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Purpose: Optical coherence tomography (OCT)-derived measurements of the optic
nerve head (ONH) fromdifferent devices are not interchangeable. This poses challenges
to patient follow-up and collaborative studies. Here, we present a device-agnostic
method for the extraction of OCT biomarkers using artificial intelligence.

Methods: ONH-centered OCT volumes from the Heidelberg SPECTRALIS, ZEISS CIRRUS
HD-OCT 5000, and Topcon 3D OCT-1000 Mark I/II and 3D OCT-2000 devices were
annotated by trained graders. A convolutional neural network (CNN) was trained on
these segmented B-scans and utilized to obtain several ONH biomarkers, such as the
retinal nerve fiber layer (RNFL) and the minimal rim width (MRW). The CNN results were
compared between different devices and to themanufacturer-reported values using an
independent test set.

Results: The intraclass correlation coefficient (ICC) for the circumpapillary retinal nerve
fiber layer (cpRNFL) at 3.4 mm reported by the CIRRUS and 3D OCT-2000 was 0.590
(95% confidence interval [CI], –0.079 to 0.901), and our CNN resulted in a cpRNFL ICC of
0.667 (95% CI, –0.035 to 0.939). The cpRNFL at 3.5mmon the CIRRUS, 3DOCT-2000, and
SPECTRALIS generated by the CNN resulted in an ICC of 0.656 (95% CI, 0.055–0.922).
Comparing the global mean MRWs from the SPECTRALIS between CNN and
manufacturer yielded an ICC of 0.983 (95% CI, 0.917–0.997). The CNN ICC for the
MRW among the CIRRUS, 3D OCT-2000, and SPECTRALIS was 0.917 (95% CI, 0.947–
0.981).

Conclusions: Our device-agnostic feature extraction from ONH OCT scans showed a
higher reliability than the measures generated by the manufacturers for cpRNFL. MRW
measurements compared very well among the manufacturers.

Translational Relevance: This open-source software can robustly extract a wide
range of biomarkers from any OCT device, removing the dependency on
manufacturer-specific algorithms, which has significant implications for patient
follow-up and collaborative research.
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Introduction

Optical coherence tomography (OCT) of the optic
nerve head (ONH) is used to visualize and measure
the anatomical characteristics of the optic disc and
surrounding retinal layers. It is used primarily for the
diagnosis and monitoring of optic neuropathies, which
can be caused by several diseases.1,2 Glaucomatous
optic neuropathy (GON) is the most common form,
affecting an estimated 80 million people worldwide.3
From a histological perspective, optic neuropathies are
characterized by the degeneration of retinal ganglion
cells and the loss of their axons that make up
the retinal nerve fiber layer (RNFL).4 This leads
to thinning of the RNFL and the ganglion cell
layer (GCL) and, in GON, to reduction of the
neuroretinal rim and deepening and enlargement
of the cup. OCT manufacturers provide dedicated
software to quantify these structural changes and
aid in the interpretation of ONH OCT which has
become an indispensable tool in ophthalmological
care.5,6

OCT devices from different manufacturers have
similar but not identical approaches to image acqui-
sition and measurement of anatomical parameters.
Although they do not seem to differ in their ability to
detect glaucoma,7,8 a direct comparison between
measurements from devices produced by differ-
ent manufacturers is not possible.9–13 This can be
problematic for patient follow-up in case of refer-
rals from a different center, when changing to a new
OCT device, or in large collaborative or multicenter
studies. Hence, there is a need for a device-agnostic
approach that can be used on OCT images from
different manufacturers and provide comparable
results. Moreover, such an algorithm would facilitate
the possibility to understand whether discrepan-
cies in measurements among devices are primarily
due to variation in segmentation and measurement
software or to differences in the image acquisition
process.

The goal of this study was to develop an
algorithm that automatically segments and extracts
a number of comparable biomarkers from ONH
OCT volumes from different manufacturers. To
achieve this, we developed a method to delineate
relevant anatomical structures on OCT B-scans
using a convolutional neural network (CNN) and
an algorithm to compute relevant markers from the
full OCT volume. This approach was validated in
an independent test set of study participants who
were scanned on OCT devices from three different
manufacturers.

Methods

Image Acquisition

A set of OCT B-scans was randomly selected
from databases with OCT volumes that were collected
at three study sites from three different countries.
Scans were acquired on a Heidelberg SPECTRALIS
OCT system (Heidelberg Engineering, Heidelberg,
Germany), a ZEISS CIRRUS HD-OCT 5000 (Carl
Zeiss Meditec, Dublin, CA, USA), and Topcon 3D
OCT-1000Mark II and 3DOCT-2000 devices (Topcon
Corporation, Tokyo, Japan). The CIRRUS OCT was
located at the eye clinic of the Komfo Anokye Teach-
ing Hospital in Kumasi, Ghana. The selected scans
came from study participants who were enrolled
in the Genetics in Glaucoma Patients of African
Descent (GIGA) study betweenMay 2015 and January
2021. It is a case–control study investigating genetic,
anatomic and environmental factors in a Sub-Sahara
African population of primary open-angle glaucoma
(POAG) patients and unaffected control participants.
Volumetric images centered at the optic disc were
acquired by using the standard CIRRUS 6 × 6-mm
cube acquisition protocol (200 × 200 axial scans).
Both Topcon devices were located at the Rotterdam
Study site, where a population-based cohort study is
being performed to investigate determinants of age-
related diseases in an adult population.14 The scans
were taken between November 2007 and May 2016.
The optic disc–centered volumes were acquired by
using the 6 × 6-mm raster scanning protocol (128
× 512 axial scans) on both the OCT-1000 Mark
II and OCT-2000 devices. The SPECTRALIS OCT
was located at the public hospital Centro Hospi-
talar e Universitário São João, in Porto, Portugal,
where data were collected from patients with POAG
and healthy controls between November 2022 and
March 2023. The SPECTRALIS images consisted of
24 radial scans and three circular scans at 3.5-mm,
4.1-mm, and 4.7-mm diameter from the center of the
ONH.

An additional set of eight healthy eyes from
four participants were scanned on the CIRRUS,
SPECTRALIS, and 3D OCT-2000 devices to serve
as a test set. These consecutive scans were acquired
within a 10-month period. The CIRRUS and 3D
OCT-2000 devices used for the test set were the same
as those used for image acquisition described previ-
ously. The SPECTRALIS scanner used for the test
set was located at the ophthalmology department of
the Erasmus Medical Center in Rotterdam. The CNN
and feature extraction algorithm can be accessed at
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https://github.com/Eyened/OCT-ONH; access to the
test set can be requested by contacting the correspond-
ing author.

Ethical Statements

The Medical Ethics Committee of Erasmus MC
(registration no. MEC 02.1015) and the Dutch
Ministry of Health, Welfare, and Sport (Population
Screening Act WBO, license no. 1071272-159521-
PG) approved the use of the individual-level data in
the Rotterdam study (RS) participants. The RS is
entered into the Dutch National Trial Register (NTR;
www.onderzoekmetmensen.nl) and the WHO Inter-
national Clinical Trials Registry Platform (ICTRP;
www.who.int/clinical-trials-registry-platform) under
shared catalog number NTR6831. All participants
provided written informed consent following the
Declaration of Helsinki to participate in the study and
to have their information obtained from their treating
physicians.

Institutional ethical approval for GIGA study
participants was obtained from the Committee for
Human Research Publication and Ethics under the
School of Medical Sciences of the Kwame Nkrumah
University of Science and Technology, Kumasi, Ghana
(reference no. CHRPE/AP/540/17) before commence-
ment of the study. Written consent was obtained
from all study participants. This study was conducted
according to the tenets of the Declaration of Helsinki.

The participation of participants fromPorto, Portu-
gal, was approved by the Ethics Review Board of
Centro Hospitalar Universitário São João (registra-
tion no. CE 112/2023). Informed consent was waived
because this was a retrospective data collection with no
patient identifiable information. A data transfer agree-
ment was signed between Centro Hospitalar Univer-
sitário São João and Erasmus MC.

Manual Annotation

The randomly selected scans from all devices were
manually annotated according to a standardized proto-
col (see Supplementary Material) by four trained
graders from the EyeNED Reading Center at the
Erasmus Medical Center in Rotterdam.15 The graders
were able to adjust the contrast and brightness of the
data and to visualize the en face images while annotat-
ing each individual B-scan. Graders first assessed
general image quality, the presence of movement
artifacts within or outside the ONH area, and the
position of theONHon the x, y, and z axes to judge the
overall gradability of a volume. If the borders between
anatomical structures of interest for annotation were

not discernable or if major movement artifacts or
positioning of the acquired OCT volume impeded
visibility of the ONH or surrounding structures due to
misalignment, then that OCT volume would be consid-
ered ungradable. The ONH margins were delineated
on the en face images, as defined by the margins of
Bruch’s membrane opening (BMO). In cases of severe
gamma-zone peripapillary atrophy (PPA), the ONH
margins were annotated on the edge of the scleral
flange.

Subsequent annotations were performed on five B-
scans from eachOCT volume. For the raster scans from
the CIRRUS and 3D OCT, the B-scan with the widest
BMO was visually selected for annotation. Two B-
scans superior and inferior to this point were randomly
selected for annotation, ensuring that scans within but
also outside of the ONH area were annotated to create
a diverse training set. For the SPECTRALIS volumes,
approximate horizontal and vertical radial scans were
annotated and two randomly chosen diagonal scans in
between. The fifth scan was randomly chosen from one
of the three circular B-scans.

For each B-scan, the entire RNFL was segmented
by highlighting the area between the inner limit-
ing membrane (ILM) and the GCL. Retinal blood
vessels were also annotated, to enable future differ-
entiation between RNFL thickness irrespective of
vessel presence. Following the neuroretinal tissue past
the BMO, it becomes more difficult to discern the
border between the RNFL and other layers. Thus,
the RNFL border was highlighted until no further
signal was visible or until the lamina cribrosa (LC)
was reached, at which point the tissue was identi-
fied as prelaminar tissue. When identifiable, the LC
anterior border was delineated. The axial pixel size of
the OCT devices ranged from 2.6 to 3.87 μm,16 whereas
Bruch’s membrane (BM) can be as thin as 2 μm.17
Therefore, it was annotated together with the retinal
pigment epithelium (RPE) as theRPE–BMcomplex. If
present, alpha-, beta-, and gamma-zone PPA was also
annotated.

Consensus Grading

The four graders discussed B-scans in case of uncer-
tainty regarding annotations. After the first iteration of
annotations for the training set was finished, all graded
B-scans were checked by a clinician–researcher (SJD).
A collection of doubtful annotations was showcased
and discussed during two meetings with three ophthal-
mologists (HL, JBB, PB) and three artificial intelli-
gence specialists (BL, DADJ, LSB) to obtain consen-
sus. Systematic errors and inconsistencies were used
to improve the annotation protocol and were commu-

https://github.com/Eyened/OCT-ONH
http://www.onderzoekmetmensen.nl
http://www.who.int/clinical-trials-registry-platform
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Figure 1. Graphical summary of study workflow: manual annotation, model development, and validation.

nicated to the graders, and faulty annotations were
corrected. The test set was annotated by each grader
separately and without consultation between graders
or with the panel of experts.

Automatic Segmentation Model

The publicly available nnUNetv218 CNN was
trained to automatically segment the anatomic struc-
tures on OCT B-scans by using manual annotations.
Training was performed in fivefold cross-validation on
1030 B-scans using the default settings. The final model
is an ensemble of the five cross-validation folds. A
graphical summary of the model training and valida-
tion is shown in Figure 1.

Biomarker Extraction

The CNN was used on all B-scans to produce
a full segmentation of the OCT volumes. As the

scan pattern was different between the OCT-2000
and CIRRUS (cube) versus the SPECTRALIS (radial
+ circular) devices, the biomarker extraction was
designed to be as similar as possible. The following
biomarkers were extracted from the full segmentations
(see Fig. 2):

1. Bruch’s membrane opening area (Fig. 2B)—The
BMO was defined by the edges of the BM
segmentation, including alpha- and beta-zone
PPA. To correct minor errors, a morphological
closing was applied to the en face projection of
the BM and an ellipse was fitted to the resulting
boundary points.

2. cpRNFL thickness (Fig. 2D)—The RNFL
thickness was computed for each A-scan. To
account for vessels interrupting the RNFL,
pixels annotated as vessels were considered either
part of the RNFL or background, depend-
ing on which was the nearest neighboring
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Figure 2. Visualization of extracted biomarkers. (A) Minimum rim width, defined as the minimum distance between the BM edge and ILM
(white lines). (B) Surface of the BMO. (C) Cup volume, defined as the space between the RNFL/prelaminar tissue and the line that cuts the
BM edges (in this instance only visualized in a single B-scan). (D) cpRNFL thickness, computable at any diameter from the center of the ONH
from cubic acquisition OCT volumes.

annotation. On cube acquisitions, the center
of the BMO was used as a center point to
extract cpRNFL at different diameters (3.4 or
3.5 mm). The mean cpRNFL was computed
in clock hours and temporal, superior, nasal,
inferior, temporal (TSNIT) sectors (temporal
superior, 40°; nasal superior, 40°; nasal, 110°;
nasal inferior, 40°; temporal inferior, 40°; tempo-
ral, 90°). For the SPECTRALIS acquisition,
the circular scans were used and a correc-
tion was applied for the tilt of the optic disc
with respect to the fovea to define the TSNIT
segments (similar to the manufacturer-reported
method). This information was not available
for the other devices. The RNFL thickness
heatmap (Fig. 2D) was generated for illustrative
purposes, by plotting the RNFL thickness from
each A-scan of a cube acquisition in an en face
projection.

3. Bruch’s membrane opening minimum rim width
(Fig. 2A)—The BMO-MRW was defined as the
minimum distance between the edge of the BM
and the ILM. For the SPECTRALIS acquisi-
tion, the BMO-MRW was extracted from each
radial scan. For the cube acquisitions, the 24
SPECTRALIS-like radial scans were generated
using the BMO as center, from which the BMO-
MRW was extracted.

4. Cup volume (Fig. 2C)—The cup volume was
defined as the space enclosed between the line
cutting through the BM endpoints, defined in the
two-dimensional space of a single B-scan, and the
RNFL/prelaminar tissue segmentation. For the
cube acquisitions, the volumewas summed across
the entire BMO to achieve a three-dimensional
volume.

Statistical Analysis

The segmentation accuracy of the CNN was
assessed using the Dice similarity coefficient (DSC) on
a B-scan basis. For the training set, the mean DSC was
computed on the validation set across the five cross-
validation folds. For the test set, the model predic-
tion was compared to the grader annotations, and the
grader annotations were compared to each other in
one-to-one comparisons which were then averaged as
a measure of intergrader agreement.

The performance of the CNN in terms of biomark-
ers was assessed by comparing (1) the extracted
biomarkers from the test set to their manufacturer’s
counterparts, and (2) the biomarkers extracted by
the CNNs from the different devices. These test–
retest variability measures were analyzed by means
of two-way mixed model, absolute agreement, single
measure intraclass correlation coefficients (ICCs) in



Device Agnostic Features From ONH OCT Scans TVST | December 2024 | Vol. 13 | No. 12 | Article 5 | 6

SPSS Statistics 28 (IBM, Chicago, IL). ICC values
less than 0.5, between 0.5 and 0.75, between 0.75
and 0.9, and greater than 0.90 were, respectively,
regarded as poor, moderate, good, and excellent
reliability.19

Results

Descriptive statistics of the data used for train-
ing the CNN can be found in Table 1. All partici-
pants scanned with the CIRRUS device in Ghana were
of African ancestry, whereas all participants scanned
with the SPECTRALIS and Topcon devices were of
central or southern European ancestry. A total of 95
B-scans from 19 OCT volumes were excluded during
the annotation process due to insufficient signal-to-
noise ratios or misalignment of the scan or other major

artifacts that made annotations impossible to perform.
The remaining training set consisted of a total of 1030
B-scans from 206 OCT volumes. There were some
missing data on refractive error (23.5% for CIRRUS;
13.2% for SPECTRALIS) and pseudophakia status
(3.03% for CIRRUS), and not all study sites collected
axial length measurements (19.23% for the 3D OCT-
1000 Mark II; 1.82% for the 3D OCT-2000; not
available [NA] for the SPECTRALIS and CIRRUS).
Descriptive statistics of the test dataset can be found
in Table 2. The participants’ ages ranged from 29 to
55 years, and the median spherical refractive errors
were –0.63 and –0.88 diopters for OD and OS, respec-
tively. One of the study participants had high myopia
with refractive errors of –9.25 and –8.25 for OD
and OS.

The segmentation accuracy in terms of mean DSC
for the validation sets is presented in Supplementary

Table 1. Descriptive Statistics of Training Set

CIRRUS
(Neyes = 68,

NB-scans = 340)

3D OCT-1000
Mark I (Neyes = 4,
NB-scans = 20)

3D OCT-1000
Mark II (Neyes = 26,
NB-scans = 130)

3D OCT-2000
(Neyes = 55,

NB-scans = 275)

SPECTRALIS
(Neyes = 53,

NB-scans = 265)

Age (y), mean ± SD 62.5 ± 14.9 72.6 ± 10.8 78.9 ± 8.09 78.2 ± 6.59 68.1 ± 15.8
Female, % (n) 54.4 (37) 75.0 (3) 65.4 (17) 60.0 (33) 67.9 (36)
Ancestry, % (n)

Central European 0 (0) 100 (4) 100 (26) 100 (55) 0 (0)
Southern European 0 (0) 0 (0) 0 (0) 0 (0) 100 (54)
African 100 (68) 0 (0) 0 (0) 0 (0) 0 (0)

Refractive error
Spherical (D), median ± IQR 0.38 ± 2.00a 2.00 ± 3.00 1.13 ± 2.13 1.38 ± 1.75 0.75 ± 1.50c

Cylindrical (D), median ± IQR −1.00 ± 1.44a −0.75 ± 1.75 −1.00 ± 1.13 −1.13 ± 1.25 −1.00 ± 1.50c

Axial length (mm), mean ± SD NA NA 23.23 ± 1.00d 23.12 ± 0.91e NA
IOP (mmHg), mean ± SD 17.9 ± 5.36 12.8 ± 1.50 13.9 ± 2.19 14.7 ± 3.04 15.3 ± 4.62
Glaucoma, % (n) 67.6 (46) 0 (0) 0 (0) 3.6 (2) 52.8 (28)
Cataract, % (n) 20.6 (14) 0 (0) 3.8 (1) 5.5 (3) 1.90 (1)
Pseudophakic, % (n) 21.2 (14)b 25.0 (1) 42.3 (11) 36.4 (20) 52.8 (28)

Retinal pathology
Epiretinal membrane, % (n) 0 (0) 25.0 (1) 19.2 (5) 21.8 (12) 5.7 (3)
Diabetic retinopathy, % (n) 0 (0) 0 (0) 0 (0) 0 (0) 1.90 (1)
AMD, % (n) 0 (0) 0 (0) 11.5 (3) 1.8 (1) 3.80 (2)
CRVO, % (n) 0 (0) 0 (0) 0 (0) 0 (0) 1.9 (1)
Vitelliform retinopathy, % (n) 0 (0) 0 (0) 0 (0) 0 (0) 1.9 (1)
DM, % (n) 26.5 (18) 25.0 (1) 30.8 (8) 29.1 (16) 35.8 (19)
Hypertension, % (n) 61.8 (42) 50.0 (2) 88.5 (23) 96.4 (53) 43.4 (23)

Neyes for missing cases. AMD, age-relatedmacular degeneration; CRVO, central retinal vein occlusion; DM, diabetesmellitus;
IOP, intraocular pressure; IQR, interquartile range; NA, not available; NB-scans, total number of OCT B-scans used; Neyes, total
number of eyes/OCT volumes used; SD, standard deviation.

aNtotal = 52.
bNtotal = 66.
cNtotal = 46.
dNtotal = 21.
eNtotal = 54.
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Table 2. Descriptive Statistics of the Test Set (N = 4)

Statistic Value

Age (y), median (range) 40.5 (29 to 55)
Female, % (n) 50 (4)
Ethnicity
European ancestry, % (n) 100 (4)

Refractive error (D)
OD spherical −0.63 (−9.25 to –0.25)
OD cylindrical −0.88 (−1.75 to −0.75)
OS spherical −0.88 (−8.25 to −0.50)
OS cylindrical −0.88 (−2.00 to 0.00)

Axial length (mm), median (range)
OD 24.47 (23.55 to 27.13)
OS 24.68 (23.27 to 26.58)

IOP (mmHg), median (range)
OD 15.50 (14 to 17)
OS 16.50 (15 to 17)

Glaucoma, % (n) 0 (0)
Cataract, % (n) 0 (0)
Pseudophakic, % (n) 0 (0)

N is the total number of participants for whom OCT scans
of both eyes were included. D, diopters.

Table S1. The segmentation accuracy of the final model
and the concordance between grader segmentation on
the test set are presented in Supplementary Table S2.
There was poor agreement in the segmentation of the
LC and PPA labels (all less than 0.2 DSC). There
was a notable difference in performance between the
devices for BMO, with relatively high overlap on the
SPECTRALIS (SPECTRALIS: 0.92 DSC model vs.
graders; 3D OCT-2000: 0.67 DSC model vs. graders;
CIRRUS: 0.67 DSCmodel vs. graders). Marked differ-
ences among the devices were also seen for the vessels,
with poor overlap on the CIRRUS (0.29 DSC inter-
grader; 0.18 DSC model vs. graders), relatively higher
overlap on the 3D OCT-2000 (0.36 DSC intergrader;
0.37 DSC model vs. graders), and the highest overlap
on the SPECTRALIS (0.60 DSC intergrader; 0.58
DSC model vs. graders). The overlap on the RNFL
label was comparable among devices, all between 0.75
and 0.85 DSC. In general, the model performance
was comparable to the intergrader variation for all
labels.

Comparison of cpRNFL and MRWmeasurements
from the CNN output among the manufacturers
are presented in Table 3. Comparison of manufac-
turer proprietary output between the devices can be
found in Supplementary Tables S3 and S4. Compar-

ison of the CNN output to the manufacturers’
output can be found in Supplementary Tables S5
and S6. The unavailable (NA) values were a conse-
quence of dissimilar measurement and acquisition
methods among the devices. For example, quartiles
were reported instead of TSNIT segments, and the
circular acquisition protocol of the SPECTRALIS
device at fixed diameters did not allow any direct
comparisons. Consequently, the cpRNFL thick-
ness was compared at a 3.4- and 3.5-mm diame-
ter, following the measurements provided by the
manufacturers.

Agreement between the CIRRUS and 3D OCT-
2000 proprietary device output for mean cpRNFL
thickness at a 3.4-mm diameter around the ONH
was moderate (ICC = 0.590; 95% CI, –0.079 to
0.901). The same comparison performed with CNN-
extracted measurements indicated a modest increase
in agreement (ICC = 0.667; 95% CI, –0.035 to
0.939). All three devices could be compared by
using CNN-generated cpRNFL measurements at
a 3.5-mm diameter. This resulted in a moderate
agreement (ICC = 0.656; 95% CI, 0.055–0.992).
In two-way comparisons, the best agreement was
achieved between the SPECTRALIS and 3D OCT-
2000 (ICC = 0.896; 95% CI, 0.203–0.982), whereas the
CIRRUS and SPECTRALIS had the worst agreement
(ICC = 0.483; 95% CI, –0.046 to 0.878). Directly
comparing the manufacturers’ mean cpRNFL thick-
ness to the CNN-generated mean cpRNFL thick-
ness resulted in good agreement for the CIRRUS
(ICC = 0.815; 95% CI, 0.301–0.960]), 3D OCT-
2000 (ICC = 0.916; 95% CI, 0.668–0.982), and
SPECTRALIS (ICC = 0.873; 95% CI, –0.038
to 0.981).

The CIRRUS and 3D OCT-2000 do not provide
MRW measurements and could therefore not be
compared. The SPECTRALIS proprietary output
compared to the CNN output for mean MRW was
excellent (ICC = 0.983; 95% CI, 0.917–0.997). Agree-
ment on mean MRWs from the CNN among the three
devices was also excellent (ICC= 0.919; 95%CI, 0.757–
0.981).

Agreement on cup volumes compared between the
CIRRUS and 3D OCT-2000 manufacturer output
(ICC = 0.993; 95% CI, 0.923–0.999) and CNN output
(ICC = 0.990; 95% CI, 0.950–0.989) (Supplemen-
tary Table S7) was excellent. Comparing manufacturer
output to CNN output yielded moderate agreement
for the CIRRUS (ICC = 0.680; 95% CI, 0.019–0.927)
and 3D OCT-2000 (ICC = 0.713; 95% CI, 0.088–
0.935), although the manufacturers’ definitions of cup
volume differed from that used for the CNN. CNN
output for alpha-, beta-, gamma PPA and the LC
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A B

C

Figure 3. Visualization of CNNmodel results for one of the eyes in the test set. The annotation of the RNFL (purple), BM (blue), and vessels
(yellow) is overlaid on the central B-scan from the three different devices: (A) SPECTRALIS, (B) CIRRUS, (C) 3D OCT-2000.

was not satisfactory and therefore was not included
in further comparison analyses. Additional elabora-
tion of this point can be found in the Discussion
section.

Visualization of Results

Figure 3 shows an example of the CNN segmen-
tation model output for each of the devices for
the central horizontal B-scan (defined by the widest
BMO) in one of the eight eyes of the test set. The
anatomy of the BM and RNFL is captured well,
although the placement of the vessels is not identi-
cal for the devices. To make a qualitative interpre-
tation of the differences between extracted features,
a number of visualizations were made. The CNN-
generated cpRNFL andMRWmeasurements from the
three different devices were plotted together for each

eye in the test set (Figs. 4, 5). The aggregated mean
difference for model output between devices was also
computed across the entire cpRNFL circle (Fig. 6,
dashed line). These measurements were smoothed by
taking a moving average over a window of 9° to avoid
focal effects of the vessels. The thickness measure-
ments from the CIRRUS were generally lower than
those of the SPECTRALIS and 3D OCT-2000, with
a mean difference of 9.8 μm between the CIRRUS and
SPECTRALIS and 2.1 μm between the 3D OCT-2000
and SPECTRALIS. The aggregated mean difference
for model output among devices for MRW measure-
ments was also plotted together for each eye in the
validation set (Fig. 7). The observed variation of
measurement differences among the devices made it
inappropriate to calculate a standard correction factor
to translate the measurements of one device to the
other.
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Figure 4. cpRNFL measurements by model for each of the devices in all eight eyes (left, OD; right, OS) from the test set.

Figure 5. MRWmeasurements by model for each of the devices in all eight eyes (left, OD; right, OS) from the test set.
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Figure 6. Visualization of the cpRNFL mean differences for the model output among the different devices. The individual differences for
all eight eyes are plotted in the background, with the mean of those differences across the circular scan shown as a dashed black line, the
general mean as a dotted line, and the zero difference as a solid black line.
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Figure 7. Visualization of the MRW mean differences for the model output among the different devices. The individual differences for all
eight eyes are plotted in the background,with themeanof those differences across the circular scan shownas a dashedblack line, the general
mean as a dotted line, and the zero difference as a solid black line.

Discussion

A segmentation model (CNN) and feature extrac-
tion algorithm forONH-related parameters were devel-

oped on manually annotated OCT scans from three
different manufacturers and tested on eight eyes that
were all scanned on these three devices. Compar-
isons were performed among the CNN-generated
measurements of the three different devices, among
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the manufacturers’ proprietary output from the three
devices (when possible), and between the CNN-
generated measurements and manufacturers’ propri-
etary output for each device. MRW measurements,
generated with our CNN for the devices that do not
provide this parameter, compared very well among the
manufacturers. Agreement among the manufacturers’
proprietary cpRNFL measurements was moderate at
best, with only slight improvements when comparing
the CNN-generated cpRNFL measurements among
devices. It should be noted that the cpRNFL measure-
ments from theCNNcompared excellently between the
SPECTRALIS and 3D OCT-2000, with more varia-
tion observed when comparing the CIRRUS to other
devices. This suggests that a difference in acquisition
technique (a raster scan as implemented by the 3D
OCT-2000 vs. a radial and circular scan as imple-
mented by the SPECTRALIS) is not a big factor
in image and subsequent measurement variation.
Moreover, agreement between the CNN and manufac-
turer proprietary output for each device was good
overall.

There can be multiple sources contributing to varia-
tions in cpRNFL measurements. The segmentation is
highly dependent on relative image intensities, which
can differ between devices, and implementation of
the device-specific segmentation algorithm. Another
source of variation is the location of themeasurements.
For example, the localization of the BMO center is
essential to achieve consistent measurements. However,
variation in the detection of the BMO edge, which can
be difficult to see in case of PPA or a large amount of
prelaminar tissue which affects signal penetration, can
affect the localization of the BMO center. Head tilt can
also cause variation in measurements due to a slight
change in location of the TSNIT sectors by means of
rotation.

We found substantial intergrader variation for many
of the labels, which indicates an inherent ambiguity in
the images. By comparing the CNN to the graders and
to the manufacturers’ output, we aimed to quantify
the degree of variation as much as possible. We were
not able to compare grader annotations directly to the
manufacturers’ output, as those biomarkers are not
defined on the basis of individual B-scans. Ultimately,
it is very challenging to pinpoint the exact source of
interdevice variation and whether an algorithm would
be able to improve that.

It is possible that improving the segmentation
accuracy would also decrease the interdevice varia-
tion. We found that, especially for BM, the perfor-
mance differed among the devices. An improvement
could be achieved by increasing the size of the train-
ing dataset or improvements in the model architec-

ture. We selected the nnUNetv2 model architecture, as
its performance has been validated on a wide variety
of medical image segmentation tasks,18 showing state-
of-the-art performance overall. Considering that the
model performance is similar to the intergrader varia-
tion, we do not expect large improvements to be easily
achieved.

Our custom feature extraction algorithm is able
to harmonize the location of measurements among
devices, limited only by the imaging protocol. Improve-
ments of the algorithm may be achieved by enhanc-
ing BMO edge detection and implementing correc-
tion of head tilt by means of fovea localization,
which is a feature already used in the SPECTRALIS
software, but not the CIRRUS and 3D OCT-2000
devices.

Structural differences between the devices in
terms of cpRNFL thickness were apparent, with the
CIRRUS device providing generally thinner measure-
ments. Nevertheless, we did not find a correction factor
that could reliably translate the measurements of one
device to the other. Especially in the temporal superior
and temporal inferior regions, where most of the
RNFL tissue and vessel structures are located, differ-
ences among the devices were generally the largest.
This is likely due to an increased sensitivity to precise
location of the measurement, because a slight shift in
location due to, for example, head tilt could make a
big difference, as well as the ambiguity of the RNFL
lower boundary as it intersects with large vessels.

TheMRWmeasurements from the CNNwere more
consistent among devices than the cpRNFL. The ILM
in the BMO region is typically highly discernible,
which is not always the case with the border between
the RNFL and GCL, and there is no interference of
vessel boundaries in its segmentation. However, the
accuracy of MRW measurements is primarily limited
by the accuracy of the segmentation of BMO edges,
which was the biggest source of variation for MRW
measurements in our test set. Two eyes from the test
set had a smaller BMO size and consequently thicker
prelaminar tissue, which resulted in an obscured visibil-
ity of the BMO edges on the CIRRUS OCT volume.
Similar to the cpRNFL measurements, the highest
agreement in MRW measurements was observed
between the 3D OCT-2000 and SPECTRALIS
volumes.

The LC has been implicated in POAGpathophysiol-
ogy20–23 andwas therefore one of the included anatom-
ical structures in our annotation protocol. However,
the visibility of the anterior surface of the LC varied
significantly across different OCT devices, and the
posterior surfacewas generally undetectable. The radial
scanning protocol with high averaging of images from
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the SPECTRALIS provided the best discernibility of
the LC. Nonetheless, eyes with thicker prelaminar
tissue or tiled discs still resulted in poor and sometimes
no visibility of the LC. This severely hampered more
detailed analyses of this structure with ICCs in our test
set.

Although the enhanced depth imaging feature of
the SPECTRALIS could potentially improve results,24
its absence in other OCT devices rendered its use
impractical for the development of a universal, device-
agnostic segmentation algorithm. Consequently, the
LC was excluded from subsequent analyses in our
study.

The alpha-zone PPA is not associated with pathol-
ogy, but the beta-zone PPA is associated with both the
presence and progression of glaucoma.25,26 Gamma-
zone PPA is predominantly associated with (high)
myopia,27 which is of interest in glaucoma research
due to the known association between myopia and
glaucoma. We therefore included alpha-, beta-, and
gamma-PPA in the annotation protocol and subse-
quent training of the CNN. However, the CNN often
did not find gamma-PPA in cases where this was
present and made errors in distinguishing alpha- from
beta-PPA. Hence, distinctions among categories of
PPA were omitted from further analyses because the
resulting ICCs would not be informative.

This study has several strengths. To our knowl-
edge, this is the first study to develop a device-agnostic
segmentation algorithm for ONH OCT scans with big
variation in image quality from patients of different
ethnicities and ages. Moreover, the CNN is trained
with a large set of manually annotated OCT volumes
captured with a variety of devices from different
manufacturers. Importantly, we collected a test dataset
of eyes that were scannedwith all three devices to inves-
tigate the robustness and potential weaknesses of our
algorithm.

This study also has some limitations. Although we
see our test dataset as a major asset of our study,
it is limited in sample size. This resulted in relatively
wide CIs accompanying the ICCs from our compara-
tive analyses, with single relative outliers having a big
impact on the ICC values even though the means of
the absolute differences often fell within the reported
test–retest variability of some OCT devices.28 Another
limitation is the lack of pathology in the test set.
Poor signal-to-noise ratios, thin tissues of interest, and
unwanted eye movement can be a result of pathol-
ogy and impair the performance of segmentation
algorithms. There was also a difference in population
characteristics between the training data and the test
set, but we did not see a large difference in CNNperfor-
mance as a result.

There was quite some variation in axial lengths,
presence of PPA, and prelaminar tissue thickness in
our relatively small test set. These factors could have
affected the measurement of ONH-related features.
This well represents real-world physiological varia-
tion which should be considered when implementing
a segmentation algorithm in practice. In this study,
only data captured with spectral-domain OCT (SD-
OCT) devices were used to train the algorithm. Swept-
source OCT (SS-OCT) devices have become more
common in clinical practice and offer some advantages
over SD-OCT, such as deeper tissue penetration and
faster acquisition speeds.29 Future improvements of
our algorithm would include an even larger variety of
training and validation data. Although our algorithm
was not validated on SS-OCT images, there are no
technical limitations to do this and it can be easily
adapted to other devices by adding a small amount of
training data to make it even more robust.

The results of this study concern the reproducibil-
ity of ONH features across devices in the general
population. However, with these results we cannot
draw conclusions concerning the relative accuracy of
our measurements or those from the manufacturers or
their utility in the assessment of (glaucomatous) optic
neuropathy. Future research in both healthy popula-
tions and glaucoma patients is needed to assess clinical
utility. Moreover, future research should also evaluate
the performance of this approach between populations
of different ancestries.

With this study, we developed a device-agnostic
segmentation and feature extraction algorithm for
OCT scans of the ONH, with potential value for
collaborative research projects and clinical practice.
The algorithm allowed us to compare several robust
ONH features among different devices while circum-
venting proprietary segmentation software. Future
studies must further evaluate the reproducibility of
the algorithm. We have made the trained CNN and
the feature extraction algorithm publicly available for
research purposes, and the test set is available upon
reasonable request.
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