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The concept of precision oncology, the application of targeted drugs based on

comprehensive molecular profiling, has revolutionized treatment strategies in

oncology. This review summarizes the current status of precision oncology in

glioblastoma (GBM), the most common and aggressive primary brain tumor

in adults with a median survival below 2 years. Targeted treatments without

prior target verification have consistently failed. Patients with BRAF

V600E-mutated GBM benefit from BRAF/MEK-inhibition, whereas targeting

EGFR alterations was unsuccessful due to poor tumor penetration, tumor cell

heterogeneity, and pathway redundancies. Systematic screening for actionable

molecular alterations resulted in low rates (< 10%) of targeted treatments. Effi-

cacy was observed in one-third and currently appears to be limited to BRAF-,

VEGFR-, and mTOR-directed treatments. Advancing precision oncology for

GBM requires consideration of pathways instead of single alterations, new trial

concepts enabling rapid and adaptive drug evaluation, a focus on drugs with

sufficient bioavailability in the CNS, and the extension of target discovery and

validation to the tumor microenvironment, tumor cell networks, and their

interaction with immune cells and neurons.

1. Introduction

In recent years, there has been a rapidly expanding

amount of information on the molecular vulnerabilities of

cancer cells, informing the development and application

of targeted drugs. Actionable targets may comprise the

genomic, genetic, epigenetic, transcriptional, proteomic,

and metabolomic properties of tumor cells and may vary

from one individual tumor to the next. Early studies of

targeted treatment determined target engagement and
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therapeutic efficacy in post hoc subgroup analyses of

larger non-selective and target-agnostic trials. Precision

oncology goes in the opposite way, analyzing an individ-

ual tumor to inform treatment tailored to its biological

characteristics [1,2]. Target detection is a prerequisite, but

the decision to apply a drug to an individual patient also

requires antitumor efficacy based on – at minimum – bio-

logical plausibility, key insights from preclinical research,

or clinical data from other tumor types or optimally the

same tumor entity harboring the targeted vulnerability.

Several classifications formalize the grading of clinical sig-

nificance and actionability of molecular targets [3–5].
Recent clinical trials, including molecularly targeted

agents and immunotherapies, have achieved unprece-

dented survival in solid cancers enriched with specific

molecular alterations. The cancer types that have

benefited the most are molecularly defined subgroups of

melanoma, non-small cell lung cancer (NSCLC), and

breast cancer. In melanoma, high response rates (> 60%)

and prolonged progression-free survival (PFS) and overall

survival (OS) were achieved [6–10]. In NSCLC, targeted

treatment based on defined molecular alterations became

the standard of care for first-line therapy [11]. In breast

cancer, targeted treatment is also well established, and

several compounds are available and sequentially applied

[12–17]. Targeted treatment is increasingly established for

other cancer entities [18–22]. Of note, genetic tumor cell

vulnerabilities are not restricted to a single cancer entity

but may occur in many different entities, albeit at a low

percentage. This opens the door for the application

of drugs registered for one entity to be used for tumors

from other cancer entities that harbor the actionable alter-

ation, e.g. in NSCLC and gliomas [23,24]. Accordingly,

entity-agnostic clinical trials and drug registrations focus-

ing on the presence of a particular alteration have been

initiated [25]. However, cross-entity comparisons illustrate

that the response to a certain compound may vary signifi-

cantly, owing to the differential activation of concurrent

pathways, the occurrence of different mutations, and the

differing tissue permeability for the respective drug [26].

This review explores the current status and perspec-

tive of precision oncology in isocitrate dehydrogenase

(IDH) wildtype glioblastoma (GBM), the most com-

mon and aggressive malignant CNS tumor in adults.

2. GBM therapy: current status and
potential therapeutic targets

2.1. Current standard of care in the newly

diagnosed and progressive setting

Maximum-safe tumor resection [27], radiotherapy of

the tumor region [28,29], and concomitant and

adjuvant temozolomide (TMZ) [29], an alkylating

agent with high CNS penetrance and bioavailability,

represent the current standard of care for first-line

GBM treatment [30]. Tumor treating fields applying

alternating electrical fields through the scalp are an

additional treatment option [31]. Furthermore, nitro-

soureas such as lomustine (CCNU), also an alkylating

agent with similarly favorable CNS penetrance, are

available for first- or further-line treatment [32,33]. In

some countries, the anti-vascular endothelial growth

factor (VEGF) A antibody bevacizumab is used as a

non-selective second-line therapy, although it prolongs

only PFS but not OS [34]. The portfolio of further

line therapies is enriched only by re-resection [35],

re-irradiation [36], and possibly the multi-kinase inhib-

itor regorafenib (see Section 3.1 [37]), while the aggres-

sive course of disease limits the time for further

treatment lines. Thus, GBM patients need new and

effective treatment options that should ideally be

guided by predictive molecular characteristics to

ensure that medications with a high likelihood of effec-

tiveness are applied.

2.2. Molecular predictors of therapeutic benefit

from alkylating chemotherapy

O6-Methylguanine-DNA-methytransferase (MGMT) is

a DNA repair enzyme that confers resistance to alky-

lating chemotherapy. Its expression is mainly regulated

by epigenetic modification, and the MGMT gene pro-

moter methylation status was introduced more than

15 years ago as a prognostic and predictive factor

strongly associated with benefit from TMZ and CCNU

[38,39]. Patients with an MGMT promoter-methylated

(MGMT-methylated) GBM receiving TMZ had a sig-

nificantly longer median OS of up to 31.4 months

[33,39–41] compared to approximately 17 months in

patients without MGMT promoter methylation

(MGMT-unmethylated) [42]. As some benefit from

TMZ cannot be excluded in patients with an unmethy-

lated MGMT promoter [39], it is accepted that the

MGMT promoter methylation status is not a prerequi-

site for applying TMZ in GBM first-line treatment.

This notion has some notable exceptions, indicating

the first step toward a molecularly informed treatment

of GBM. First, in patients > 65 years with an

MGMT-unmethylated GBM, TMZ showed just under

no significant benefit (P = 0.055), and therefore, radio-

therapy alone is a valid therapeutic option in this sub-

group [43]. The low activity of TMZ in patients with

MGMT-unmethylated GBM prompted selective clini-

cal trials for this subgroup, allowing the comparison

of experimental treatment arms to placebo without

2928 Molecular Oncology 18 (2024) 2927–2950 ª 2024 The Author(s). Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Precision oncology in adult glioblastoma J. Weller et al.



TMZ in the standard arm [42,44]. Second, the

CeTeG/NOA-09 phase III trial demonstrated an

increased median OS of 48.1 months in patients with

MGMT-methylated GBM receiving CCNU/TMZ, ren-

dering this combined chemotherapy a treatment option

selectively for patients belonging to this molecularly

defined subgroup [33].

Beyond MGMT gene promoter methylation analy-

sis, the subclassification of brain tumors in general and

GBM in particular into DNA methylation-based sub-

groups has spawned hopes to identify further

treatment-guiding predictive patterns [45]. The RTK II

subgroup is enriched for epidermal growth factor

receptor (EGFR) amplification and chromosome 10

loss, which corresponds to the ‘classic’ gene expression

subtype described by Verhaak et al. [46]. The RTK I

subgroup is characterized by platelet-derived growth

factor (PDGFR) A amplification, corresponding to the

‘proneural’ expression subtype. The MES subgroup

(‘mesenchymal’ expression subtype) frequently bears

NF1 and PTEN alterations [46–48]. Comparing radio-

therapy versus TMZ in elderly GBM patients, the

NOA-08 trial found the prognostic impact of MGMT

promoter methylation status was limited to GBM of

the RTK II subgroup and was absent in the RTK I

and MES subgroups.

In addition, a biosimulation study predicted individ-

ual differential responses to CCNU/TMZ and TMZ

treatments [49]. These results require prospective vali-

dation and are met with skepticism because, despite a

common genetic background, GBM cell states show

considerable plasticity [50,51].

2.3. Genetic vulnerabilities and potential

treatment targets in GBM

The landscape of genetic alterations in GBM is well

known, and clinically annotated expression and muta-

tion data are readily available from TCGA and other

data repositories [46,52]. As shown in Fig. 1, genetic

alterations in GBM frequently involve:

1 Alterations in growth factor receptors/receptor tyro-

sine kinases (RTK). The most frequent example is

EGFR, altered by approximately 60% [52]. This

includes amplification in about 40% [52,53], fre-

quently associated with other alterations such as

EGFR mutations or deletions, the most important

being the EGFR variant III (EGFRvIII). While

PDGFR is also frequently altered (10–15%), further

alterations, including fibroblast growth factor recep-

tor (FGFR, 2–5%), anaplastic lymphoma kinase

(ALK), ROS-1, RET, c-Met, and neurotrophic

tropomyosin receptor kinase (NTRK) 1–3 alter-

ations, are rare [52]. In the case of c-Met (1–4%;

[54,55]), FGFR3 (3%; [52,55,56]), and NTRK1-3

(1–2%; [55,57]), alterations occur mostly in the form

of gene fusions, which are also found for EGFR in

6–13% of patients [52,55,57].

2 Downstream signal transduction cascades induced

by RTK activation also frequently bear alterations.

This particularly applies to the PI3K/PTEN/AKT/

mTOR (phosphatidylinositol 3-kinase/phosphatase

and tensin homolog/AKT/mammalian target of

rapamycin) pathway. Taking RTK, PI3K (25–30%,

mainly PIK3CA or PIK3R1 alterations), and PTEN

alterations (40%) together, at least one of these

alterations is found in 90% of GBM [52]. Neurofi-

bromin 1 (NF1) mutations activating the PI3K

pathway by reducing its RAS-inhibiting effect have

been found in 10% of cases [52].

3 Genes encoding cell cycle proteins are frequently

altered, such as cyclin-dependent kinase inhibitor

2A/B (CDKN2A/B) deletion (60%) controlling

cyclin-dependent kinase 4/6 (CDK4/6), p53 muta-

tion (20–25%), p53-inhibiting amplifications of

mouse double minute 2 homolog (MDM2) and

MDM4 (15%), and RB1 mutation or deletion (8%;

mutually exclusive with CDKN2A deletion). At least

one of these genes is altered in 90% of GBM

[52,58].

4 Further alterations include DNA repair mechanisms

such as mismatch repair deficiency in about 10% of

progressive GBM, mostly due to MSH6 loss, and

alterations of homologous repair deficiency, DNA

checkpoint, and base excision repair [49,59–61].

Illustrating the growing drug development pipeline

in GBM, all of the aforementioned targets or their

associated pathways are currently being investigated as

potential treatment options [62,63]. Despite this well

characterized landscape of actionable treatment tar-

gets, the identification of successful targeted treatments

for GBM remains challenging. In contrast to IDH

mutant astrocytoma, where IDH mutation is thought

to occur early in gliomagenesis, there is no known

early – and thus major – single-driver alteration in

GBM [46,64,65]. Further, GBM displays significant

cellular and spatial heterogeneity, and potential targets

may not be present in most tumor cells [50,66]. The

possibility of longitudinal heterogeneity represents

another challenge; it was suggested that molecular tar-

gets profoundly change between the newly diagnosed

and progressive disease [67,68], whereas prominent

publications reported no substantial longitudinal

changes in genetic alteration profiles [51,69,70]. Besides
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the genetic profile, expression patterns of GBM (e.g.

EGFR expression) and, in particular, cells of the

tumor microenvironment may substantially change

over time and have a vast influence on the composi-

tion of the tumor tissue and amenability to therapy,

further introducing complexity [51].

Fig. 1. Frequent targetable alterations in adult IDH wildtype glioblastoma. This figure illustrates a selection of currently targetable frequent

molecular alterations in glioblastoma. Receptor tyrosine kinases (RTKs) are among the most frequent alterations. Following RTK activation,

downstream signal transduction involves the phosphatidylinositol 3-kinase (PI3K) pathway with frequent PI3K or phosphatase and tensin

homolog (PTEN) alterations, and the Ras pathway with frequent activation via neurofibromin 1 (NF1) mutations. Cell cycle dysregulation

involving cyclin-dependent kinase pathway alterations occurs in 90% of glioblastoma, frequently involving p16 (encoded by cyclin-dependent

kinase inhibitor 2A/B [CDKN2A/B]), cyclin-dependent kinase 4/6 (CDK4/6), p52, mouse double minute 2/4 homolog (MDM2/4), or RB1. For

detailed explanations, refer to Section 2.3 in the main text. AKT, anaplastic lymphoma kinase; EGFR, epidermal growth factor receptor;

FGFR, fibroblast growth factor receptor; IDH, isocitrate dehydrogenase; MAPK, mitogen-activated protein kinase; mTOR, mammalian target

of rapamycin; NTRK, neurotropic tropomyosin receptor kinase; PDGFR, platelet-derived growth factor receptor; PDK, 30-phosphoinositide-
dependent kinase; STAT, signal transducer and activator of transcription.
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3. Targeted treatment in untargeted
study populations

3.1. GBM trials with targeted agents

In the last 20 years, targeted drugs have been applied to

GBM patients without individual prior target verifica-

tion, and they have been mostly explored in patients

with progressive or recurring tumors following one or

more treatment lines. Table 1 provides an overview of

drugs, targets, and observed outcomes, focusing on

GBM hallmark alterations such as EGFR, PDGFR,

FGFR, c-MET, and the PIK3CA/Akt/mTOR pathway

(see also Fig. 1). Beyond this, many drugs directed

at less GBM-specific targets involved in tumor cell

growth and/or homeostasis have been evaluated, e.g.

transforming growth factor b (TGFb)-directed
galunisertib [71], CD95 ligand (CD95L)-directed

APG101 [72], Src-directed dasatinib [73–75], phosphory-
lated signal transducer and activator of transcription 3

(pSTAT3)-directed therapy [76], hepatocyte growth fac-

tor/scatter factor (HGF/SF)-directed rilotumumab [77],

and proteasome inhibitors such as marizomib [78]. In

addition, there have been several approaches to target

receptors thought to be mostly expressed in tumor cells

(without individual confirmation beforehand) with

locally applied ligand-toxin fusion proteins targeting,

e.g. interleukin 13-receptor (IL13R), interleukin

4-receptor (IL4R), or transferrin receptors [79–81].
In summary, these approaches failed to achieve con-

vincing results in adult malignant glioma cohorts. Still,

some trials performed post-hoc secondary explorative

analyses to identify biomarkers for treatment benefit

[44,72], thus justifying the use of the mTOR inhibitor

temsirolimus in the ongoing N2M2 trial and indicating

a PFS-prolonging effect of the CD95L-inhibitor

APG101 [72,82]. In retrospect, the failure of trials

without prior target verification, and therefore without

enrichment of tumors harboring the targeted alter-

ation, comes as no surprise. Thus, targeted agents

must be tested in cohorts preselected for the presence

of the targeted genetic alterations.

The only exceptions are multi-kinase inhibitors

with a broad spectrum of therapeutic targets, which

enable studies in unselected cohorts. Regorafenib, a

multi-kinase inhibitor targeting VEGFR1-3, TIE2,

PDGFR-b, FGFR, KIT, RET, and RAF, increased OS

in the progressive setting in the randomized phase II

REGOMA trial [37]. While questions remain as to

the extent to which these positive results rely on the

VEGF-directed antiangiogenic effect [34,42] and

the results have recently been challenged [83], some

markers of therapeutic benefit have emerged in

explorative analyses. More specifically, the occurrence

of a hand-foot reaction, a common side effect observed

in approx. 30% of patients receiving regorafenib, was

associated with an increased OS of 6.7 versus

2.6 months in a small retrospective bicentric cohort of

patients with progressive glioblastoma receiving regora-

fenib, and a biomarker analysis of the REGOMA trial

described the expression levels of several mRNAs and

miRNAs to be associated with survival [84,85].

4. Targeted treatment with previous
target verification

4.1. Successful trials with molecularly matched

drugs in glioma patients

There are a few success stories emphasizing that tar-

geted therapy may show efficacy in molecularly

selected glioma subpopulations. In patients with tuber-

ous sclerosis, treatment with the mTOR inhibitor ever-

olimus for subependymal giant cell astrocytomas with

alterations in the mTOR pathway is well established

and leads to tumor reduction of ≥ 30% in 75% of

patients [86]. More recently, the IDH inhibitor vorasi-

denib increased PFS from 11.1 to 27.7 months in

IDH-mutant grade 2 glioma and allowed for signifi-

cantly delayed further interventions (likelihood of next

treatment intervention or death by 24 months, 16.6%

vs. 73%) [87].

In GBM, the only successful molecularly matched

treatment to date is combined BRAF/MEK inhibition

in patients with a constitutively activated MAPK path-

way due to a BRAF V600E mutation. An interim

analysis of the single-arm phase 2 ROAR basket trial

exploring this approach in BRAF V600E-mutated pro-

gressive GBM with the BRAF inhibitor dabrafenib

and the MEK1/2 (the downstream target of BRAF)

inhibitor trametinib showed an objective response rate

(ORR, complete or partial response according to

RANO criteria) of 32% and a PFS of 2.8 and an OS

of 13.7 months [24]. Consequently, EANO guidelines

conclude that the clinical benefit in patients with

BRAF V600E mutant progressive CNS tumors is suffi-

ciently well established to consider it part of the stan-

dard of care [88].

4.2. Entity-agnostic drug registrations for

patients with NTRK gene fusions or

microsatellite instability/mismatch repair

deficiency

While biomarker-specific drugs are usually marketed

for specific cancer types, two drugs received an entity-
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agnostic registration: larotrectinib, a tropomyosin

kinase receptor inhibitor for tumors bearing NTRK

alterations, and the programmed cell death protein 1

(PD-1) inhibitor pembrolizumab for tumors with

microsatellite instability/mismatch repair deficiency.

Data are accumulating that in childhood gliomas, laro-

trectinib addressing NTRK alterations (mostly NTRK

fusion transcripts) may induce a high rate of responses

[89], but reports on adult GBM patients remain anec-

dotal, with the largest series reporting disease stabiliza-

tion (> 6 months) in 4 of 6 patients (Table 2) [90]. A

larger series will hopefully provide more reliable infor-

mation on the efficacy of larotrectinib in this setting.

The case is even more challenging for pembrolizumab

in patients with microsatellite instability/mismatch

repair-deficient tumors. There are currently no strong

data supporting this concept in GBM, as the clinical

trial supporting pembrolizumab treatment did not

include any GBM patients [91]. Of note, untargeted

PD-1 immune checkpoint inhibition with nivolumab

has been extensively studied in newly diagnosed glio-

blastoma, but failed to prolong survival in large phase

3 trials in MGMT-unmethylated as well as MGMT-

methylated newly diagnosed GBM patients [41,92].

Also, the trial investigating nivolumab at the first

relapse of GBM did not show any survival prolonga-

tion [93].

4.3. Lessons learned from unsuccessful trials

with molecularly matched drugs

Further trials evaluating targeted treatments in GBM

patients with target verification have shown no convinc-

ing efficacy data so far (Table 2). This applies to nega-

tive data in randomized phase 3 trials investigating

depatuxizumab mafodotin, an antibody-drug conjugate

composed of an anti-EGFR antibody conjugated to

a tubulin inhibitor, which found no OS improvement

in newly diagnosed GBM with confirmed EGFR-

amplification (18.9 vs. 18.7 months, PFS 8.0 vs.

6.3 months), or rindopepimut, an EGFRvIII-specific

peptide vaccine, which showed no benefit in newly diag-

nosed EGFRvIII-positive GBM (OS 20.1 vs.

20.0 months, PFS 7.1 vs. 5.6 months) [94,95]. For

single-arm trials, an ORR of 25%, which translates to a

median OS of 15 months [96], or surpassing a 6-month

PFS rate of 16–20% as observed with CCNU [34,97], is

generally expected for an effective second- or later-line

treatment. Examples of single-arm trials not reaching

this threshold are given in Table 2 and include targeting

of EGFR, CDK4/6, and amplified c-MET.

The multifaceted problem of achieving efficacy

in trials with molecularly matched treatments isT
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highlighted by the largely unsuccessful therapy of

EGFR-altered GBM despite previous target identifica-

tion (EGFR amplification in 54%; [98]), which has

taught many lessons in this regard:

1 Successful EGFR-directed therapy in NSCLC is

applied in the context of mutations in the tyrosine

kinase domain, which activate the receptor. In con-

trast, EGFR alterations in GBM mainly affect the

extracellular domain, and multiple different onco-

genic EGFR variants (mostly deletions and missense

mutations) typically coexist and are not homoge-

nously distributed [26]. Mechanistically, EGFR

alterations in GBM seem to alter ligand discrimina-

tion [99], suggesting alternative mechanisms in

response to EGFR-directed therapy in GBM com-

pared to NSCLC (for review, see [26]).

2 EGFR alterations in GBM may not confer onco-

logic addiction, as they are considered late events in

gliomagenesis and are subclonal rather than clonal

[100–102]. This implies that the tumor is a mosaic of

cells with different RTK alterations that may coop-

erate synergistically [103], increasing cellular fitness

and resistance to therapy [104]. The resulting spatial

heterogeneity renders biopsy sampling less reliable.

Further, it implies temporal heterogeneity during

further tumor growth, where relapsed GBM may

show a loss of mutated targets [67,105]. This would

require target verification in the progressive tumor

rather than based on tissue from the primary

Table 2. Trials and case series with targeted therapy in molecularly pretested cohorts of GBM and high-grade glioma.

Drug Required target Trial/case series Major outcome Ref.

Dabrafenib/Trametinib BRAF V600E Phase II, n = 45 high-grade glioma

(31 GBM)

12/45 PR

3/45 CR

[24]

Larotrectinib NTRK gene fusions n = 33 glioma (6 high-grade adult

glioma)

4/6 with some tumor shrinkage

4/6 with treatment duration of

6 months or more (2/

6 > 9 months)

[90]

EGFR-TKIs

Dacomitinib

EGFR amp Phase II trial, n = 49 rGBM (incl. 19

with EGFRvIII)

EGFRamp only:

ORR 6.6%, PFS6 13.3%,

mOS 7.8 months

EGFRamp + EGFRvIII:

ORR 5.3%, PFS6 5.9%, mOS

6.7 months

[210]

Phase II trial, n = 56 rGBM, BEV

naive

ORR 3%, PFS6 17%, mOS

10 months

[211]

Osimertinib EGFR amp, p53wt Phase II, n = 12 rGBM ORR 0%, PFS6 0%, mOS

5.5 months

[210]a

EGFR biologicals

(selection)

Depatuxizumab

mafadotin (ABT414)

EGFR amp Phase II, n = 260, rGBM, rand:

TMZ, ABT414, TMZ + ABT414

TMZ + ABT414 vs. TMZ HR 0.71,

P = 0.06;

ABT414 vs. TMZ HR 1.0, P = 0.83

[128]

Phase III, n = 639 rGBM,

TMZ + ABT414 vs.

TMZ + placebo

No improvement of OS (HR 1.02;

P = 0.63); PFS improved with

ABT414 (8 vs. 6.3 months,

P = 0.029)

[94]b

EGFRvIII CAR T EGFRvIII Phase I, n = 10 rGBM mOS ~ 7.1 months [212]

Phase I, n = 18 rGBM [213]

Phase II, rand, n = 73 rGBM, BEV

+/� CDX110

PFS6 28% vs. 16% (P = 0.12) [214]

Rindopepimut (EGFRvIII

vaccine CDX-110)

EGFRvIII Phase III, rand, n = 745 ndGBM,

Standard +/� CDX110

mOS 20.1 vs. 20.0 months [95]

Palbociclib CDK4/6, RB1

proficiency

Phase II, n = 22 rGBM mPFS 5.1 weeks, mOS

15.4 weeks; stopped for futility

[116]

Capmatinib PTEN loss/mut +

c-Met amplification

(FISH)

Phase II, n = 10 rGBM No response; 3/10 stable disease

for 16–20 weeks, stopped for

futility

[215]

aAdditional single cases and a retrospective case series of n = 15 rGBM treated with osimertinib and bevacizumab; pPFS 5.1 months; mOS

9 months; efficacy similar to BEVmono [216,217].
bIn patients with EGFRvIII mutant (HR 0.72, P = 0.002) or MGMT-unmethylated tumors (HR 0.77, P = 0.012), PFS may be prolonged with

ABT414, but no OS improvement.
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surgery. While EGFR amplification is usually con-

served [106], some trials have shown that staining of

the EGFR extracellular domain is changed or lost

upon therapy and is not associated with a clinically

relevant survival prolongation [95].

3 The treatment of GBM with at least some part of

the tumor behind an intact blood–brain barrier rep-

resents a pharmacokinetic challenge, as many com-

pounds may not sufficiently penetrate CNS tumors

and have a reduced bioavailability, even in the case

of in principle sufficient CNS penetration of, e.g.,

the EGFR inhibitors erlotinib or osimertinib

[107,108]. This contributes to the observation that

tumor tissue obtained after EGFR-directed therapy

does not show sufficient target engagement and

pathway alterations [109,110].

The difficulties of EGFR-directed therapies have

been so substantial that new approaches for EGFR

targeting, such as EGFR-directed chimeric antigen

receptor (CAR) T cell therapy, are met with caution.

The increasing number of available targeted drugs leads

to the question of how to effectively scan for potentially

successful target/drug combinations in GBM. Adaptive

phase II trials in newly diagnosed MGMT-unmethylated

GBM are promising tools to identify drugs for further

analysis in confirmatory phase III trials. Examples of such

trials are N2M2, INSIGhT, and the Adaptive Global

Innovative Learning Environment for Glioblastoma

(GBM AGILE), which investigate several targeted drugs

in parallel with obligatory molecular testing and a com-

mon temozolomide standard arm [82,111,112]. These tri-

als are even more intriguing because their results are

continuously monitored, and a Bayesian approach is

applied to guide the allocation of patients to more success-

ful trial arms. The first results of the INSIGhT trial have

already been published, showing superior PFS but similar

OS for the CDK4/6 inhibitor abemaciclib (OS 15.3 vs.

14.8 months, PFS 6.2. vs. 4.7 months) and the EGFR/

HER2 inhibitor neratinib (OS 14.2 vs. 14.8 months, PFS

6.0 vs. 4.7 months), both in addition to standard radio-

chemotherapy [113]. However, preliminary results of

GBM AGILE challenge the benefit of regorafenib, as

mentioned above [83].

5. Experience with NGS screening and
matched targeted therapy

5.1. Important points to consider for NGS-based

individual GBM therapy

Instead of testing single or few drugs in cohorts

selected by screening for a single molecular alteration,

next-generation sequencing (NGS) yields an array of

genetic alterations for each patient, which may allow

the selection of the most promising genetic alteration/

targeted drug combination (matched therapy). This

approach is an attractive way to evaluate the concept

of precision oncology in GBM therapy. In cancer

entity-agnostic case series of patients with metastatic

cancer (without GBM patients) such as IMPACT

[114,115], the ORR, 6-month stabilization rate, median

PFS and OS, and 10-year survival rate of patients

receiving matched therapy tended to be higher than

those of patients receiving nonmatched therapies. The

first steps are made to implement the approach for pri-

mary brain tumors in general and gliomas in particular

(Table 3).

To extend this approach to GBM, three major prob-

lems have to be addressed:

1 Target identification. In GBM, it is not trivial to

infer the most promising target constellation from a

list of genetic alterations and whether single or com-

bined alterations represent the best target. For

example, it is unknown whether CDK4/6 inhibitors

such as palbociclib or abemaciclib can be employed

for RB1-proficient GBM or if CDKN2A/B and

CDK4/6 status also need to be considered [116].

Dysregulation of the CDK4/6-p16-RB1 pathway is

a hallmark of glioblastoma [52]. While CDK4/6

activation inhibits the tumor suppressor protein

RB1, allowing cell cycle progression, CDK4/6 inhib-

itors cause reduced RB1 phosphorylation and apo-

ptosis. Homozygous deletion of CDKN2A/B,

encoding the CDK4/6 inhibitor p16, leads to

CDK4/6 disinhibition, which might be required for

sensitivity to pharmacological CDK4/6 inhibition

[116]. CDK4 alterations or RB1 mutations were

associated with resistance to CDK4/6 inhibition in

patient-derived GBM xenografts [117]. Similarly,

should application of EGFR block in patients with

EGFR amplification or activating mutations be

given on the base PTEN alterations, which are fre-

quent in GBM and linked to reduced responsiveness

to EGFR inhibitors [110]? Clear guidelines for these

decisions are lacking. Of note, combined target

selection inevitably narrows down treatment options

for individual patients.

2 Treatment selection for precision oncology is challeng-

ing, irrespective of cancer type. In GBM, this problem

may be accentuated as there has only been one success-

ful molecularly guided trial thus far [24]. Therefore,

treatment selection mostly has to rely on results from

other tumor entities, e.g. breast cancer for DNA dam-

age repair alterations, cholangiocarcinoma and
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urothelial carcinoma for FGFR alterations, and

NSCLC for EGFR alterations [5]. However, applica-

bility may be reduced due to differences in mutation

sites, activation of compensatory pathways, and tissue

penetration. Treatment selection based on preclinical

in vitro/in vivo results or on biological rationale is even

less convincing and leads to a lower strength of recom-

mendation according to current grading guidance

[5,118]. In summary, the paucity of data requires the

adoption of treatment strategies based on other tumor

entities or preclinical data, both with reduced applica-

bility for GBM.

3 Efficacy assessment. The assessment of treatment suc-

cess by standard metrics such as ORR, PFS (both

largely based on imaging parameters), or OS rates is

limited in heterogeneous cohorts of GBM patients

receiving precision oncology treatment. Further,

interindividual comparison is impaired by the poten-

tial prognostic effect of the targeted molecular alter-

ations and the treatment of patients at differing stages

of their illness. Intraindividual comparison of PFS

until first progression to PFS under matched therapy

(PFS2/PFS1) is an elegant alternative, and a

PFS2/PFS1 ratio of 1.3 or higher has been accepted

as a marker of effective matched therapy in systemic

cancers [119,120]. Considering the progression time

scale with a median PFS of 7 months in newly diag-

nosed GBM and 2 months in progressive GBM, a

PFS2/PFS1 ratio of 1.3 translates to a significant PFS

increment if the evaluated treatment is initiated at first

recurrence and to a numerically small PFS increment

if initiated at further recurrence [30]. Accordingly,

modifications have been suggested to adjust for very

short PFS1 < 2 months to prevent overcalling and

for significant PFS2 > 6 months to prevent undercal-

ling of treatment responses in brain tumors, and the

concept has been applied in brain tumors [121–123].
Further approaches include an adaptation of the

ESMO Magnitude in Clinical Benefit Scale to brain

tumors, combining PFS with imaging response dura-

tion (Neuro-MCBS, see Ref. [122]).

5.2. Case series with NGS-based molecular-

guided GBM therapy in clinical routine

An increasing number of neuro-oncology centers offer

NGS screening for actionable mutations to patients with

progressive glioblastoma with no further standard treat-

ment options. At these institutions, multidisciplinary

molecular tumor boards are established, providing per-

sonalized recommendations for targeted therapies based

on individual NGS results. So far, five publications

report on mono- or oligoinstitutional experience with

NGS-informed personalized therapy [122–126]: Blu-

menthal et al. [124] reported the first retrospective

cohort from five tertiary hospitals comprising 43 glioma

patients (34 GBM), where a NGS panel detected action-

able alterations in 95%, leading to targeted treatment in

30% (10/34), but without any treatment response. Byron

et al. [125] performed a prospective monocentric trial to

evaluate the feasibility of whole exome sequencing-

informed treatment recommendations within 35 days of

surgery. Among 16 GBM patients, a recommendation

was possible in 94%, 44% (7/16) received a targeted

treatment, and one patient (6%) achieved a treatment

response. Lazaridis et al. [126] reported a retrospective

monocentric cohort of 41 glioma (32 GBM) patients.

Following NGS and further methods of genomic profil-

ing, actionable targets were identified in 76% (24/32)

and 16 GBM patients receiving targeted treatment

achieved an increased PFS (3.8 vs. 2.0 months) and OS

(13 vs. 4 months) compared to 16 GBM patients with

unmatched empiric treatment. Renovanz et al. reported

on their experience from the Center for Personalized

Medicine T€ubingen, which has an established certified

clinical workflow for personalized medicine in the clini-

cal routine for cancer patients without options for trial

participation or further registered treatments. This het-

erogeneous and heavily pretreated cohort included 262

GBM [122]. Following comprehensive molecular profil-

ing, molecularly instructed treatment recommendations

were made in 93% (243/262) and 41 GBM patients were

treated accordingly, resulting in a PFS2/PFS1 > 1.3 in

36% (13 of 36 evaluable patients). Padovan et al. [123]

reported a retrospective, monocentric cohort of 417

GBM patients receiving NGS screening. While action-

able targets were identified in 82%, 36 patients (8.6%)

received a targeted treatment, of which 20% (7/36)

achieved a PFS2/PFS1 > 1.3.

The five series are described in more detail in

Table 3. Of note, only two of these studies were pro-

spectively documented [122,125], and the number of

evaluable patients with targeted therapy per cohort

remains low, ranging from < 20 [124,125] to 36

patients [122,123,126]. The largest studies to date also

highlight the current problem of precision therapy. As

reported by Renovanz et al. [122], among 262 GBM

patients receiving NGS screening, only 41 actually

started matched therapy (about 14% of patients

tested). While a high percentage of these (88%,

n = 36) could be evaluated for efficacy and demon-

strate the determination of the authors, the low rate of

initiated therapies emphasizes the many obstacles for

molecularly matched therapy, such as the rapid deteri-

oration of patients with progressive GBM and the lack
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of reimbursement by health insurance companies

attributable to insufficient GBM-specific evidence of

efficacy [122]. Padovan et al. [123] reported a similar

experience, where only 36 (8.6%) of 417 GBM patients

receiving NGS screening were able to initiate matched

therapy. No treatment response was observed by Blu-

menthal et al., while Byron et al. report a single

patient receiving a potentially successful treatment of

olaparib/trametinib/carboplatin with a PFS2/PFS1

ratio of > 3 [124,125]. The larger studies provide some

data on the efficacy of matched therapy in GBM

[122,123,126].

Lazaridis et al. [126], also considering CNS drug pene-

tration in the decision-making process, presented 16

patients receiving matched therapy compared to 16

patients with unmatched therapy (Table 3), potentially

introducing selection bias. The encouraging PFS results

of 3.8 and 2.0 months with versus without matched

therapy were mainly driven by the efficacy of BRAF

V600E-directed therapy with dabrafenib/trametinib and

c-Met-directed therapy with the tyrosine kinase inhibi-

tor (TKI) cabozantinib. While the first observation is in

line with the interim results from the ROAR trial dis-

cussed in Section 4.1 [24], the cabozantinib results war-

rant critical discussion as the drug targets not only c-

Met but also VEGFR. Inhibition of the VEGF path-

way, e.g. with the VEGF-A antibody bevacizumab, is

well known to prolong PFS but not OS [34,42,127]. The

intermingling of VEGF-directed therapy with therapy

directed at other targets was also present in the study by

Renovanz et al. [122]. As mentioned, 14% of GBM

patients started matched therapy, and 13/36 evaluable

patients (5% of screened patients or 36% of patients

receiving treatment and being evaluable) were success-

fully treated according to a PFS2/PFS1 ratio > 1.3,

while the median PFS was 2.3 months [122]. Here, three

of the four patients receiving regorafenib based on

FMS-like tyrosine kinase (FLT) or EGFR alterations

did benefit (PFS2/PFS1 > 1.3). As discussed above,

regorafenib targets several tyrosine kinases, including

VEGFR, raising the possibility that the observed PFS

benefit might at least partially be attributable to

VEGFR targeting. Apart from this, a signal for treat-

ment benefit was only seen for everolimus in tumors

with PTEN or PIK3CA alterations (3/6 with

PFS2/PFS1 > 1.3), which is in line with results from the

mTOR inhibitor temsirolimus trial in newly diagnosed

MGMT-unmethylated GBM [44], and for tumors with

FGFR fusion transcripts treated with the FGFR inhibi-

tor erdafitinib (3/4 with PFS2/PFS1 > 1.3). Two

patients had a positive PFS2/PFS1 signal with the

EGFR antibody-toxin conjugate depatuxizumab mafo-

dotin in the context of an early-access program,

illustrating its PFS prolongation in a previous trial

[128], which did not translate into a longer OS in large

phase III trials [94] (Table 3). Padovan et al. [123] con-

firm these observations: among the 36/417 patients

receiving targeted treatment, 19% were treated success-

fully with a PFS2/PFS1 ratio > 1.3, including three

objective responses, again mainly driven by dabrafenib/-

trametinib in BRAF V600E-altered GBM and erdafiti-

nib in FGFR3-altered GBM, while the median PFS was

2.1 months.

Other publications report the results of NGS screen-

ing and/or matched therapy allocation without includ-

ing a substantial number of GBM patients evaluable

for treatment efficacy [129,130]. Using a methodologi-

cally different approach, Luger et al. [131] retrospec-

tively analyzed a cohort of 351 patients treated with

off-label therapy and identified 15 patients with high-

grade glioma (8 GBM) who received matched therapy.

This series was dominated by the observation that 3/6

patients treated with BRAF V600E-directed therapy

had disease stability for 5+ months. In summary, these

reports highlight that few NGS-screened GBM

patients receive targeted treatment, and even fewer

may benefit from it.

6. Advancing GBM precision
oncology: beyond tumor cell targets

While precision oncology heralds potentially great bene-

fit in GBM, the clinical results achieved with targeted

drugs remain underwhelming. There are several

areas of ongoing research to overcome this. This

includes (a) the identification of treatment targets

beyond DNA sequencing, such as multi-omics-based

exploitation of altered pathways, immunophenotyping,

epigenetic profiling, metabolomics, and single-cell ana-

lyses [1,132,133]. Another area of current research

focuses on (b) optimization of the method of target

engagement, e.g. including CAR T- or NK-cells, tumor

vaccination, oncolytic viruses, and antibody-drug conju-

gates (see [134] for review), despite the low frequency of

currently addressable targets [135–137]. (c) The optimi-

zation of (sequential) target verification, e.g. via radio-

mic and liquid biopsy strategies [1,138,139], could also

improve the extent of the therapeutic benefit/treatment

response. (d) Understanding and overcoming molecular

mechanisms of acquired therapy resistance is key to

developing more potent therapeutic modalities [140],

and (e) the optimization of clinical trial conductance

could better inform future studies [141,142]. Here, we

focus on discussing the advancement of precision oncol-

ogy in GBM toward novel treatment targets beyond

tumor cell-intrinsic targets, thus including targets in the
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tumor-associated microenvironment (TME). The TME

of GBM is increasingly well characterized [143], and

changes in the TME may be crucial for tumor progres-

sion [51]. Interactions of tumor cells with vascular struc-

tures, immune cells, neurons, glial cells, and each other

may provide new targets for therapy (Fig. 2).

In this context, extracellular vesicles (EV) are nota-

ble for their involvement at both a diagnostic and

therapeutic level. EVs are membrane-bound vesicles

secreted into the extracellular space that can cross the

blood–brain barrier and carry a broad range of cargos,

including nucleic acids, lipids, and proteins, together

with markers reflecting their biogenesis [144].

GBM-derived EVs purified from blood or cerebrospi-

nal fluid allow for tumor diagnosis and noninvasive

longitudinal sampling for detection of tumor progres-

sion, treatment targets, and treatment response [144–
149]. Further, EVs may be taken up by neighboring

and distant cells in the TME as well as GBM cells,

thus representing both an important means of GBM-

TME communication and a possible therapeutic

approach for targeted drug delivery [150–153].

6.1. Antiangiogenic therapy

The tumor-vascularization axis has been targeted with

the application of the VEGF-A inhibitor bevacizumab,

leading to prolonged PFS (potentially also due to antie-

dematous effects) but not OS, both in newly diagnosed

and progressive GBM [34,42,127,154]. Other anti-

angiogenic drugs, such as cediranib, a VEGFR inhibi-

tor, had a similar PFS benefit in newly diagnosed GBM,

but again, there was no OS benefit both in the newly

diagnosed and progressive settings [155,156]. Cilengi-

tide, an integrin inhibitor targeting angiogenesis, did not

find its way into clinical application following a PFS-

and OS-negative phase III trial [40,157]. However, anti-

angiogenic therapy was applied in unselected cohorts

without pretesting for the respective targeted angiogenic

factors, and thus its potential might be higher in a preci-

sion oncology approach. Retrospective analyses aimed

to identify molecular subgroups with an OS benefit from

bevacizumab [158,159]. In a biomarker analysis of

AVAglio, the ‘proneural’ gene expression subtype was

associated with a significant OS advantage (17.1 vs.

12.8 months) in newly diagnosed GBM receiving beva-

cizumab, which seems counterintuitive as this subtype is

associated with lower VEGF expression, and the results

could not be confirmed in the GLARIUS trial

[46,127,158,160]. In the progressive setting, NF1 muta-

tion was associated with survival benefit from bevacizu-

mab (OS approx. 17 vs. 8 months) in an exploratory

biomarker analysis of EORTC-26101, but these results

need further validation [159].

6.2. Immunological targets

The interaction of the immune system with GBM cells

may provide further targets for precision oncology. To

date, large clinical trials investigating immune checkpoint

(A) (B) (C)

Fig. 2. Advancing precision oncology in glioblastoma: selection of potential microenvironmental targets. This figure illustrates potential

treatment approaches targeting the tumor microenvironment. (A) Antiangiogenic therapy targeting the tumor-vascularization axis by vascular

endothelial growth factor (VEGF) or integrin inhibition failed in unselected cohorts, but its potential in a precision oncology approach remains

promising. (B) Immunological treatment strategies such as personalized vaccination using an individual peptide mix based on tumor tissue

analysis have shown sustained immunological responses. Exclusion of myeloid cells by targeting the CXC chemokine ligand 12 (CXCL12)/

CXC chemokine receptor 4 (CXCR4) axis reduces postirradiation tumor revascularization and is evaluated in ongoing clinical trials. (C) The

disruption of tumor cell networks by gap junction inhibitors might increase radiochemotherapy sensitivity. Neuron-tumor signaling might be

targeted by inhibition of a-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptor (AMPAR)-mediated synaptic input or by ADAMS10

sheddase inhibition to decrease neuroligin 3 (NLGN3) signaling, both mediators of activity-induced glioma proliferation. For a detailed

explanation, refer to Section 6 in the main text. CXCR7, CXC chemokine receptor 7; PD-1, programmed cell death protein 1; PD-L1,

programmed death-ligand 1; sNLGN3, soluble NLGN3; VEGFR, VEGF receptor.
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blockade in GBM have failed [41,92,93], and no predictive

markers have been defined for matched therapy besides

microsatellite instability (see Section 4.2). Alone or in

combination with PD-1/programmed death-ligand 1 (PD-

L1) inhibitors, some trials applied cell-based (e.g. DCVax

[161]) or – more promisingly – multi-peptide-based vacci-

nation therapy [162] after EGFRvIII-directed mono-

peptide vaccination with rindopepimut failed as discussed

above [95]. The peptide vaccination approach may be per-

sonalized using an individual peptide mix informed by

tumor tissue analysis. First results from the phase I

GAPVAC-101 trial, investigating highly individualized

vaccinations against an individual selection of unmutated

antigens and neoepitopes in 15 patients, document a sus-

tained T-cell immune response, while meaningful clinical

efficacy (e.g. prolongation of PFS and OS) has still not

been demonstrated [163]. It remains a major challenge to

identify immunomodulatory targets in the microenviron-

ment that can overcome local immunosuppression and

further enhance the immune reaction against tumor cells.

Further, macrophages and microglia have been shown to

interact with tumor cells and may even manipulate them

to obtain a more aggressive phenotype [164]. Despite

promising preclinical data, first approaches with colony

stimulating factor 1 receptor (CSF-1R)-targeted inhibition

of macrophages failed [165–167]. Macrophage exclusion

from the tumor by inhibition of C-X-C motif chemokine

receptor 4 (CXCR4) was shown to reduce post-irradiation

tumor revascularization in a small phase I/II trial. Addi-

tionally, inhibition of CXCR4 by plerixafor or inhibition

of its ligand C-X-C motif chemokine ligand 12 (CXCL12;

formerly known as stromal cell derived factor-1, SDF-1)

by NOX-A12 is being evaluated in several ongoing trials

[168,169]. Macrophages and microglia provide several

other markers that may be targeted to enable a stronger

and more precise immune reaction in GBM immunother-

apy [170]. Further, indirect targeting of immune cells with

GBM-specific stromal protein-targeted immunostimula-

tory cytokines represents a novel approach. An antibody-

cytokine conjugate targeting a tumor-associated fibronec-

tin epitope to enable local distribution of tumor necrosis

factor was associated with increasing tumor necrosis and

local inflammation in a phase I study, with objective

responses in 3/5 progressive GBM patients, and is cur-

rently being evaluated in further trials [171,172].

6.3. Targeting tumor-tumor and neuron-tumor

networks

The interactions of tumor cells with each other and with

neuronal or glial cells offer further opportunities for

precision oncology. The rising field of cancer neurosci-

ence has provided a host of landmark publications,

showing that GBM form tumor microtube-based tumor

cell networks that confer resistance to radiotherapy and

chemotherapy [173–176] and promote tumor cell inva-

sion by recapitulating developmental neuronal pro-

grams [177]. These observations may inform new targets

for future therapeutic manipulation, e.g. or the distur-

bance of hub cells within the syncytium that dominate

and organize the tumor cell network [178], or the disrup-

tion of tumor syncytia by gap junction inhibitors

[174,179,180] – the latter being explored in an ongoing

phase I/II trial [181].

Finally, several ways to modulate the neuronal input

on tumor cell networks have been found and may be tar-

geted. The synaptic protein neuroligin-3 (NLGN3) was

identified as the leading mitogen mediating neuronal

activity-induced glioma proliferation in patient-derived

xenograft models, and reduction of the release of its sol-

uble form (sNLGN3) by ADAMS10 sheddase inhibition

with INCB7839 is explored in a phase I trial

(NCT04295759) [173,182]. Similarly, neuronal activity

was shown to mediate glioma invasion and growth via

a-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid

receptor (AMPAR)-mediated synaptic input from neu-

rogliomal glutamatergic synapses in patient-derived

xenograft models. In line with this, targeting the modu-

lation of AMPAR synaptic transmission using the antie-

pileptic drug perampanel is explored in a phase II trial

[176,183]. To further refine this as a precision therapy

approach, predictive markers have yet to be defined.

7. Summary and further perspectives

Despite first successes with BRAF V600E-directed dab-

rafenib/trametinib, and signs of some efficacy in a low

percentage of GBM patients receiving molecular-guided

therapies, precision oncology has yet to find broad clini-

cal application with proven efficacy in patients with

GBM. Trials investigating targeted drugs in molecularly

defined subgroups and treatment allocation based on

broad NGS screening need further optimization, e.g. by

taking into account the CNS penetration of drugs, more

complex prediction models based on combinations of

genetic vulnerabilities/interaction of pathways [184],

and new targets beyond the tumor cell. New models of

clinical trials are being conducted to allow efficient anal-

ysis of new substances and multi-omics approaches. The

results of N2M2, GBM AGILE, and INSIGhT explor-

ing multiple targeted treatments in comparison to a

common standard of care will significantly advance the

field. Until more efficacy data are available, matched

personalized therapy may, with the exceptions men-

tioned above, be reserved for the experimental treatment

of relapsed GBM.
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