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ABSTRACT There has been a growing interest in bacteriophages as therapeutic agents 
to treat multidrug-resistant bacterial infections. The present work aimed at expanding 
the microbiological and molecular characterization of lytic phages ZC01 and ZC03 and 
investigating their efficacy in the control of Pseudomonas aeruginosa infection in an 
invertebrate animal model. These two phages were previously isolated from compost
ing using P. aeruginosa strain PA14 as the enrichment host and had their genomes 
sequenced. ZC01 and ZC03 present, respectively, siphovirus and podovirus morpho
types. ZC01 was recently classified into the genus Abidjanvirus, while ZC03 belongs to 
Zicotriavirus genus of the Schitoviridae N4-like viruses. Through proteomics analysis, we 
identified virion structural proteins of ZC01 and ZC03, including a large virion-associated 
RNA polymerase that is characteristic of N4-like viruses, some hypothetical proteins 
whose annotation should be changed to virion structural proteins and a putative 
peptidoglycan hydrolase. Phages ZC01 and ZC03 exhibit a limited yet distinct host range, 
with moderate to high efficiency of plating (EOP) values observed for a few P. aeruginosa 
clinical isolates. Phage susceptibility assays in PA14 mutant strains point to the type-IV 
pilus (T4P) as the primary receptor for phages ZC01 and ZC03, and the major pilin 
(PilAPA14) is the T4P component recognized by these phages. Moreover, both phages 
significantly increase survival of Galleria mellonella larvae infected with PA14 strain. 
Taken together, these results underpin the therapeutic potential of these phages to treat 
infections by P. aeruginosa and lay the groundwork for a more detailed investigation of 
phage-bacteria-specific recognition mechanisms.

IMPORTANCE Phage therapy is gaining increasing interest in cases of difficult-to-treat 
bacterial human infections, such as carbapenem-resistant Pseudomonas aeruginosa. In 
this work, we investigated the molecular mechanism underlying the interaction of the 
lytic phages ZC01 and ZC03 with the highly virulent P. aeruginosa PA14 strain and 
their efficacy to treat PA14 infection in Galleria mellonella larvae, a commonly used 
invertebrate model for phage therapy. We depicted the protein composition of ZC01 and 
ZC03 viral particles and identified pilin A, the major component of type-4 pilus, as the 
receptor recognized by these phages. Our findings indicate that phages ZC01 and ZC03 
may be further used for developing therapies to treat multidrug-resistant P. aeruginosa 
infections.
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B acteriophages (phages) are viruses that rely on a bacterial host for propagation. 
Phages are mainly classified according to their life cycle into lysogenic and lytic, 

in the latter of which the host cells are lysed and mature phage particles (virions) are 
released (1). Phages generally display high specificity toward bacterial species or strains, 
and this is determined by the mechanisms of phage adsorption to host cells (2) and by 
bacterial antiphage defense systems (3).

The receptors known to be involved in phage adsorption to Gram-negative bacteria 
are lipopolysaccharides (LPS), capsular polysaccharides, pili, flagella, and outer mem
brane proteins (2, 4, 5). Phages, on the other hand, have receptor-binding proteins (RBPs) 
responsible for the specific recognition and interaction with the receptor displayed on 
the surface of bacterial cells, thus initiating the infection process (2). As the first point 
of contact with bacterial cells, RBPs are the primary determinants of the phage ability to 
infect one or more bacterial strains, an attribute referred to as phage host range. RBPs are 
typically located on tail fibers or tailspikes which may have enzymatic activity that binds 
and degrades carbohydrate moieties on the bacterial surface (6–8).

Similarly to other bacterial species, the major receptors that have been implicated in 
phage adsorption to Pseudomonas aeruginosa are type IV pili (T4P) (9–12) and LPS (13–
17). Spontaneous mutations in genes responsible for T4P or LPS synthesis can result in 
phage-resistant mutants, particularly under laboratory conditions (17–20). On the other 
hand, virulence reduction of phage-resistant bacteria may occur if the phage targets a 
virulence factor (5, 15, 21, 22).

P. aeruginosa belongs to the ESKAPEE group of pathogens (Enterococcus faecium, 
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, P. aeruginosa, 
Enterobacter spp., and Escherichia coli) which became a serious concern due to 
the worldwide antimicrobial resistance (AMR) increase in nosocomial and community-
acquired infections (23–27). Multidrug-resistant P. aeruginosa causes acute or chronic 
infection in immunocompromised individuals with chronic obstructive pulmonary 
disease, cystic fibrosis, cancer, traumas, burns, sepsis, and ventilator-associated 
pneumonia (28). In addition to the development of new antimicrobials to combat AMR 
(29), phage therapy is gaining increasing interest in cases of difficult-to-treat ESKAPEE 
human infections (30–33), such as carbapenem-resistant P. aeruginosa (34–36).

PAO1 and PA14 (or UCBPP-PA14) are commonly used as laboratory reference P. 
aeruginosa strains to study this bacterial species (37–40). While our PAO1 is a derivative 
of the original PAO1 isolate which was obtained from a wound at Melbourne, PA14 
was one of the strains isolated from burn wound patients at a hospital in Pennsylvania 
(37, 38, 41). PA14 has been shown to be highly virulent in both animals and plants 
(42, 43), and its use in research is gradually matching that of P. aeruginosa PAO1. Until 
now, thousands of phages that infect P. aeruginosa PAO1, PA14, and/or clinical strains 
have been characterized, and some of them exhibit a broad spectrum of activity against 
P. aeruginosa clinical isolates (34, 44–49). Nevertheless, new P. aeruginosa phages are 
continuously being discovered and characterized through phage isolation studies and 
predictions retrieved from metagenomics data set (50, 51).

The Pseudomonas phages ZC01 and ZC03 were isolated from composting samples 
using PA14 strain as the enrichment host and previously classified as Siphoviridae and 
Podoviridae, respectively, based on their double-strand DNA (dsDNA) genomes and 
morphotypes of tailed phages (46). Phage ZC01 was recently classified into the genus 
Abidjanvirus, while ZC03 is a single species of the new Zicotriavirus genus (52, 53). 
These two phages had their genomes analyzed, but their biological properties were not 
fully explored yet. In this work, we extended the molecular characterization of phages 
ZC01 and ZC03 and investigated the mechanism underlying their interaction with P. 
aeruginosa. Both phages were evaluated regarding their phage therapy potential against 
PA14 infection in Galleria mellonella larvae. Our findings indicate that these phages 
may be further used for developing therapies to treat multidrug-resistant P. aeruginosa 
infections.

Research Article Microbiology Spectrum

December 2024  Volume 12  Issue 12 10.1128/spectrum.01527-24 2

https://doi.org/10.1128/spectrum.01527-24


RESULTS

Update of ZC01 and ZC03 phage characteristics

The phages ZC01 and ZC03 were isolated from composting samples using P. aer
uginosa strain PA14 as enrichment host and exhibit, respectively, siphovirus and 
podovirus morphotypes (46) (Fig. 1). Based on their complete genome sequences 
(sequence accessions NC_052965 and NC_048638, these phages are currently classified 
as Caudoviricetes; Mesyanzhinovviridae; Bradleyvirinae; Abidjanvirus; Abidjanvirus ZC01 
and Caudoviricetes; Schitoviridae; Zicotriavirus; Zicotriavirus ZC03 according to the new 
taxonomy of bacterial viruses that abolished the morphology-based families Myoviridae, 
Siphoviridae, and Podoviridae (52). ZC01 genome is highly similar (93% coverage and 
96% identity) to the genome of phage Ab18 (54). While Ab18 infects P. aeruginosa strain 
PAO1 but not PA14 (54), ZC01 infects PA14 but not PAO1 (46). ZC03 and phage ZC08 (46) 
are the only members of the genus Zicotriavirus of the Schitoviridae N4-like viruses that 
encode three RNA polymerase genes, including a large (~3,500 aa) virion-associated RNA 
polymerase that is characteristic of this family (55).

Both phages form clear lysis plaques, which is typical for lytic phages. ZC03 presents 
a latent period of ~50 min and a calculated burst size of 10 phage particles per infec
ted cell (46). On the of other hand, ZC01 presents a latent period of ~100 min and a 
calculated burst size of 87 phage particles per infected cell (Fig. S1). The bacteriolytic 
effect of phages ZC01 and ZC03 on PA14 strain was investigated through time-killing 
curves at different multiplicities of infection (MOIs). A better lytic effect was observed 

FIG 1 Transmission electron micrographs of ZC01 and ZC03 purified phage particles, negatively stained with uranyl acetate. Different areas on a grid show intact 

ZC01 (a and b) and ZC03 (c and d) phage particles with siphovirus (ZC01) and podovirus (ZC03) morphotypes as previously described (46).
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at MOIs higher than 1 for both phages (Fig. S2). It is worth noting that until 12 h, no 
secondary bacterial growth was detected upon ZC01 and ZC03 infection, indicating a 
prolonged control of bacterial growth under these conditions, with no apparent phage 
resistance emergence.

Phage ZC01 was stable at 25°C and 37°C, but its viability decreased upon incubation 
at 16°C, 42°C, and 60°C. In contrast, phage ZC03 was moderately stable at 16°C and 
42°C, but at 60°C, its titer was drastically reduced. Both phages were fully inactivated 
by incubation at 80°C or when exposed to UV light for 20 min. ZC01 and ZC03 were 
reasonably stable in chloroform 10% and in pH values ranging from 4 to 12. Both phages 
became unviable at pH 2. These results are summarized in Table 1.

Proteomics of ZC01 and ZC03 phage particles

Mass spectrometry-based proteomics of highly pure ZC01 and ZC03 phage particles (Fig. 
1) identified 51 proteins out of 78 predicted open reading frames (ORFs) in the ZC01 
genome (Table S1) and 65 proteins out of 85 predicted ORFs in the ZC03 genome (Table 
S2). For both phage particles, the in-gel trypsin digestion outperformed the in-solution 
trypsin digestion (shotgun proteomics) in terms of the identification of higher number of 
polypeptides. Table 2 lists 18 proteins of ZC01 virions which had a coverage higher than 
20% and a minimum of three peptides (Table S1). The major head protein (ZC01_055) 
and the tail length tape measure protein (ZC01_065) had the highest coverage and 
number of peptides. Other typical structural proteins, such as portal protein (ZC01_047), 
head morphogenesis protein (ZC01_048), tail fiber assembly protein (ZC01_068 and 
ZC01_069), and tail protein (ZC01_072), are among the proteins that have been reliably 
identified in ZC01 virions.

For ZC03, 24 proteins (Table 2) had a coverage higher than 20% and a minimum 
of three peptides (Table S2). Among the predominant proteins identified, in terms 
of coverage and number of peptides, are the large virion-associated RNA polymer
ase (ZC03_015), typical of the N4-Like viruses (family Schitoviridae), which carry this 
399.4 kDa enzyme inside their capsids. Other dominant proteins identified are a putative 
peptidoglycan hydrolase (ZC03_016), the major head protein (ZC03_021), and the portal 
protein (ZC03_024). Proteomics of ZC03 virion also identified two ORFs predicted as tail 
fiber proteins (ZC03_005 and ZC03_006).

ZC01 and ZC03 host-range evaluation

Previously reported drop test assays revealed that phages ZC01 and ZC03 present 
a narrow host range producing clear lysis plaques in just 3 out of 18 P. aeruginosa 
isolates. Moreover, both phages infect the reference strain PA14 but not strain PAO1 (46). 
Additional drop test assays were performed using 66 P. aeruginosa clinical and environ
mental isolates (Table S3) some of them with multidrug-resistance phenotypes. While 
seven isolates were susceptible to both phages, two isolates were susceptible to ZC03 
only, and one isolate was susceptible just to ZC01. Altogether, and including the three 
susceptible isolates previously identified, 11.5% (8/69) of the isolates were susceptible to 
ZC01 and ZC03, respectively, whereas 16% (11/69) and 14% (10/69) of the P. aeruginosa 

TABLE 1 Viability of phages ZC01 and ZC03 under different conditions

Phage Temperature

16°C 25°C 37°C 42°C 60°C 80°C
ZC01 24.4 ± 15 103.3 ± 1 116.0 ± 22 33.9 ± 3 30.4 ± 13 0.2 ± 1
ZC03 89.8 ± 20 96.0 ± 2.5 89.9 ± 19 76.5 ± 26 3.9 ± 3.7 0.0

phage pH CHCl3 UV

2 4 7.5 9 12 10% 20 min
ZC01 0 59.6 ± 31 99.8 ± 78 52.8 ± 44 53.2 ± 31 73.4 ± 7 0
ZC03 0 66.4 ± 5 117.1 ± 24 73.5 ± 12 51.8 ± 20 72.0 ± 14 0
aIncubations of phage suspension at different temperatures, pHs, and CHCl3 were performed for 60 min. Phage % viability (mean ± SD from three independent assays) was 
relative to the initial phage titer (109 PFU/mL) in control condition (25°C in Saline-Magnesium buffer pH 7.5) before the test incubations.
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isolates were susceptible to ZC01 or ZC03. However, the efficiency of plating (EOP) of 
none of these 13 susceptible clinical isolates has surpassed that of the strain PA14 (Table 
3). While for most of these 13 isolates EOP values of ZC01 were moderate (>0.1%), lower 
EOP values (<0.1%) were calculated for ZC03 (Table 3). In contrast, higher EOP values 
(~50%) were calculated for the lung isolates Fc79a M and Fc79a PAB NM infected by 
ZC03.

Identification of type 4 pilus as the receptor for ZC01 and ZC03

Commonly identified receptors for P. aeruginosa phages are LPS and T4P (4). To 
determine whether T4P or LPS would function as receptors for ZC01 and ZC03, mutants 
PA14ΔpilA, lacking pilin A, and PA14_OAg–, lacking the O antigen, were tested on phage 
infection assays. As shown in Fig. 2a, both phages form clear lysis plaques in strain PA14 
and in PA14_OAg–, but not in PA14ΔpilA strain. As previously observed (46), PAO1 strain 
is resistant to phages ZC01 or ZC03 (Table S3). Twitching motility, which is dependent 
on functional T4P, was fully abolished in the PA14ΔpilA but was not altered in the other 
strains, including the PA14_OAg– (Fig. 2b). These findings strongly suggest that T4P is the 
primary receptor for ZC01 and ZC03 adsorption to PA14 cells.

To verify that pilin A, a major component of T4P in P. aeruginosa, is indeed the primary 
determinant for ZC01 and ZC03 adsorption to PA14 cells, pilA of PA14 (pilAPA14) or pilA 
of PAO1 (pilAPAO1) was used to complement the PA14ΔpilA mutant strain. As shown in 
Fig. 3a, PA14ΔpilA complemented with pilAPA14, but not pilAPAO1, can be infected by the 

TABLE 2 Proteins of ZC01 and ZC03 virions identified by proteomic analysis which had a coverage higher 
than 20% and presented a minimum of three peptidesa

ZC01 ORF ID Predicted function ZC03 ORF ID Predicted function

ZC01_047 Portal protein ZC03_001 Hypothetical protein
ZC01_048 Head morphogenesis protein ZC03_002 Tail assembly protein
ZC01_054 Head scaffolding protein ZC03_003 Hypothetical protein
ZC01_055 Major head protein ZC03_004 Hypothetical protein
ZC01_056 Hypothetical protein ZC03_005 Tail fiber protein
ZC01_057 Virion structural protein ZC03_006 Tail fiber protein
ZC01_058 Head-tail adaptor Ad1 ZC03_008 Hypothetical protein
ZC01_060 Tail completion or Neck1 protein ZC03_012 Single-stranded DNA-

binding protein
ZC01_061 Tail terminator protein ZC03_014 Hypothetical protein
ZC01_062 Minor tail protein ZC03_015 Virion RNA polymerase
ZC01_065 Tail length tape measure protein ZC03_016 Peptidoglycan hydrolase
ZC01_066 Structural protein ZC03_017 Hypothetical protein
ZC01_067 Structural protein ZC03_018 Hypothetical protein
ZC01_068 Tail assembly protein ZC03_019 Virion structural protein
ZC01_069 Tail assembly protein ZC03_021 Major head protein
ZC01_072 Tail protein ZC03_022 Tail length tape measure 

protein
ZC01_073 Hypothetical protein ZC03_024 Portal protein
ZC01_075 Baseplate hub subunit and tail 

lysozyme
ZC03_028 Hypothetical protein

ZC03_029 Hypothetical protein
ZC03_030 Virion structural protein
ZC03_044 Hypothetical protein
ZC03_087 Thymidylate synthase
ZC03_089 RIIB lysis inhibitor
ZC03_094 Hypothetical protein

aThe complete lists of proteins identified with the respective number of peptides and coverage from in-gel and 
in-solution proteomics are presented on Tables S1 and S2. ORF amino acid sequences and functional prediction 
can be found along with ZC01 (accession NC_052965) and ZC03 (accession NC_048638) NCBI Reference Sequence 
genome annotation.
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two phages. This result suggests that pilin A sequence variation may be the primary 
host barrier for ZC01 and ZC03 susceptibility. PA14ΔpilA, when complemented with 
either pilAPA14 or pilAPAO1, exhibits its twitching motility restored, suggesting that T4P is 
functional upon complementation (Fig. 3b).

To further evaluate the dependence of PA14 pilin A as the receptor for ZC01 and 
ZC03, pilAPA14 was introduced in PAO1 (co-expression) and in a PAO1ΔpilA mutant 
(complementation). PilAPA14 turns these PAO1 strains susceptible to infection by phage 
ZC01 but not to ZC03 (Fig. 4a). Twitching motility was restored in the PAO1ΔpilA upon 
complementation, and it was not altered by co-expression of PilAPA14 in wild-type PAO1 
(Fig. 4b).

Evaluation of therapeutic potential of phages ZC01 and ZC03 in G. mellonella

The therapeutic potential of phages ZC01 and ZC03 against P. aeruginosa infection was 
evaluated in the animal model G. mellonella. As shown in Fig. 5, G. mellonella larvae 
infected with PA14 strain showed 75% and 100% mortality, respectively, after 18 and 20 h 
of inoculation. Treatment of PA14-infected larvae with ZC01 phage resulted in survival 

FIG 2 Infection of P. aeruginosa PA14 depends on T4P but not on LPS. (a) ZC01 and ZC03 phage lysates at the indicated titers (109–105 PFU/mL) were 

spotted on wild-type strains PAO1 and PA14 and on T4P (PA14ΔpilA) and LPS (PA14_OAg–) null mutants. Photographs were taken after overnight incubation 

at 37°C. (b) Twitching motility assays of wild-type and mutant strains were analyzed by staining the plates with 0.1% crystal violet after 48 h. Images show a 

representative experiment of at least three independent biological replicates.

TABLE 3 EOP of phages ZC01 and ZC03 for selected clinical isolatesa

P. aeruginosa strain/isolate Drop test assay EOP Source

ZC01 ZC03 ZC01 ZC03
PA14b + + 100% 100% Reference strain
3845 GSP-3 producer + + 3.4% 0.02% HIV patient feces
ALERTA 226 (GES-5 carbapenemase-producer) − + nd 0.06% Hospital
ALERTA 275 (VIM-7 carbapenemase-producer) − + nd 0.05% Hospital
ALERTA 395 (IMP-18 metallo-beta-lactamase producer) + + 5% 9% Hospital
Fc79a M + + 2% 49% Lung secretion
Fc79a PAB NM + + 8% 51% Lung secretion
Fc7f NM + − 2% nd Lung secretion
MT222 + + 14% 0.01% Tracheal aspirate
P13.612 + + 20% 0.03% Hospital
SC-61 + + 8% 2% Nasal secretion
H6044c + − 0.6% nd Blood
H6086c + − 14% nd Blood
5757c + + 9.8% 0.045% Blood and urine
aClear lysis plaque (+) and no lysis/turbid plaque (−). The EOP value of 100% was considered for the host strain. nd: not determined.
bHost strain.
cIsolates analyzed in previous work (46). The full list of the 69 strains evaluated is shown on Table S3.
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rates at 20 h of 53% and 68% at MOI of 20 and 100, respectively (Fig. 5a). After 24 h, ZC01 
treatment at both MOIs resulted in an increase of 15%–21% (P < 0.0001) of the survival 
rate. Treatment with ZC03 resulted in survival rates of ~40% (P < 0.0001) at MOIs of 20 
and 100, after 20–24 h post infection (Fig. 5b), although a dose-dependent effect was not 
observed as verified for ZC01. It should be mentioned that uninfected larvae inoculated 
with the phages or buffer alone presented 100% survival up to 24 h of the assay.

DISCUSSION

In this work, we report an extended characterization of the phages ZC01 and ZC03 
which were previously isolated from a thermophilic composting operation at the São 

FIG 3 Expression of PilAPA14 restores phage-susceptibility of the PA14ΔpilA mutant. (a) ZC01 and ZC03 phage lysates at the indicated titers (108–105 PFU/mL) 

were spotted on PA14 and on PA14ΔpilA expressing pilAPA14 or pilAPAO1 upon induction with arabinose. Photographs were taken after overnight incubation at 

37°C. (b) Twitching motility assays of wild-type and complemented strains induced or not with arabinose were analyzed by staining the plates with 0.1% crystal 

violet after 48 h. Images show a representative experiment of at least three independent biological replicates.

FIG 4 Infection of P. aeruginosa PAO1 and PAO1 ΔpilA expressing PilAPA14. (a) ZC01 and ZC03 phage lysates at the indicated titers (109–105 PFU/mL) were spotted 

on PAO1 or PAO1ΔpilA expressing PilAPA14 upon induction using arabinose. Photographs were taken after overnight incubation at 37°C. (b) Twitching motility 

assays of wild-type and complemented strains induced or not with arabinose were analyzed by staining the plates with 0.1% crystal violet after 48 h. Images 

show a representative experiment of at least three independent biological replicates.
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Paulo Zoo Park (Brazil) using P. aeruginosa PA14 as the enrichment host (46). ZC01 is a 
siphovirus currently classified within the Abidjanvirus genus, and ZC03 is a podovirus that 
belongs to the Zicotriavirus genus of the Schitoviridae N4-like viruses. These phages are 
devoid of any known lysogenic, virulence, or toxin genes that would preclude their use in 
phage therapy. Nevertheless, both genomes encode several ORFs of unknown function 
which require further characterization to verify that they are not harmful as therapeutic 
phages. Interestingly, although phages ZC01 and ZC03 were isolated from a thermophilic 
compost, they are not thermostable but maintain viability at 37°C and pH 7.5, which is 
considered satisfactory for therapeutic phages (56).

Besides the typical structural proteins of Caudoviricetes, proteins of unknown function 
(hypothetical proteins) were reliably identified by proteomics as components of ZC01 
and ZC03 viral particles. It is worth noting that ZC01_056 and ZC01_073 amino acid 
sequences are conserved (>93% coverage and >57% identity) in other phages from the 
Abidjanvirus genus. On the other hand, some of the hypothetical proteins identified in 
the ZC03 proteome (ZC03_001, ZC03_003, ZC03_004, ZC03_008, ZC03 _014, ZC03_029, 
and ZC03_044) have similar counterparts only in Pseudomonas phage ZC08 (46) which 
together with ZC03 are the unique members of Zicotriavirus genus. Further analysis 
of the ZC03 proteome revealed hypothetical proteins ZC03_017 and ZC03_018, which 

FIG 5 In vivo efficacy of phages ZC01 and ZC03 against P. aeruginosa PA14 strain in G. mellonella infection model. Survival curves of G. mellonella larvae treated 

with ZC01 (a) or ZC03 (b). G. mellonella larvae were injected with buffer-only [phosphate-buffered saline (PBS)], PA14-only (5 × 103 CFU/mL), phage-only (105 

PFU/mL), and phage at MOI of 20 (105 PFU/mL) or 100 (5 × 105 PFU/mL) 1 h post-infection with PA14 (5 × 103 CFU/mL). The larvae were monitored at 2 h intervals, 

for 24 h. The data represent three independent experiments with 20 animals per treatment. Log rank (Mantel-Cox) test (****, P < 0.0001).
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exhibit similarity to counterparts in other phages. Conversely, proteins ZC03_028 and 
ZC03_095 appear to be unique to phage ZC03. These observations support a change 
in the current annotation of these hypothetical proteins to virion structural proteins. 
We highlight ORFs ZC03_005 and ZC03_006 predicted as tail fiber proteins in ZC03 
proteome which do not share amino acid sequence similarity. It has yet to be investiga
ted whether ZC03_005 and ZC03_006 make up distinct tail fibers that could function as 
distinct RBPs, or whether both together are components of the ZC03 tail fibers.

Among the proteins identified in the ZC03 virion proteome, there is an 831 amino 
acids-protein (ZC03_016) which has an almost identical ortholog (100% coverage and 
96% identity) only in Pseudomonas phage ZC08 (NCBI Reference Sequence accession 
NC_048639). ZC03_016 contains a lytic transglycosylase domain that belongs to the 
lysozyme-like domain superfamily predicted as peptidoglycan hydrolase according to 
InterPro classification (57). Virion-associated peptidoglycan hydrolase (VAPGH) proteins 
are generally attached to the viral particle contacting the bacterial surface in the first 
step of the infection process to locally degrade the bacterial cell wall peptidoglycan (58, 
59). These enzymes have been proposed as antimicrobial and biotechnological tools to 
fight against numerous pathogens (56, 59–61). Thus, the predicted VAPGH domain in 
ZC03_016 can be further explored as an antimicrobial against P. aeruginosa and other 
Gram-negative pathogens.

By using a new set of 66 P. aeruginosa clinical isolates, we have confirmed the narrow 
and relatively distinct host range of phages ZC01 and ZC03. Despite this restricted host 
range, for a few clinical isolates, moderate-to-high EOP values were observed. Accord
ing to predictions based on their genome sequences, these isolates present distinct 
sequence types as well as distinct serotypes from the PA14 or PAO1 strains (data not 
shown). Further genomic analyses may help to explain the moderate susceptibility of 
these strains to phages ZC01 and ZC03. While the host range of phages has traditionally 
been linked to receptor-associated properties (2), recent research has highlighted the 
significance of defense system quantity in determining P. aeruginosa strains susceptibility 
to phages (62).

As reported for other phages infecting P. aeruginosa (9–11, 18, 63), T4P is the primary 
receptor for phages ZC01 and ZC03 because they did not lyse a T4P-less host mutant 
(PA14ΔpilA). Phage adsorption along the pilus length occurs probably by their binding 
to PilA (the major component of T4P) (64). While T4P is a well-established receptor for 
phage adsorption, the exact mode of phage binding has not been clarified. Alterations 
in PilA sequence or its glycosylation can interfere with phage infection (18). Here, we 
provide additional evidence that PilA is indeed the T4P component recognized by 
ZC01 and ZC03 and that variations in pilin A sequence influence host recognition. 
Complementation of the T4P-less host mutant (PA14ΔpilA) with PilAPAO1 cannot restore 
susceptibility to infections of phages ZC01 and ZC03. Nevertheless, PilAPA14 expressed 
in PAO1ΔpilA turns this strain susceptible to infection by phage ZC01, but not to ZC03. 
From these observations, we can conclude that PAO1 does not carry anti-phage defense 
systems to abolish ZC01 infection as this phage can be replicated in PAO1 expressing 
PilAPA14.

The opposite situation was observed for phage ZC03, which did not infect PAO1 
expressing PilAPA14, even though its T4P is functional. Thus, although pilin A sequence 
variation may be the primary host barrier for phage susceptibility, it is not sufficient to 
overcome PAO1 resistance to ZC03 infection. We can foresee some possible explanations 
for this result, such as that ZC03 adsorption is impaired by modifications of PA14 pilin A 
such as O-glycosylation (18) when it is expressed in PAO1. Another possible explanation 
could be that a surface structure, such as LPS, prevents ZC03 interaction with PAO1 
by masking the host receptor. For instance, PAO1 LPS (O5 serotype) has an O-antigen 
composition quite distinct of PA14 LPS (serotype O19) (13, 65). Alternatively, ZC03 
adsorption may depend on a second receptor recognized only in PA14 cells. Moreover, 
we cannot exclude that PAO1 carries anti-phage defense systems that impair ZC03 
replication.
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Phages ZC01 and ZC03 showed promising efficacy to treat PA14 infection in G. 
mellonella larvae as single-dose treatments with phages ZC01 or ZC03 significantly 
increase the survival of larvae infected with PA14 strain. It is worth mentioning that 
these phages exhibit a narrow host range and target a receptor (PilA) that is highly 
variable among clinical isolates (66, 67), which can be seen as drawbacks of using these 
phages in therapeutic applications (68). Nevertheless, our results warrant further studies 
to explore other dose regimens and/or the treatment with these phages together in a 
cocktail with other phages of different host ranges and/or targeting different receptors 
in larvae infected with PA14 or other susceptible clinical strains. Our work also lays 
the groundwork for a more detailed investigation of phage-bacteria-specific recognition 
mechanisms, especially considering ZC03, which is so far the only representative of the 
Zicotriavirus genus.

MATERIALS AND METHODS

P. aeruginosa strains and culture conditions

P. aeruginosa reference strains PA14 (69) and PAO1 (70), as well as clinical and environ
mental P. aeruginosa isolates (Table S3), were grown overnight at 37°C in TSB (tryptic soy 
broth) containing or not 1.5% agar (TSB-agar). Bacterial stocks were maintained in TSB 
supplemented with 10% glycerol at −80°C or in liquid nitrogen storage tank.

Propagation and purification of phages ZC01 and ZC03

Previously isolated phages ZC01 and ZC03 (46) were propagated in P. aeruginosa PA14 
using the double-layer agar technique (71) and purified following formerly described 
protocols (72, 73). Briefly, 0.5 mL of log-phase bacterial culture was mixed with the 
phage suspension (~50 µL) at an MOI of 0.01 and incubated for 10 min at 37°C. The 
phage-bacteria suspension was then mixed with 13 mL of molten TSB containing 0.7% 
agar (TSB-top-agar 0.7%) and then poured on a TSB-agar Petri dish. After overnight 
incubation at 37°C, 15 mL of Saline-Magnesium (SM) buffer (3% NaCl, 10 mM MgSO4, 
10 mM CaCl2, 30 mM Tris-HCl, and pH 7.5) was added, and after gently shaking for 1 h 
at room temperature, the Petri dishes were incubated at 4°C overnight and for additional 
1 h at room temperature without shaking. The lysates obtained from each plate were 
pooled, transferred to 50 mL conical tubes, and centrifuged at 6,000 × g for 20 min at 
4°C. The supernatants were transferred to clean tubes, and chloroform was added to 
the final concentration of 10% and immediately centrifuged at 6,000 × g for 20 min at 
4°C. The supernatant was filtered through a 0.22 µm membrane and titrated to calculate 
phages forming units per mL (PFU/mL) . A solution of 2.5 M NaCl in 20% polyethylene 
glycol 8000 was added to the filtered phage suspension in a 4:1 vol ratio. After brief 
mixing, the mixture was kept at 4°C for 24 h, and phage particles were pelleted by 
centrifugation (6,000 × g, 20 min, 4°C). The supernatant was then discarded, a new 
round of centrifugation was done, and the pellet with no traces of the supernatant 
was resuspended in SM buffer overnight at 4°C. The phages were further purified by 
cesium chloride (CsCl) density gradient ultracentrifugation (40,000 × g, 4 h, 4°C). Phages 
concentrated in a single band in the CsCl gradient were collected with a needle and 
syringe and subjected to dialysis by centrifugation through Amicon Ultra-15 Centrifugal 
Filters 100 kDa with two washes of SM buffer (5× the collected volume). Purified phages 
were titrated using a double-layer agar technique and stored at 4°C in SM buffer. Phages 
stocks were maintained in SM buffer supplemented with 10% glycerol at −80°C.

Transmission electron microscopy

Around 3 µL of purified phage suspension was gently placed on glow-discharged 
carbon-coated 300 mesh copper grids. After about 1 min, excess liquid was blotted 
off, and the grid was stained with 2% uranyl acetate and air-dried. The negatively stained 
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phage particles were visualized with a JEOL JEM 2100 transmission electron microscope 
(JEOL Ltd, Tokyo, Japan) at operating voltage of 100 kV, and the images were registered 
digitally according to protocols of the Chemistry Institute Analytical Center (CA-USP, 
https://ca2.iq.usp.br/).

Spot test and EOP assays

For the spot test assay, 120 µL of log-phase P. aeruginosa culture was mixed with 4 mL of 
molten TSB top-agar 0.7% and poured onto a TSB-agar Petri dish. After solidification, 4 
µL of 10-fold serial dilutions (four dilutions) of the phage suspension was gently dropped 
over the top agar and examined for the presence of lysis plaques after overnight 
incubation at 37°C.

For the EOP assay, an overnight culture of phage susceptible P. aeruginosa strain 
was diluted to OD600 nm = 1.0 (~3 × 109 colony forming units per mL or CFU/mL), 
incubated for 10 min at 37°C with 10 µL of 10-fold serial dilutions (eight dilutions) 
prepared from phage stocks at 1013–1016 PFU/mL. The phage-bacteria suspension was 
mixed with 7 mL of molten TSB-top-agar 0.7%, poured on a 90 mm-TSB-agar Petri dish, 
and incubated overnight at 37°C. The EOP (74) was calculated by dividing the number 
of lysis plaques produced in each susceptible strain (for a fixed dose of phages) by the 
number of plaques produced in the host strain P. aeruginosa strain PA14. EOP values 
>0.1% and >50% are considered moderate or high, respectively (75).

One-step growth curve

A total of 5 mL of a log-phase P. aeruginosa PA14 culture grown in TSB at 37°C was mixed 
with 5 mL of a phage suspension to reach an MOI < 0.1. After incubation for 10 min 
at 37°C, the mixture was centrifuged at 6,000 × g for 15 min, and the supernatant was 
collected and titrated to determine the amount of phage that did not adsorb onto the 
bacteria. The pellet was resuspended in 20 mL of TSB and incubated at 37°C without 
shaking. Every 10 min up to 190 min of incubation, 1 mL was collected and immediately 
titrated by the double-layer agar method (71) by plating 10-fold serial dilutions with P. 
aeruginosa PA14 and determining the number of lysis plaques produced (PFU/mL).

Time-killing curve

To investigate the antibacterial effect of phages ZC01 and ZC03, overnight P. aeruginosa 
PA14 cultures were diluted to 106 CFU/mL, which is equivalent to OD600nm of 0.2, and 
infected with phage at different MOIs (100, 10, 1, 0.1, and 0.01). The control sample had 
no phages. One hundred fifty microliter of each mixture was transferred to six wells 
of a 96-well plate and incubated at 37°C for 12 h. OD600nm changes were measured 
every 15 min of incubation using the SpectraMax Paradigm microplate reader (Molecular 
Devices, CA, USA).

Phage stability evaluation

To evaluate the effect of pH on phage stability, 100 µL of the phage suspension (1 × 
109 PFU/mL) prepared in SM buffer (pH 7.5) was mixed with 900 µL of universal buffer 
solution (150 mM KCl, 10 mM KH2PO4, 10 mM sodium citrate, and 10 mM H3BO3) at pHs 
2, 4, 7.5, 9, and 12, followed by incubation for 60 min at 37°C. As a control, the phages 
were mixed with SM buffer (pH 7.5). The effect of temperature on phage stability was 
evaluated by incubation of 50 µL of the phage suspension (1 × 108 PFU/mL) at 16°C, 
25°C, 37°C, 42°C, 60°C, and 80°C in a thermal cycler for 60 min. To evaluate the effect 
of chloroform, the phage suspension (1 × 109 PFU/mL) was mixed with chloroform to a 
final concentration of 10% (vol/vol) and incubated for 60 min at room temperature. To 
determine the phage tolerance to UV light, 100 µL of a phage suspension was exposed 
to UV light (254 nm) of a germicidal lamp in a biosafety cabinet for 20 min. After the 
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treatments, the samples were immediately titrated by the double-layer agar method (71) 
by plating 10-fold serial dilutions with P. aeruginosa PA14 and determining PFU/mL.

Mass spectrometry-based proteomics

The identification of peptides of pure preparations of ZC01 and ZC03 phage particles 
was performed using two methods of mass spectrometry-based proteomics (SDS-PAGE 
followed by in-gel digestion and in-solution digestion). In the first approach, the phage 
particle samples (~100 µg of total protein) were resuspended in 50 mM Tris pH 6.8, 
25 mM DTT, 10% glycerol, 1% SDS, 0.025% bromophenol blue, and subjected to 
SDS-PAGE (76). The gel was stained with Coomassie blue G250, the bands were cut 
out (Fig. S3), washed with 50 mM NH4HCO3, 40% acetonitrile (ACN), and subjected to 
sequential incubations with 10 mM dithiothreitol (DTT), 100 mM iodoacetoamide, and 
ACN prior to trypsin digestion using 100 ng of sequencing grade trypsin and 10 mM 
NH4HCO3 for 16 h at 37°C. Digestion was stopped with 10% formic acid (FA), and the 
peptides were extracted with 40% ACN, 0.1% FA, concentrated by vacuum centrifuga
tion, and desalted with Zip-Tip C18 Cartridge column. For in-solution digestion, the 
phage particles suspension (~100 µg of total protein) was dried by vacuum centrifuga
tion and suspended in 8 M urea, 10 mM DTT, and protease inhibitors cocktail and was 
incubated for 30 min at 30°C. The samples were diluted 10 times to 0.8 M urea, and 
sequencing grade trypsin was added (1:50 enzyme:total protein) followed by incuba
tion at room temperature for 16 h at 37°C. The digestion was stopped by adding 1% 
trifluoroacetic acid, and the samples were desalted with Zip-Tip C18 Cartridge column. 
Samples were then subjected to nanoflow liquid chromatography coupled to mass 
spectrometry at the BIOMASS Core Facility at the Center for Research Facilities (CEFAP-
USP, https://cefap.icb.usp.br/) using an Easy-nLC system coupled to LTQ-Orbitrap Velos 
mass spectrometer (Thermo Fisher Scientific Inc., MA, USA). Samples were resuspended 
in 0.1% FA and loaded onto a C18 PicoFrit column [C18 PepMap, 75 µm id × 10 cm, 
3.5 µm particle size, and 100 Å pore size (New Objective, Ringoes, NJ, USA)] and 
separated with a gradient from 100% mobile phase A (0.1% FA) to 34% phase B (0.1% 
FA, 95% ACN) during 60 min, at a flow rate of 300 nL/min. Samples were analyzed in 
duplicate. The LTQ-Orbitrap Velos was operated in positive polarity with data-dependent 
acquisition. The full scan was obtained in the Orbitrap at a resolution of 60,000 FWHM 
in the 350–1,500 m/z mass range. The 20 most abundant peptide ions obtained in 
the MS full scan were selected for MS/MS, fragmented using CID at 35 normalized 
collision energy, and dynamic excluded for 15 s. All raw data were assessed in the 
Xcalibur software (Thermo Fisher Scientific Inc., MA, USA). Tandem mass spectra were 
processed and searched against an in-house database composed of annotated ORFs in 
phages ZC01 and ZC03 genomes (NCBI Reference Sequence accessions NC_052965.1 
and NC_048638.1) using Proteome Discovery v. 1.4 (Thermo Fisher Scientific Inc., MA, 
USA) and SEQUEST (77), with the following parameters: precursor mass tolerance of 
10 ppm; MS/MS mass tolerance 0.6 Da (CID data). Trypsin was selected as enzyme, 
carbamidomethyl cysteine as fixed modification and oxidation of methionine as variable 
modification. The False Discovery Rates (FDRs) were calculated using the algorithm 
Percolator with equal or less than 0.01. Protein FDR was calculated in the Proteome 
Discoverer software and kept below 1%. The mass spectrometry proteomics data 
have been deposited to the ProteomeXchange via Consortium the PRIDE (78) partner 
repository with the data set identifier PXD055478 (https://www.ebi.ac.uk/pride/archive/).

P. aeruginosa mutants and complementation of PA14ΔpilA and PAO1ΔpilA

The deletion mutants ∆pilA were constructed by allelic replacement and do not 
twitch (79). The spontaneous mutant PA14_OAg– is part of our mutant collec
tion and lacks the O-antigen structures of LPS (79). For complementation of the 
∆pilA mutants, the pilA genes from PA14 and PAO1 strains were amplified by 
PCR using the following primer pairs: PilA_PA14_fwd_ccgtttttttgggctagcgTATCAATGGA
GAGATACATGAAAGCTC; PilA_PA14_rev_gcggccgctctagaactagtTTAGCGGCATTCGCTCGG 
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and PilA_PAO1_fwd_cccgtttttttgggctagcgATGAAAGCTCAAAAAGGC; 
PilA_PAO1_rev_gcggccgctctagaactagtTTAGTTATCACAACCTTTCG. The resulting PCR 
amplicons were cloned into pJN105 plasmid (80) using the one-step sequence and 
ligation-independent cloning (SLIC) protocol (81). The vector was linearized using inverse 
PCR with the following primer pair: pJN105_rev CGCTAGCCCAAAAAAACG; pJN105_fwd A
CTAGTTCTAGAGCGGCC. Resulting SLIC constructs were transformed into E. coli DH5α 
BL21(DE3), and recombinant clones were selected with ampicillin (50 µg/mL). The 
authenticity of the cloned genes was verified by Sanger sequencing of the inserts. 
Constructs were introduced into the target P. aeruginosa strains by electroporation. 
Transformants were selected with gentamicin (50 µg/mL), and the expression of cloned 
pilA was induced with 0.2% L-arabinose.

Twitching motility assays

Macroscopic twitching motility assays were performed by stabbing a single colony 
through a 3-mm-thick TSB-1% agar plate. After incubation at 37°C for 24 h in a humidi
fied chamber, the agar was removed, and the twitching zone was stained for 15 min with 
1% crystal violet. The stained area is proportional to the cells ability to twitch, which is 
dependent on T4P.

Phage treatment of G. mellonella larvae infected with P. aeruginosa

The assays of G. mellonella phage treatment were based on previously described 
protocols (44, 82). Briefly, G. mellonella larvae with size ranging from 2.0 to 2.5 cm in 
length and body weight from 150 to 200 mg were surface sterilized with 70% ethanol, 
separated into groups of 20 larvae, and placed in polystyrene Petri dishes (140 mm 
of diameter). A 10 µL inoculum of P. aeruginosa PA14 (5 × 103 CFU/mL) prepared in 
phosphate-buffered saline (PBS) was injected into the larva hemolymph behind the last 
proleg using a 10 µL Hamilton syringe. After 60 min, 10 µL of a phage suspension (1 
× 105 or 5 × 105 PFU/mL) or PBS (positive control group) was delivered behind the 
last proleg on the opposite site to the bacterial injection site. Negative control groups 
(one group injected with PBS only to assess the impact of any negative effect from the 
injection process, and one group injected with phage suspension only to assess toxicity 
of the phage suspension) were also included. The larvae were kept at 37°C fed with 
pollen and beeswax. After 13 h post-infection, the larvae survival on each group was 
monitored every 2 h, for 12 h. The larvae were recorded as dead when they did not move 
in response to touch. Kaplan–Meier survival curves and log-rank (Mantel–Cox) statistical 
test were performed using GraphPad Prism 10.2.2 (GraphPadSoftware LLC.).
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