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Abstract

The nature of data obtainable from the commercial smartphone – bolstered by a translational 

model emphasizing the impact of social and physical zeitgebers on circadian rhythms and mood 

– offers the possibility of scalable and objective vital signs for major depression. Our objective 

was to explore associations between passively sensed behavioral smartphone data and repeatedly 

measured depressive symptoms to suggest which features could eventually lead towards vital signs 

for depression. We collected continuous behavioral data and bi-weekly depressive symptoms 

(PHQ-8) from 131 psychiatric outpatients with a lifetime DSM-5 diagnosis of depression 
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and/or anxiety over a 16-week period. Using linear mixed-effects models, we related depressive 

symptoms to concurrent passively sensed behavioral summary features (mean and variability of 

sleep, activity, and social engagement metrics), considering both between- and within-person 

associations. Individuals with more variable wake-up times across the study reported higher 

depressive symptoms relative to individuals with less variable wake-up times (B [95% CI] = 1.53 

[0.13, 2.93]). On a given week, having a lower step count (−0.16 [−0.32, −0.01]), slower walking 

rate (−1.46 [−2.60, −0.32]), lower normalized location entropy (−3.01 [−5.51, −0.52]), more 

time at home (0.05 [0.00, 0.10]), and lower distances traveled (−0.97 [−1.72, −0.22]), relative to 

one’s own typical levels, were each associated with higher depressive symptoms. With replication 

in larger samples and a clear understanding of how these components are best combined, a 

behavioral composite measure of depression could potentially offer the kinds of vital signs for 

psychiatric medicine that have proven invaluable to assessment and decision-making in physical 

medicine. Clinical Trials Registration: The data that form the basis of this report were collected as 

part of clinical trial number NCT03152864.

LAY SUMMARY

In this study, we linked passively sensed behavioral smartphone data with repeatedly measured 

depressive symptoms to evaluate which features could lead towards a behavioral vital sign for 

depression. Higher depressive symptoms were found among those having more variable wake-up 

times, lower step count, slower walking rate, more time at home, and lower distances traveled. 

Future studies could help us understand how these measures are best combined as a vital sign for 

depression.

INTRODUCTION

Vital signs have been useful in the assessment of physiological health for centuries. 

Traditionally, these standardized measures included pulse, respiratory rate, temperature, and 

blood pressure. Oxygen saturation, pain, and smoking status have also become integrated 

into healthcare evaluations in the past few decades [1–3]. More recently, clinicians and 

researchers have proposed vital signs for mental health, including feeling “completely 

overwhelmed” among dementia caregivers [4], physical activity among people with 

schizophrenia [5], wellbeing among people with diabetes [6], and distress among cancer 

patients [7]. Although many integrative healthcare systems recognize the value of tracking 

vital signs for mental health [8], the challenge has been to find vital signs that are scalable, 

objective, and reliable.

In our own search for vital signs for mental health, we consider the potential value of 

the social zeitgeber hypothesis [9, 10], which provides a translationally relevant conceptual 

model for understanding the biological mechanisms linking our behavior, interactions, and 

daily routines to our mood [11–14]. According to this model, challenges to the body’s 

circadian system are at the center of many of the disturbances (i.e., criterion symptoms) 

seen in mood disorders. The social zeitgeber hypothesis also highlights interactions with 

other individuals and social role demands as determinants of daily routines that serve to 

regulate mood. Regularity of daily routines (e.g., the timing of sleep, activity, meals, and 

interpersonal contact) support a healthy circadian system, whereas irregularity of these 
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routines could challenge circadian rhythmicity, triggering new episodes of mood disorder 

or serving as a factor in maintaining the mood disturbance [9, 10]. Multiple studies 

have validated the social zeitgeber model with respect to a range of psychiatric disorders 

including bipolar disorder [15, 16], depression [17, 18], anxiety symptoms [19], alcohol use 

[20, 21], and severity of post-traumatic stress disorder symptoms [22].

In the decades since the initial promulgation of the social zeitgeber hypothesis, animal 

models have allowed us to further probe the mechanisms linking the circadian system 

to mood regulation. These models implicate the suprachiasmatic nucleus (SCN) of the 

hypothalamus as the master clock that regulates the synchronization of endogenous cellular 

activity and gene expression over the course of an approximately 24-h cycle [23–26]. 

Circadian genes are expressed throughout the body and brain, regulating multiple systems 

such as immune function, monoamine transmission, neurogenesis, and metabolism – all of 

which can disrupt mood [27]. There is now substantial evidence that circadian genes control 

the rhythmicity of neuromodulators critical for mood, including serotonin, norepinephrine, 

and dopamine, which also exhibit circadian rhythmicity in their synthesis, release, and 

reuptake [25, 28–31]. Finally, in some animal models, external factors including changes in 

behavior and social interactions have been shown to alter the rhythmicity and synchronicity 

of endogenous circadian cycles and, in turn, impact mood or proxies thereof [32].

While animal research facilitates continuous and invasive monitoring of sleep/wake 

behavior and locomotor activity, human research conducted in the individual’s natural 

environment has been understandably limited. The recent availability of commercial 

smartphones may offer a transformative approach to measurement in psychiatric medicine, 

providing continuous, objective, real-world assessments of functioning. Methodological 

advances allowing for computationally efficient machine learning models that integrate 

high-dimensional features across multiple data streams have further expanded ways in which 

we can use smartphone data to understand how human behavior and interactions may be 

linked to mood. Numerous studies have now applied machine learning to smartphone data to 

measure or predict symptom severity in the context of depression [33] and bipolar disorder 

[34], with some studies showing relatively good performance [34].

Despite the recent wave of investigations into digital phenotyping, our field has not yet been 

able to identify the specific features – or combinations of features – that have the greatest 

potential to contribute to vital signs for depression. This may be a result of gaps in the digital 

phenotyping literature, combined with limitations of some current studies. Specifically, 

many digital phenotyping studies have had relatively large amounts of missing data, fail 

to instruct participants to keep the phone on or near their person during waking hours, are 

restricted to specific operating systems (e.g., allowing only Android and not iOS phones), 

and lack simultaneous active and passive data collection [35]. Furthermore, studies may 

employ machine learning methods that are challenging to interpret in a clinically meaningful 

context or lack conceptual models with a strong translational basis.

To begin to address these limitations, we developed Cue (Health Rhythms, Inc., New 

York, NY, USA), a smartphone-based platform for the continuous, objective measurement 

of mood-relevant behaviors and rhythms on both iOS and Android devices. With this 
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technology, we can extract numerous behavioral inferences with potential relevance to 

depression and to mental health more broadly. The behavioral inferences drawn from the 

Cue platform naturally fell into four categories based on the social zeitgeber model: proxies 

for sleep, activity, and social interaction, as well as the rhythmicity of features within each 

of these three categories. Motivated by translational studies [36, 37], we aimed to identify 

which behavioral inferences are useful for indicating who is at risk overall, as well as when a 

person is at risk of increased depression severity.

Sleep characteristics related to timing, duration, continuity, and regularity are central 

components of ‘sleep health’ [38] and are thought to have bi-directional associations with 

depression [39]. Wake-up time directly ties to exposure to morning light, a key zeitgeber 

[40], and initiates a cascade of signals associated with the waking versus sleeping state 

[41–43]. We hypothesized that more variable wake time, longer time in bed, and greater 

sleep interruptions would be associated with increased depressive symptoms.

Features reflecting inactivity and psychomotor slowing or agitation are criterion symptoms 

of depression, as well as a variety of other mental disorders. Step count represents an 

objective measure of a patient’s level of activity, while walking rate can reflect psychomotor 

slowing or agitation. With respect to depression, we hypothesized that decreased step count 

and walking rate would be associated with increased depressive symptoms.

Given the importance of interpersonal interactions as social zeitgebers (i.e., determinants 

of a person’s routine), passively sensed proxies for levels and timing of social engagement 

may be important behavioral vital signs for depression. Of particular interest, Mohr and 

colleagues suggested that ‘location entropy’ – which quantifies the uniformity of time spent 

at the various locations to which one goes – could represent a proxy for social interactions 

that serve as anchors to an individual’s social routines [44, 45]. We expected that less social 

engagement – indexed by lower location entropy, more time at home, and lower distances 

traveled – would be associated with higher depressive symptoms.

In the current study, we report on an initial effort to explore passively sensed behavioral 

features – focusing on 24-h rhythms of sleep, activity, and social engagement factors – that 

could eventually contribute to a clinically meaningful vital sign for depression.

METHODS

Study population and design

The study sample consists of adult outpatients originally recruited for a randomized clinical 

trial (RCT), for which the sample, methods, and results have been described previously 

[46]. Briefly, outpatients in treatment at the University of Utah Department of Psychiatry 

who previously indicated willingness to participate in research were contacted consecutively 

by phone to inquire about their interest in participating in a study of a digital intervention 

platform for depression. All procedures involving human subjects/patients were approved by 

the University of Utah IRB (approval #00098927) and all participants gave written informed 

consent. The RCT participants could be at any point in their treatment course, and most had 

relatively low levels of depression severity as assessed by the PHQ-8 [47] at the outset of 
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the trial. Participants provided continuous behavioral data over the 16-week study period and 

completed the PHQ-8 approximately every two weeks. Because the fully virtual nature of 

the trial precluded rapid response to the endorsement of suicidality, the ninth item of the full 

PHQ-9, suicidality, was not assessed. Participants were instructed to keep the phone on or 

near their person during waking hours.

The original 16-week trial enrolled 135 participants. To be included in the present report 

we further required that a participant have sufficient passive sensing data to ensure reliable 

measurement, defined as ≥5 days of passive sensing in the week prior to a PHQ-8 report. 

One hundred and thirty-one participants met this requirement, and their available data are 

used in the present study. Of these 131 participants, 119 (91%) completed the trial, 4 (3%) 

were terminated per protocol because of a change in their psychiatric treatment, and 8 (6%) 

were lost to follow-up.

Measures

Outcome.—Our outcome is depression severity as measured by the PHQ-8, an established 

measure of depression severity [47] that excludes the ninth (suicidality) item of the original 

PHQ-9 [48]. In the RCT, PHQ-8 was measured at baseline (week 0) and roughly every 

two weeks thereafter through week 16 (i.e., nine times total). For this analysis, we omit 

the baseline PHQ-8 because there was not sufficient passive sensing data measured prior 

to baseline. Thus, we consider up to eight repeated PHQ-8 observations measured between 

weeks two and 16.

Passive sensing features.—Our pipeline automatically extracts numerous daily features 

(i.e., behavioral inferences) that are potentially relevant to mental health from four passively 

sensed data streams (location, pedometer, activity, and display status). Informed by the 

literature and our clinical hypotheses and expertise, we selected an initial subset of 22 

daily features that may inform the development of a behavioral vital sign for depression. 

These features address aspects of sleep/wake regulation, rest/activity patterns, and proxies 

for social engagement.

For each of the 22 daily features, we computed a series of ‘weekly passive sensing summary 
features’ corresponding to each repeated PHQ-8 observation. Specifically, for a PHQ-8 on a 

given day t, we computed the mean and standard deviation (SD) of the daily passive sensing 

feature from day t-7 through the time of the PHQ-8 on day t (i.e., seven full days prior to 

the day of the PHQ-8 plus any time prior to the PHQ-8 on the day it is measured). For valid 

measurement, we required that at least five days of passive sensing data were available to 

compute each feature. For an individual i, we denote a weekly passive sensing summary 

feature for week t as Xit. This produced 44 types of weekly passive sensing summary 

features corresponding to each repeatedly measured PHQ-8 observation (22 means, 22 SDs).

For each participant i and each of the 44 types of weekly passive sensing summary 

features, we also computed a ‘global passive sensing summary feature’ as the mean of 

the weekly feature across the observed study period, denoted Xi. It reflects the typical level 

of the summary feature across the entire duration of their study participation. We explored 

Spearman correlations among the 44 global passive sensing features. Informed by these 
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correlations, we further selected 18 summary features that were relatively independent, and 

which had the most interpretability and face validity for the social zeitgeber model.

For sleep, we selected the means and SDs of our proxies for bedtime, wake-up time, and 

the time spent in bed (i.e., time between bedtime and wake-up time) during the week prior 

to each PHQ. We also selected the mean number of sleep interruptions. The SD was not 

considered because of its high Spearman correlation (r = 0.95) with the mean number 

of interruptions. Prior work indicates that features extracted from passive sensing can be 

reasonable proxies for these measures of sleep [44, 45].

For activity, we considered the means and SDs of the total daily step count (per 1000 steps) 

and the walking rate per second within periods of activity throughout the day.

For social engagement, we considered the mean normalized location entropy and the means 

and SDs of the number of unique locations visited, time at home, and distances traveled. 

The normalized location entropy ranges from 0 to 1, with higher values indicating a more 

equal distribution of time spent at each location visited. We considered only the mean and 

not the SD of location entropy because location entropy inherently incorporates a component 

of regularity. Distances traveled is a measure of the typical distances traveled from the user’s 

home to various locations on a given day in meters, weighted by the amount of time spent 

at each location. To meet regression assumptions regarding the normality of residuals, we 

log-transformed the number of location clusters and distances traveled prior to computing 

summary features.

For a given individual on a given calendar day, we computed the coverage of each of the 

four raw data streams (location, pedometer, activity, and display status) as the sum of the 

durations of stream events for that day divided by the total duration of the day (usually 24 

h, with adjustments as needed for travel across time zones). Overall coverage for a particular 

individual and day was then computed as the mean of the four stream-specific coverages.

Descriptions and technical details of the 18 selected passive sensing summary features are 

provided in the Supplement.

Covariates.—Sociodemographic and clinical features considered relevant to the social 

zeitgeber model and to depression in general included occupation (employed vs. not 

employed), living status (with others vs. alone), age, and gender. These features were 

selected as covariates based on prior work indicating these features have implications 

for depressive symptoms, sleep, activity, and social rhythms [10, 46, 49]. Additional 

covariates informed by the original RCT study design and analysis included the week 

of measurement (square root transformed to accommodate participants’ initially steeper 

decrease of depressive symptoms during the RCT), the treatment condition (experimental vs. 

control), and the treatment by week interaction. Our interest in the present report is not in 

the treatment effect; however, we include it here to control for any potential study design 

effects.
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Data analysis

For each participant i, we computed the ‘weekly passive sensing feature deviation’ at 

week t as the difference between the weekly passive sensing summary feature at week 

t and the global passive sensing feature, ΔXit = Xit − Xi It reflects the extent to which a 

participant’s weekly summary feature corresponding to the week prior to t deviated from 

their own ‘global’ level across the study period. To investigate missing data, we computed 

and summarized the numbers of observed PHQ-8 scores and corresponding valid passive 

sensing features for each person, with a maximum of eight possible repeated measures 

between weeks 2 and 16.

For our primary analyses, we used linear mixed-effects models to simultaneously regress the 

repeatedly measured PHQ-8 score on the global feature Xi and the weekly feature deviation 

ΔXit. This approach facilitates the examination of both between-person associations (via 

global features) and within-person associations (via weekly feature deviations) [50]. Put 

another way, the consideration of both global features and weekly feature deviations allows 

us to simultaneously examine: (1) whether people with higher/lower global features tend to 

have higher/lower PHQ-8 scores on average, relative to other people (i.e., who is at risk?); 

and (2) whether having a deviation from one’s global feature average might be associated 

with higher/lower PHQ-8 scores for that week (i.e., when is a person at risk?). Models were 

fit for each set of passive sensing features separately and adjusted for covariates described 

above. Random intercept and slope terms were included to account for within-subject 

correlations. Finally, to quantify and compare the contributions of each passive sensing 

feature to explaining model variance, we extracted fit indices including the marginal R2 (the 

percent of model variance attributable to the passive sensing features and covariates) and the 

change in marginal R2 (ΔR2) attributed to the set of passive sensing features.

Mixed-effects modeling was performed using the nlme package [51, 52] in R Studio 22.07.0 

[53] and model fit estimates (marginal R2, ΔR2) were computed using the R insight package 

[54, 55]. Because our analyses are exploratory – with the goal of generating hypotheses 

that will be tested in future confirmatory studies – we do not perform multiple comparison 

corrections, per current statistical recommendations [55, 56].

Details regarding power for this study are provided in the Supplement.

RESULTS

Table 1 describes the clinical and demographic characteristics of the 131 individuals 

included in this analysis. Descriptive summaries of the global passive sensing features are 

provided in the Supplement. The 18 features had a median Spearman correlation magnitude 

of r = 0.23 (Q1 = 0.13, Q3 = 0.33). Pairs of features with large associations (defined as r ≥ 

0.70) were time at home and normalized location entropy (r = −0.73) and mean step count 

and mean walking rate (r = 0.86). Otherwise, features had small-to-moderate associations.

During the study period (weeks 2–16), participants had a mean (SD) of 7.5 (1.3) observed 

PHQ-8 measurements of a possible eight. They averaged >7 valid repeated measures for 

each weekly passive sensing summary feature, also out of a possible eight. Further, across 
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both people and days within the 16-week study period, we observed a median of >99% 

coverage of the passive sensing features. Thus, study participants had relatively few missing 

data points in either the PHQ-8 outcome or the passive sensing features.

Model results

Sleep.—Participants with higher global wake-up time variability (i.e., higher SDs of 

wake time over their study period) had significantly higher PHQ-8 scores relative to other 

participants (B [95% CI] = 1.53 [0.13, 2.93]; see Fig. 1). The ΔR2 attributed to wake-up time 

variability was 0.024. Other sleep features (mean wake-up time; mean sleep interruptions; 

means and SDs of sleep start and time in bed) were not associated with depressive symptom 

severity.

Activity.—On weeks when participants had lower total step count per 1,000 steps and 

decreased walking rate per second, their PHQ-8 scores were significantly higher relative to 

their usual levels (Step Count B [95% CI] = −0.16 [−0.32, −0.01]; Walking Rate B [95% 

CI] = −1.46 [−2.60, −0.32]; see Fig. 2). The ΔR2 for step count and walking rate were 0.019 

and 0.013, respectively. SDs of the step count and walking rate were not associated with 

depressive symptom severity.

Social engagement.—On weeks when participants had lower normalized location 

entropy and greater hours at home, their PHQ-8 scores were significantly higher relative 

to their usual levels (Normalized Location Entropy B [95% CI] = −3.01 [−5.51, −0.52]; 

Time at Home B [95% CI] = 0.05 [0.00, 0.10]; Fig. 3). The ΔR2 for normalized location 

entropy and time at home were 0.005 and 0.009, respectively. Additionally, participants with 

higher mean levels of distances traveled across the study duration had significantly lower 

PHQ scores relative to other participants (B [95% CI] = −0.97 [−1.72, −0.22], Supplement), 

with ΔR2 = 0.033. SDs of time at home and distances traveled were not associated with 

depressive symptom severity. The mean and SD of the number of location clusters were also 

not associated with depressive symptom severity.

Full model results and fit indices are provided in the Supplement.

Illustrative examples of passive sensing features that could inform a vital 
sign for depression.—Figure 4 illustrates how passive sensing features could be used to 

understand when people may have higher symptom levels, considering two different features 

and two different participants. For normalized location entropy (Fig. 4, left), the weeks with 

lower PHQ scores generally have a location entropy that is greater than or similar to the 

participant’s typical location entropy, whereas weeks with a higher PHQ score generally 

have a location entropy that is lower than the participant’s typical location entropy. For step 

count (Fig. 4, right), the weeks with lower PHQ scores tend to have a step count that is 

higher than the participant’s typical step count, while the weeks with a higher PHQ score 

tend to have a step count that is lower than the participant’s typical step count.

The Supplement provides additional examples illustrating how passive sensing features 

could be used to understand who has higher symptom levels across the entire study period.
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DISCUSSION

This study was developed from a translational social zeitgeber model that has been validated 

by decades of research and focuses on the importance of regularity of daily routines 

to circadian health and – through multiple pathways – to mood regulation. Guided by 

this translational model, we developed a digital platform for the continuous, objective 

monitoring of behaviors relevant to mental disorders, paired with regular subjective 

assessments. We explored how passive sensing proxies of sleep, activity, and social 

engagement relate to self-reported depression severity in a group of 131 psychiatric 

outpatients. Across findings and consistent with our conceptual model, we observed that the 

variability and deviations of these features – rather than the levels of the features themselves 

– were most related to depressive symptoms.

With respect to sleep, participants with greater variability in our passively sensed proxy for 

wake time had significantly higher PHQ-8 scores over the 16-week study period relative 

to participants with lower variability in wake time. Regular wake time promotes circadian 

rhythmicity through signals initiated by the act of arising from bed, such as signals from the 

SCN to the digestive and elimination systems to ready them for food digestion and urination 

[41–43]. Even if we do not arise from bed, the simple act of awakening and opening 

our eyes is one of the strongest and most important zeitgebers for establishing circadian 

rhythmicity [57]. An important caveat to this finding is that passive sensing is not expected 

to provide a precise measure of actual physiological awakening. Despite this limitation, the 

algorithm we use for wake time has direct relevance to the social zeitgeber model because 

it represents an initial post-sleep engagement with the world that can be relatively reliably 

estimated from smartphone sensor data. More research should be conducted to distinguish 

whether variability in the time of physiological awakening – versus variability in the time 

of post-sleep engagement with the world – is more strongly associated with depressive 

symptoms.

Our findings for activity are consistent with the inclusion of inactivity and psychomotor 

slowing as a criterion symptom of depression [39]. Regular activity guides the circadian 

clock to a 24-h schedule; for example, exercise can entrain circadian rhythms in mice 

independent of light exposure [58]. Regular activity also promotes thermogenesis, strong 

immune function, healthy hormone release, metabolism, reproduction, and stem cell 

development – all of which are plausible pathways connecting circadian health to mood 

regulation [59]. Activity levels during daylight also train the body to be awake during that 

time and promote consistency in zeitgeber cues [60]. In our study, weeks when step count 

and walking rate were lower than usual corresponded to weeks with higher depressive 

symptom severity. This is consistent with animal models where lower locomotor activity is 

used as one proxy for depression symptoms [61].

Passive sensing proxies for social engagement indicated which weeks and which people 

had higher depressive symptom severity. Weeks with lower normalized location entropy and 

more time at home than usual corresponded with higher depressive symptom severity within 

an individual. In contrast, people with lower distances traveled from home tended to report 

greater depressive symptom severity over the course of the study. Although light seems to be 
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the most potent stimulator of the SCN, other stimuli such as food consumption, drugs, and 

social cues (or lack thereof) can trigger neurobiological systems that cause processes to lose 

synchronicity with the SCN and the rest of the body [62]. In their review, Mistlberger and 

Skene [63] found strong evidence that social influences can entrain mammalian circadian 

rhythms. In humans, Ronneberg et al. [64] and Foster et al. [65] demonstrated that social 

cues, new environments, mealtimes, and work schedules – along with light exposure – can 

influence circadian rhythms. Thus, social engagement and time spent outside the home 

support healthy circadian rhythms by regulating one’s schedule and by providing the social 

cues inherent in interpersonal interactions.

Although the sleep, activity, and social engagement features we identified are exploratory 

and must be further validated prior to their incorporation into clinical interventions, it is 

promising that they are actionable in much the same way as classic physical vital signs. For 

example, in clinical practice, patients who exhibit variable wake times could be encouraged 

to establish more regular sleep timing, either through their own effort, through participation 

in a course of behavioral psychotherapy such as CBT-I [66, 67], or a digital intervention 

such as Sleepio [68]. Similarly, activity could be useful for identifying which weeks a 

patient is experiencing higher-than-usual depressive symptom severity. Indeed, some of 

our own work with patients with bipolar disorder [69], as well as the work of others, 

suggests that even modest increases in relatively low-intensity exercise such as walking 

can have a positive impact on mood symptoms [70]. Social engagement is also something 

the clinician could try to address. Whether a clinician treating depression is working from 

simple common sense, a cognitive behavioral, or an interpersonal model, encouraging and 

planning for regular social engagement in an isolated patient is frequently an important part 

of the intervention [71–73].

Our study leverages a combination of clinical and ecological validity that is directly relevant 

to our conceptual model [74]. The use of personal devices instead of study-imposed 

devices (such as study-specific phones, watches or other wearables) and passive sensing 

data collection provided minimal disruption to participants’ environments and routines. 

This user-friendly and scalable approach resulted in high adherence to self-report data and 

very high sensor coverage. The concepts of behavioral vital signs provide a clinically 

interpretable, relevant, objective, digestible summary of a person’s psychological state 

that could inform treatment [75]. Moreover, our use of statistical models that incorporate 

both within-person (i.e., which weeks) and between-person (i.e., which people) vital signs 

advances our conceptualization of the types of features that could be informative.

Our study has limitations that are necessary to clarify and that point to future directions. 

First, this analysis is based on a relatively small sample observed in only a single site 

and is somewhat younger and less racially and ethnically diverse than is typical in some 

outpatient settings, which limits generalizability. Nonetheless, from a diagnostic perspective, 

the sample is mostly representative of the population being treated in outpatient psychiatric 

services, demonstrating a mix of lifetime mood, anxiety, and other disorders. Second, 

most participants in the study from which these data were drawn reported relatively mild 

depressive symptoms at study onset and there was limited variability in depressive symptom 

severity over the course of the study – perhaps because most participants were already 
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taking antidepressant medication. These study features are hurdles to identifying strong 

associations; thus, we are encouraged by our findings suggesting that relatively small 

numerical differences, for example in number of steps per day, were nonetheless related to 

self-reported depression severity. Third, although we had clear hypothesis-driven constructs 

of interest (sleep, activity, social engagement, and regularity of routine) drawn from a 

validated conceptual model, ultimately ours is an exploratory study and the findings we 

report should be viewed cautiously until further replication.

Given these limitations, our findings must be replicated in a larger sample with a 

greater range of depression severity across follow-up and a clinician-evaluated measure 

of depression symptoms prior to generalization to other contexts. Such larger studies could 

also facilitate the examination of potential interactions of passive sensing features and other 

sociodemographic and clinical features, or the role of season (e.g., winter, spring, summer, 

fall), which can impact mood, behavior, and circadian biology [76]. We also emphasize 

that these findings should not be construed as causal. While we observed associations 

between passively sensed measures of behavioral routines and depressive symptom severity, 

additional work must be performed to determine whether attempts to increase the regularity 

of these behavioral routines could be used to improve depressive symptom severity and/or 

prevent depressive relapse. Data from animal work could play a role in designing such 

human experiments.

The sleep, activity, and social engagement features that we identified in this exploratory 

study provide an initial framework for larger studies focused on developing a composite 

behavioral vital sign for depression. Thus far we have only proposed components of a 

behavioral vital sign for depression and have not yet addressed how these should be 

combined, weighted, or scaled for widespread use [77]. We are encouraged by these early 

findings and look forward to examining how these passively sensed behaviors could yield a 

composite vital sign for depression and other psychiatric disorders in future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Predicted PHQ-8 (95% confidence interval) for the global mean of wake-up time standard 

deviation (SD).
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Fig. 2. 
Predicted PHQ-8 (95% confidence interval) for the weekly deviation of mean step count 

(left) and weekly deviation of mean walking rate (right).
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Fig. 3. 
Predicted PHQ-8 (95% confidence interval) of the weekly deviation in mean normalized 

location entropy (left) and weekly deviation of mean hours at home (right).
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Fig. 4. 
Study participant data showing how PHQ-8 scores track with normalized location entropy 

(left) and step count (right).

Wallace et al. Page 19

NPP Digit Psychiatry Neurosci. Author manuscript; available in PMC 2024 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wallace et al. Page 20

Table 1.

Baseline sociodemographic and clinical characteristics (N = 131)

Mean (SD) or N (%)

Clinical characteristics

Age 32.8 (11.3); median 31

Gender

 Female 96 (73.3)

 Male or Other 35 (26.7)

Occupational/School status

 Full time 78 (59.5)

 None 19 (14.5)

 Part-time 34 (26.0)

Living status

 Alone 22 (16.8)

 Family 84 (64.1)

 Unrelated others 25 (19.1)

Lifetime diagnosis

 Anxiety disorder only 15 (11.5)

 Mood disorder only 24 (18.3)

 Anxiety & mood disorder 92 (70.2)

 Pharmacotherapy 102 (80.2)

 Baseline PHQ-8 11.00 (4.75)
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