receptor genes (MC1R–
MC5R) with PCOS in Italian families.

Materials and methods
We used microarray to test 12 single nucleotide polymor-
phisms (SNPs) in the MC1R gene, 10 SNPs in the MC2R 
gene, 5 SNPs in the MC3R gene, 6 SNPs in the MC4R 
gene, and 4 SNPs in the MC5R gene in 212 original Ital-
ian families with familial history of T2D. The average 
age at T2D diagnosis was 47.85 years, ranging from 7 to 
81, with a median age of 41. The male-to-female ratio 
was 1.04:1, and the average family size was 5.45. The 
families were additionally diagnosed with PCOS accord-
ing to the Rotterdam diagnostic criteria (presence of at 
least two of the following three characteristics: chronic 
anovulation or oligomenorrhea, clinical or biological 

hyperandrogenism, and/or polycystic ovaries) [38]. To 
diagnose a subject with PCOS, conditions such as thyroid 
hormonal disorders, hyperprolactinemia, hypothalamic 
amenorrhea, and congenital adrenal hyperplasia were 
ruled out. Additionally, two or more of the following cri-
teria had to be met: chronic anovulation or oligomenor-
rhea, clinical or biochemical hyperandrogenism, and/or 
the presence of polycystic ovaries. In the familial dataset 
with T2D, 11% of families had at least one member diag-
nosed with PCOS. The average BMI of PCOS patients at 
age 20 was 24.73 (range 19.53–34.08), with 30% classified 
as overweight (BMI ≥ 25) and 13% as obese (BMI ≥ 30). 
The average maximum lifetime BMI for these patients 
was 32.51 (range 20.57–69.85), with 74% being over-
weight (BMI ≥ 25) and 39% obese (BMI ≥ 30). The aver-
age increase in BMI from age 20 to maximum lifetime 
BMI was 8.91, with a mean BMI increment of 1.36. The 
SNPs were selected according to their genomic positions 
as well as minimum allele frequency (MAF) to ensure 
adequate representation of the gene. The average MAF 
was 0.06. Families were recruited based on Italian-only 
ancestry for at least 3 generations, inherited familial T2D, 
and characterized for additional phenotypes (e.g., PCOS) 
and traits (e.g., blood pressure). After the exclusion of 
Mendelian inheritance errors and/or uncertain paternity 
via the PLINK software [39], we tested the SNPs via the 
Pseudomarker software [40] for parametric linkage to 
and/or linkage disequilibrium (LD) – the latter testing 
linkage and association – with PCOS via the recessive 
model with complete penetrance (R1) and incomplete 
penetrance (R2). We then ran a secondary analysis under 
the dominant models with complete (D1) and incomplete 
penetrance (D2). The recessive and dominant models 
were selected based on the genetic architecture of the 
SNPs studied, as these models can help capture poten-
tial associations with PCOS by accounting for different 
modes of inheritance. We used these models to explore 
the effects of SNPs under varying genetic assumptions, 
enhancing the robustness of our findings. PLINK was 
used for its efficiency and widespread application in 
genetic studies’ quality control and data management, 
making it particularly suitable to run quality checks and 
exclude bad inheritance, uncertain paternity, and errors 
in genotypes by also analyzing SNP data within a famil-
ial dataset [39]. Pseudomarker was chosen for its ability 
to perform combined linkage and association analysis, 
which is valuable in family-based studies, as it allows 
to leverage both linkage and association information 
to identify genetic variants potentially contributing to 
PCOS [40]. Tested variants were computed for the pres-
ence of LD blocks using correlations from SNPs available 
in the Toscani Italian population from the 1000 Genomes 
Project ​(​​​h​t​​t​p​s​​:​/​/​w​​w​w​​.​i​n​​t​e​r​​n​a​t​i​​o​n​​a​l​g​e​n​o​m​e​.​o​r​g​/​d​a​t​a​-​p​o​r​t​
a​l​/​p​o​p​u​l​a​t​i​o​n​/​T​S​I​​​​​)​.​​
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We conducted a bioinformatic analysis to predict the 
significant variant’s role in the expression or function of 
the corresponding proteins (transcription-factor bind-
ing (SNP2TFBS [41]), splicing (SNP-function prediction 
[42]), miRNA binding (mirSNP [43]), and regulatory 
potential (RegulomeDB [44]). We selected these tools 
because they are specifically designed to predict the 
functional impact of SNPs on transcription-factor bind-
ing sites (SNP2TFBS [41] and RegulomeDB [44]), and 
miRNA target sites (mirSNP [43]), and splicing (SNP-
function prediction [42]) These analyses are particularly 
relevant for our study, given the focus on understand-
ing how genetic variants in melanocortin receptor genes 
might affect gene regulation and contribute to PCOS 
pathogenesis.

Results
We identified 1 SNP in MC1R, 1 SNP in MC2R, 2 SNPs 
in MC3R, and 2 SNPs in MC5R significantly linked and/
or associated to/with the risk of PCOS in Italian families 
(Table  1; Fig.  1). Table  1 summarizes the genetic vari-
ants studied, their positions, alleles, significant models, 
potential effects, presence or absence of LD block, and 
whether they have been previously documented, pro-
viding a detailed snapshot of the genetic factors consid-
ered in this research. Figure 1 presents the results of the 
parametric analysis of the risk-associated SNPs in mela-
nocortin receptor genes related to PCOS. None of the 
variants in MC4R gene was significant. The two SNPs 
in the MC3R gene were in an LD block (Set01). None 
of the detected risk variants was previously reported 
with the risk of PCOS. However, the same risk allele of 

Table 1  Polycystic ovary syndrome (PCOS) melanocortin receptor genes risk single nucleotide polymorphisms (SNPs)
Gene Model1 SNP Position REF ALT Risk allele Consequence LD block Reported?
MC1R D1,R1,R2 rs1805005 16:89919436 G T G Missense (p.R151G) Independent T2D [14]
MC2R R1,R2 rs28926173 18:13886720 G A A Intronic Independent Novel
MC3R D2,R1 rs3746619 20:56248749 C A C 5’-UTR Set01 T2D [14]

D2,R1,R2 rs3827103 20:56248973 G A G Missense (p.V44I) Set01 T2D [14]
MC5R D2 rs59999658 18:13824728 T G T Intronic NA Novel

D1,R1 rs2236700 18:13826392 C G C Missense (p.F209L) Independent MDD [14]
Legend: 1Models: D1: dominant, complete penetrance, D2, dominant, incomplete penetrance: R1: recessive, complete penetrance, R2: recessive, incomplete 
penetrance. LD: linkage-disequilibrium block

Fig. 1  Parametric analysis results of melanocortin receptor genes risk single nucleotide polymorphisms (SNPs) in polycystic ovary syndrome (PCOS)
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the variants MC1R-rs1805005, MC3R-rs3746619, and 
MC3R-rs3827103 were previously associated with the 
risk of T2D, and the same risk allele of the variant MC5R-
rs2236700 was previously associated with the risk of 
MDD in the same Italian families in this study [17].

Discussion
Our findings highlight the potential role of melanocortin 
receptor genes in PCOS, building on existing evidence 
of their involvement in other metabolic and psychologi-
cal disorders due to their wide tissue distribution and 
pleiotropic roles [45] The melanocortin receptor genes 
(MC1R, MC2R, MC3R, MC4R, and MC5R) have been 
studied in various mental, metabolic, and endocrine dis-
orders [46–48]. We have recently reported the implica-
tion of melanocortin receptor genes in the risk of T2D 
and MDD [17]. In this study, we report the additional 
implication of melaocortin receptor genes in the sus-
ceptibility to PCOS. We reported single variants in each 
of MC1R and MC2R genes, and two variants in each of 
MC3R and MC5R genes significantly linked to and asso-
ciated with PCOS in Italian families. Only the MC3R 
and MC4R genes were previously reported in PCOS 
[29, 30]. Therefore, the association that we report in this 
study of MC1R, MC2R, and MC5R genes with PCOS is 
novel. Variants in these genes, however, were previ-
ously reported in patients with obesity [27, 49] and T2D 
[17]. Interestingly, no MC4R variant was associated with 
PCOS in our study despite its well-known involvement 
in several metabolic derangements such as obesity [49], 
T2D [50], BMI in PCOS patients [51]. The statistically 
non-significant association between MC4R and PCOS in 
our study does not constitute a contradiction but reflects 
a lack of replication within our dataset.

Comparing our results with studies from other popu-
lations reveals both overlaps and unique findings, sug-
gesting potential genetic and environmental interactions 
influencing PCOS phenotypes [52]. For instance, studies 
in Asian and Middle Eastern populations have identified 
other gene variants associated with PCOS, such as FTO 
and CAPN10, reflecting distinct genetic risk profiles [53, 
54]. Further research in diverse cohorts will be critical to 
validate our findings and understand the broader appli-
cability of melanocortin receptor gene involvement in 
PCOS.

The functional role of the detected risk variants 
reported in our study is yet to be determined. No results 
were predicted frr in-silico functional analysis. Inter-
estingly all risk variants were mostly significant across 
the R1 model (except for MC5R-Chr18-13824728 
[rs59999658]) (Fig.  1). This suggests that the disease 
mechanism is probably related to abnormal recep-
tor density mediated by the recessive genotypes. Dys-
functional adrenal melanocortin receptor 2 could also 

possibly divert cellular steroids towards excess androgen 
production [55]. However, functional studies are needed 
to confirm these results.

Our study has potential therapeutic implications. A 
recent study has shown that metformin, which is effective 
in PCOS by improving metabolic control and ovulatory 
cycles [56], acts specifically through MC2R and MC3R, 
potentially mediating an anti-androgenic and weight con-
trol effect [57]. However, for clarity, the effect mediated 
by metformin has not been investigated in the MC2R and 
MC3R variants identified in our study. Understanding 
the genetic predisposition involving melanocortin recep-
tors could guide personalized treatment strategies, espe-
cially targeting specific pathways affected by these genes. 
For example, therapies enhancing MC2R function could 
potentially modulate androgen excess, a core feature of 
PCOS.

However, our study has limitations. The sample size 
and familial recruitment approach may limit the robust-
ness of associations observed to this Italian peninsular 
familial dataset, and replication in larger and ethnically 
diverse populations is warranted. Additionally, the lack 
of functional validation of the implicated variants 
restricts our understanding of their functional role in 
PCOS pathophysiology. Future studies should aim to 
explore these genetic associations in functional models 
and across varied populations to establish a more com-
prehensive picture of the role of melanocortin receptor 
genes in PCOS.
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