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Abstract

Histological staining of tissue biopsies, especially hematoxylin and eosin (H&E) staining, 

serves as the benchmark for disease diagnosis and comprehensive clinical assessment of tissue. 

However, the typical formalin-fixation, paraffin-embedding (FFPE) process is laborious and 

time consuming, often limiting its usage in time-sensitive applications such as surgical margin 

assessment. To address these challenges, we combine an emerging 3D quantitative phase 

imaging technology, termed quantitative oblique back illumination microscopy (qOBM), with an 

unsupervised generative adversarial network pipeline to map qOBM phase images of unaltered 

thick tissues (i.e., label- and slide-free) to virtually stained H&E-like (vH&E) images. We 

demonstrate that the approach achieves high-fidelity conversions to H&E with subcellular detail 

using fresh tissue specimens from mouse liver, rat gliosarcoma, and human gliomas. We also 
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show that the framework directly enables additional capabilities such as H&E-like contrast for 

volumetric imaging. The quality and fidelity of the vH&E images are validated using both a neural 

network classifier trained on real H&E images and tested on virtual H&E images, and a user study 

with neuropathologists. Given its simple and low-cost embodiment and ability to provide real-time 

feedback in vivo, this deep-learning-enabled qOBM approach could enable new workflows for 

histopathology with the potential to significantly save time, labor, and costs in cancer screening, 

detection, treatment guidance, and more.

1. INTRODUCTION

Histopathology is the gold standard for diagnosing disease, guidance of surgical margins 

during lesion resection, and overall clinical evaluation of tissue [1]. To visualize tissue 

architecture, labor- and time-intensive tissue processing is currently required. During the 

most common histopathology procedure, an excised tissue specimen is fixed in formalin and 

paraffin-embedded (FFPE), sectioned to generate micron-thick slices, and then mounted 

onto microscope slides. Those slides can then undergo a number of different staining 

procedures with the most common being hematoxylin and eosin (H&E) staining, in which 

hematoxylin stains cell nuclei purple and eosin stains the extracellular matrix, stroma, and 

cytoplasm pink [1]. This standard, widely used process typically takes eight hours or more 

to complete. The frozen-section alternative, while often available, comes with significant 

technical and quality challenges [2]. Consequently, fast, real-time tissue assessment with 

H&E-like contrast would have the potential to improve several medical procedures, ranging 

from surgical margin assessment to cancer screening and more.

In an effort to gain real-time histopathology-level tissue assessments for use in surgery 

and other clinical fields, alternate microscopy techniques have been employed to provide 

imaging feedback during tissue excision. Some of these techniques include rapid tissue 

staining followed by linear [3,4] and nonlinear fluorescence microscopy [5], as well as label-

free approaches ranging from ultraviolet-based methods and autofluorescence [6–8] to more 

complex nonlinear techniques [9–12]. Many of these methods have also incorporated virtual 

staining pipelines to obtain images that are familiar to pathologists and thus avoid the need 

for further training on each imaging modality [3–5,12–15]. While promising, these methods 

have certain downsides, as they variously rely on staining the imaged tissues, employ UV 

light (which has very limited penetration depth and may be challenging to implement 

in vivo due to phototoxicity), and/or use complex and expensive nonlinear methods to 

achieve virtual histology. Further, translation of these technologies to in-vivo applications 

is challenging or infeasible given the need for exogenous agents, concerns regarding tissue 

damage, and technological hurdles. These challenges limit the applicability of virtually 

stained microscopy and slide-free histology and point out the need for a microscopy method 

that could provide histopathologic information quickly (real-time), non-destructively, and 

with high resolution in 3D, using simple, low-cost instrumentation.

To achieve these desired capabilities, we propose the use of virtual-H&E-stained images 

obtained with quantitative oblique back-illumination microscopy (qOBM) as a method of 

real-time histopathology for excised tissue samples, and with a clear path to future in-vivo 
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applications [16,17]. qOBM is a label- and fixative-free, wide-field, low-cost microscopy 

technique capable of obtaining subcellular resolution, quantitative phase images of thick, 

scattering tissue samples using same-side epi-illumination [18,19]. (Thick, scattering 

samples refer to, for example, excised tissues without sectioning or intact organs such as 

brains, which cannot be imaged with transmission microscopes.) The level of 3D cellular 

and subcellular structural detail provided by this technology is comparable to that provided 

by label-free nonlinear microscopy methods, but with an embodiment that is simple and 

significantly cheaper, as it uses LEDs instead of femto-/pico-second lasers, is faster (wide-

field versus point scanning), gentle on tissues and cells, and can be easily modified and 

miniaturized for in-vivo applications [20,21]. Here, we advance qOBM and the field of 

slide-free histology by introducing an image translation method by which qOBM images are 

virtually stained to resemble H&E-stained images.

The approach leverages deep learning, specifically generative adversarial networks (GANs) 

[22], which have been employed to generate virtual H&E histology from alternative 

microscopy modalities such as quantitative phase imaging [15], reflectance confocal 

microscopy [23], and photoacoustic remote sensing microscopy [24], among others [14]. 

This approach typically requires training datasets in which the alternative microscopy 

images can be pixel-registered with the target domain images (e.g., H&E), and most often 

relies on the use of thin tissue sections. Here, such pixel-registered datasets are unobtainable 

as qOBM imaging is performed on fresh tissue, whereas ground-truth H&E images are 

subject to tissue distortions from histological processes. To work around the lack of one-to-

one pixel matching, we turn to cycle-consistent GANs (CycleGANs) [25]. Recent reports 

(using fluorescently labeled tissue and/or UV light) have demonstrated the utility of such 

networks for virtual H&E staining while relaxing the pixel-matching constraint [26–28]. 

Here, we demonstrate the efficacy of CycleGANs for virtual H&E staining of qOBM 

images. This combination has the potential to reduce the time needed to acquire H&E 

images from hours or even days to <1 s.

To demonstrate the clinical utility of this method, we primarily focus on imaging brain tissue 

and differentiating between healthy and tumor regions (this represents one of many potential 

applications). To date, identifying brain tumor margins intraoperatively remains a significant 

clinical challenge; thus, neurosurgeons are often conservative with excised margins to 

minimize damage to healthy brain tissue vital for neurological function. However, this 

approach can lead to incomplete resections and tumor recurrence. Novel intraoperative 

methods such as 5-aminolevulinic acid (5-ALA) in vivo staining have shown promise 

for improving clinical outcomes [29–31], but they are not without their limitations. For 

example, 5-ALA exhibits variable uptake based on brain morphology [30] and has limited 

sensitivity for low-grade disease and infiltrative tumor cells even in high-grade tumors 

[32–34]. Real-time, label-free image guidance with H&E-like contrast has the potential to 

significantly improve neurosurgical outcomes, particularly if deployed in situ (that is, in the 

surgical site rather than on excised specimens).

In this study, we first demonstrate the conversion of qOBM images to vH&E (i.e., qOBM-

to-vH&E conversion) using mouse liver specimens, which have a simple and homogenous 

structure, to establish the feasibility and effectiveness of the approach, as well as to show 
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its utility for imaging a variety of tissue types. Then, we demonstrate qOBM-to-vH&E 

conversion using tissues from a rat glioma tumor model and human glioma specimens. 

To validate the results, we (1) trained a classifier on real H&E images of tumor and 

healthy tissues and then tested on virtual H&E images, and (2) performed a user study with 

five board-certified neuropathologists. The proposed qOBM-to-vH&E conversion pipeline 

permits a novel histopathology workflow (Fig. 1) that has the potential to reduce the 

time and costs associated with obtaining histological H&E images. Further, the level of 

histological detail with H&E-like contrasts achieved by the proposed simple and label-free 

method is exemplary and paves the way for novel capabilities in a number of medical 

applications.

2. RESULTS

A. Virtual Staining of Label-Free qOBM Images of Fresh Mouse Liver

To establish the feasibility and effectiveness of unpaired image-to-image translation 

from qOBM to H&E, we first attempted to generate vH&E images of healthy mouse 

liver specimens, which demonstrate a consistent, well-defined microanatomy primarily 

comprising well-organized hepatic cells and blood vessels. qOBM images of freshly excised 

liver tissue specimens (N = 8), donated from otherwise discarded tissue, were obtained with 

a 60× objective (0.7 NA, 270 × 270 μm field of view, with an experimentally measured 

lateral resolution of 0.6 μm and cross-sectional/axial resolution of 3.5 μm). qOBM images, 

including real-time processing, were acquired at 10 Hz. All animal experimental protocols 

were approved by Institutional Animal Care and Use Committee (IACUC) of the Georgia 

Institute of Technology and Emory University. Tissues were subsequently submitted for 

histological processing to obtain H&E slides (sections were ~5 μm thick, corresponding 

to the typical thickness of tissue sections used for brain tumor histopathology). Before 

CycleGAN training, the qOBM images were contrast-enhanced and grayscale inverted. The 

images were divided into 512 × 512 pixel (~70 × 70 μm) tiles for training We used a 

standard ResNet-based generator architecture and a PatchGAN discriminator, training on 

2358 qOBM and 1737 H&E tiles for 200 epochs at a batch size of four.

Figure 2 shows representative results. First, the native qOBM phase images Fig. 2(A) show 

clear cellular and subcellular detail that closely parallels the structure of the traditional 

H&E images Fig. 2(C), making qualitative assessment of the translation relatively simple. 

For example, in qOBM, with contrast generated by the refractive index properties of 

the tissue, hepatocyte nuclei appear dark and possess subtle but appreciable subnuclear 

structure/texture (shown in insets), while red blood cells appear bright. Figure 2(B) shows 

the translated vH&E image, which preserves the general structure of the qOBM image, 

with a high-fidelity style conversion to H&E. Specifically, nuclear and even subnuclear 

structures of the hepatocytes are converted appropriately, with the expected purple hue 

and texture. It is worth emphasizing that the subnuclear structures clearly present in the 

vH&E (and H&E) images are in fact also present in the qOBM images, albeit with lower 

contrast (see Fig. 2 insets and white squares). The network also correctly enhances and 

converts nuclei that can be difficult to identify in qOBM (white arrow), although some are 

occasionally missed (yellow arrow). The missed nuclei occur in areas near capillaries; this 
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is likely due to the fact that the capillary structures in the qOBM images of fresh tissues 

are different (better preserved and continuous) than in the target H&E images of processed 

tissue sections in which the capillaries appear more fragmented (blue arrows highlight 

vessel structures). Consequently, the network may at times not appropriately deal with such 

structures. Training with more data could potentially resolve these small errors; nevertheless, 

the overall structure of the tissue is well preserved and is consistent with the appearance of 

healthy mouse liver.

We also note that structures observed in qOBM that are not present in H&E, such as 

small bright white droplets—likely composed of lipids—are correctly ignored in the vH&E 

images and do not produce unwanted artifacts. Red blood cells, also depicted in bright 

white in the phase image, are correctly translated to their characteristic bright red hue in 

H&E. These results confirm that CycleGANs can successfully translate qOBM quantitative 

phase images of thick fresh tissue to H&E-like images without needing pixel-matched paired 

images.

B. Virtual Staining of Label-Free Microscopy Images of Rat Brain Tumor

Having established the qualitative ability to translate qOBM images into vH&E using a 

relatively simple and homogeneous sample type, we next turn to the more challenging 

task of virtually staining complex brain tissue (healthy and tumor) and later providing 

quantitative metrics of translation fidelity.

qOBM imaging of fresh tissues from a 9L gliosarcoma rat tumor model (N = 14) was 

performed as described in Costa et al. [20] (also see Section 4); this tumor was chosen 

because of its similarity to high-grade human gliomas. Treated animals had tumors confined 

to one hemisphere, leaving the other as control. Two healthy mice were also imaged and 

analyzed as additional controls (thus a total of 16 animals were analyzed). Images were 

acquired with a 60×, 0.7 NA objective. During the imaging sessions, the brains were 

scanned laterally and axially (volumetrically) in an automated manner to acquire data from 

different regions of the brain. Following qOBM imaging, the brains were formalin-fixed, 

embedded in paraffin wax, cut into thin (5 μm) sections, and stained with H&E.

Four general tissue subtypes were observed and characterized with qOBM in the 9 L 

gliosarcoma model. Figures 3(A) and 3(B) show two densely hypercellular tumor regions, 

one with a malignant sarcomatous population Fig. 3(A), and another with a malignant glial 

component Fig. 3(B). This biphasic tumor tissue pattern is characteristic of gliosarcomas. 

Additionally, Fig. 3(C) demonstrates healthy basal ganglia (with the presence of white 

matter bundles), and Fig. 3(D) shows healthy cortex. We trained a single CycleGAN model 

for qOBM-to-vH&E conversion on an image set representing all four subtypes with a total 

of 1377 qOBM and 1744 H&E tiles of size 512 × 512 pixels, trained for 200 epochs at 

a batch size of four. Qualitatively, the CycleGAN provides qOBM-to-vH&E conversions 

Figs. 3(E), 3(F), 3(G), and 3(H)) that are remarkably similar to standard H&E, provided 

for comparison in Figs. 3(I), 3(J), 3(K), and 3(L). For instance, Fig. 3(E) (vH&E) clearly 

shows the same overall pleomorphic, herringbone-shaped spindle cell structure shown in 

Fig. 3(I) (real H&E), and Fig. 3(F) shows hyperchromatic appearance (dark purple color) of 

the tumor cells. In the basal ganglia, the vH&E image clearly shows the eosinophilic (deep 
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pink color) white matter bundles, consistent with the real H&E image [Fig. 3(K)]. Finally, 

cortex regions such as normal basal ganglia exhibit the appropriate cellularity, with blood 

cells (with large phase values) correctly translated to an intense red hue.

Figure 4 shows qOBM-to-vH&E conversion of specimens that were not shown to the 

network during training, consisting of an admixture of healthy brain and tumor. The 

conversion is successful and shows excellent agreement with the style and appearance of real 

H&E images. Specifically, the examples in Fig. 4 show clear lines of delineation between 

the tumor and brain tissue and a mesenchymal transition characteristic of the 9L gliosarcoma 

rat model. The non-tumor brain tissue also demonstrates reactive characteristics such as high 

cellularity as expected of tissue adjacent to tumor. These results highlight the ability of the 

qOBM-to-vH&E conversion network to make correct inferences even when presented with 

structures outside of those explicitly provided in training. We attribute this capability, in 

part, to the close resemblance of the native qOBM phase images to histology, where again 

the style/mode difference between qOBM and H&E is relatively minor (particularly when 

compared to other label-free 3D scattering-based imaging technologies [23,35]).

To quantitatively evaluate the qOBM-to-vH&E conversion, we trained a convolutional 

neural network classifier to discriminate between H&E images of healthy and tumor 

tissue and observed its performance on vH&E images. The tissue class (i.e., ground truth 

healthy versus tumor) for each qOBM and H&E image was known a priori based on the 

anatomical location of the implanted tumor cells. The classifier was trained with five-fold 

cross-validation on 1395 real H&E tiles to discriminate between healthy and tumor, which 

yielded an accuracy of 99.4 ± 0.8% on a held-out test set of 349 512 × 512-pixel tiles. The 

classifier was then employed on 270 vH&E tiles generated by the CycleGAN and displayed 

an accuracy of 95.2 ± 2.8% (Fig. 5). This suggests that the translated images preserve both 

the style and diagnostic information content of the traditional H&E images.

C. Virtual H&E Staining of Mosaics and Tomographic Volumes

The qOBM system used in these studies was equipped with lateral and axial automated 

stages that enable scanning tissue in all directions to create large mosaics, as well as 

tomographic volumetric datasets. Figure 6 demonstrates a virtual H&E strip mosaic (6.3 mm 

× 270 μm) of a rat brain, while Fig. 7 and Supplement 1, Visualization 1 and Visualization 

2 show a vH&E 3D rendered volume (270 μm × 270 μm × 100 μm) of a rat brain tumor 

margin. In Fig. 6, the overall margin delineation between tumor tissue and normal tissue 

based on the cellularity is clearly apparent, with excellent agreement to H&E. Figure 7 

demonstrates a transition from a glial tumor subtype surrounded by basal ganglia tissue 

structures into the sarcomatous tumor subtype, which is evident in the vH&E images. Here 

the robustness of the vH&E translation is evident and demonstrates a consistent color and 

structure in the reconstructed images stitched or stacked together using a standard process 

(see Section 4), with no special consideration for the mosaic or volumetric nature of the 

datasets.
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D. Virtual Staining of Label-Free Microscopy Images of Human Glioma Specimens

To demonstrate the potential clinical utility of the approach, the CycleGAN deep learning 

pipeline was employed to virtually stain qOBM images of human astrocytoma specimens. 

Samples consisted of freshly excised human brain tumor and tumor-edge regions of 

infiltrating grade 2 and grade 3 astrocytoma specimens discarded from neurosurgery. Five 

patient samples were analyzed. All tissues were imaged fresh within 6 h of removal, 

and no modifications were made to the tissues prior to the qOBM imaging process. It is 

important to note that the margins of these types of infiltrating tumors, especially grade 

2 astrocytomas, are extremely difficult to identify intraoperatively, particularly in vivo 
where existing assessment tools lack sensitivity. All human samples were de-identified 

and obtained through the Winship Cancer Institute of Emory University using approved 

protocols.

We continued training the CycleGAN developed for rat brain tissue on an additional 

837 qOBM and 372 H&E tiles of human glioma tissue. This process is often referred 

to as transfer learning or fine-tuning [36]. Qualitatively, this fine-tuned model performed 

significantly better on human specimens than when we attempted to apply a neural network 

trained exclusively on rat specimens (Supplement 1, Fig. 5 and Supplement 1, Note 5). We 

also compared our fine-tuned model to training from scratch on the human glioma images 

alone (Supplement 1, Figs. 5E, F), observing that the fine-tuned model demonstrates better 

subnuclear detail (Fig. 8).

Figures 8(A)–8(F) show two human grade 3 astrocytomas, clearly identifiable due to their 

hypercellular and hyperchromatic tumor cells. In the qOBM phase images, the cells are 

tightly packed and display rough intranuclear texture; these are appropriately translated 

in the vH&E image. In Figs. 8(G)–8(I), we see another hypercellular human grade 3 

astrocytoma. Both the virtual and real H&E show atypically shaped cells and nuclei that are 

an important indicator of tumor presence. Note that the qOBM image [Fig. 8(G)] contains 

small bright white dots throughout the image that we have exclusively observed in brain 

samples from patients who have received prior radiation treatments (data from a parallel 

study [37]). These features are only visible in the qOBM images of fresh tissues and vanish 

after FFPE H&E processing. Interestingly, the digital conversion to vH&E also suppresses 

the appearance of these structures. This is similar to the results presented in Fig. 2, where 

the lipid-like structures present in the qOBM images of liver are not displayed in the 

corresponding vH&E image, as they are absent in the target domain H&E images. Figures 

8(J)–8(L) present a human grade 2 (low-grade) astrocytoma. Here, we observe, in both 

the virtual and real H&E, moderate cellularity and nuclear pleomorphism. This shows the 

potential of the proposed method to correctly capture H&E-like histological detail indicative 

of low-grade disease, which again, is extremely difficult to identify intraoperatively with 

existing intraoperative tools. Finally, Figs. 8(M)–8(O) present a healthy human tissue 

specimen from the edge of a grade 3 astrocytoma tumor, where the vH&E image resembles 

the real H&E image, with both showing regularly shaped cell nuclei without hyperchromasia 

and at the expected density for normal tissue.

Volumetric stacks of human glioma specimens can also be obtained and virtually stained, 

allowing us to gain additional insight about the specimen. For example, Fig. 9 and 
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Supplement 1, Visualization 3 and Visualization 4 show a volume of a human grade 3 

astrocytoma where the first (most shallow) image exhibits a structure consistent with normal 

brain tissue with the exception of a single atypical cell (as indicated by the arrow in 

Fig. 9(C) at a depth of Z = 3 μm). These characteristics alone would not be sufficient 

to diagnose as tumor or warrant excision of the tissue if seen in vivo intraoperatively. 

However, as we image deeper into the sample, the tissue exhibits higher cellularity with 

larger, hyperchromatic cells becoming evident, reflecting the presence of tumor. By being 

able to move axially (deeper) into the tissue, we can gain additional information, including 

seeing increased counts of more irregular nuclei, which indicates tumor.

E. Neuropathologist Validation of Virtually Stained qOBM Images

To further validate the potential clinical utility of the virtually stained qOBM images, we 

performed a user study with American Board of Pathology certified neuropathologists. We 

collated a set of 30 vH&E images of the rat brain tumor model and 20 vH&E images of 

human gliomas along with corresponding real H&E images, giving a total of 100 images. 

These images were reviewed by five neuropathologists, who were asked to respond to three 

questions: (1) Are tumor cells present in the image? (Y/N/Cannot assess); (2) If this field 

of view were representative of a larger region, would you recommend continued resection? 

(Y/N); and (3) How confident are you in this evaluation? (1, unsure, to 5, very confident).

To assess accuracy, we designated the following criteria: for the H&E and vH&E images of 

the animal model, ground truth was based on a priori knowledge of the location of the tumor 

(see Section 4). For the human H&E images, ground truth was taken to be the consensus 

answer from the five neuropathologists. For the vH&E images, ground truth was based on 

the evaluation of the same specimens after H&E processing, which in this case also agreed 

with consensus of the vH&E images.

The responses of the neuropathologists (results summarized in Table 1) further validate 

that the vH&E images and the H&E-stained tissue sectioned images are of similar 

quality. Both the accuracy and the quality ratings between the two modalities were high, 

with no statistically significant differences, suggesting that the virtual staining method 

produced high-quality discernible images that would be clinically useful for interpretation 

by neuropathologists. Specifically, the overall accuracy for assessing the presence of tumor 

cells on the real H&E and vH&E images was 94% and 96%, respectively. The inter-group 

concordance using the average pairwise Cohen’s Kappa value for recommended continued 

resection demonstrates a near-perfect level of concordance among the pathologists for 

both the H&E and virtually stained results (0.74 and 0.81 for the real and virtual H&E, 

respectively). Finally, the diagnostic confidence was also similar for both types of images 

(4.6 and 4.7 for the real and virtual H&E) with a standard deviation of 0.38 and 0.33 for real 

H&E and vH&E, respectively.

This survey supports the effectiveness of qOBM-to-vH&E conversion for clinical 

applications including intraoperative guidance and more.
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3. DISCUSSION

Traditional biopsies require tissue excision, histological processing, and examination by a 

pathologist, a long process that is challenging to accomplish in a surgical environment; the 

logistics also affect the feasibility of many other clinical tasks such as cancer screening. 

For intraoperative surgical applications, rapid pathological assessments have thus far been 

limited because standard FFPE histology requires time-consuming (overnight or longer) 

tissue processing, leading to the usage of faster but technically challenging approaches such 

as frozen sections. Various slide-free and label-free microscopy technologies have been 

developed to address these problems, but those that do so successfully face significant 

challenges for in vivo applications and require complex, bulky, and expensive systems to 

achieve H&E-like images. Here, we demonstrate the feasibility of qOBM imaging for rapid 

assessments, supplementing it with a deep-learning-based framework to obtain H&E-like 

results from its otherwise clinically unfamiliar grayscale phase-contrast images. To this end, 

we made use of an unpaired image-to-image translation algorithm known as a CycleGAN to 

perform a qOBM-to-virtual H&E conversion. We demonstrated this approach with both liver 

and brain tissue, from three species (mouse, rat, and human). The converted images rendered 

the subcellular and cytoplasmic detail present in the original qOBM image to resemble 

familiar H&E contrast. The ability of qOBM to provide real-time, label-free, tomographic 

images of thick tissue specimens with remarkable agreement with traditional H&E histology 

is largely because of an underlying similarity between qOBM- and H&E-derived histology. 

This resemblance facilitates the use of unpaired image-to-image translation tools.

Previous studies have explored the use of CycleGANs for virtual H&E staining with 

confocal fluorescence [26], MUSE [27], and UV photoacoustic microscopy [28]. Two 

alternative methods were also compared for MUSE-to-H&E conversion but it was observed 

that best performance was obtained with CycleGANs [27]. Here, we identified several steps 

that improved CycleGAN performance for qOBM-to-vH&E conversion. First, grayscale 

inverting the qOBM images was necessary for the success of conversion since nuclei 

(especially of tumor cells) have higher refractive indices and thus show a higher brightness 

in qOBM images whereas the background is dark, opposite to how such structures appear 

in standard H&E. Inverting the images yields inputs with dark nuclei that align better with 

H&E (Supplement 1, Note 1). Other virtual staining studies have also observed that the 

use of inversion provides a significant improvement in performance [14,27,38]. Second, 

transfer learning helped with the performance of human glioma qOBM-to-vH&E conversion 

(Supplement 1, Note 2). We also found that our models for transforming individual 

FOVs generalized well to volumetric stacks and stitched large fields of view, which had 

been a challenge in other image translation pipelines [23]. We evaluated our conversion 

efforts with a proxy deep learning classification task, observing that a classifier trained on 

standard H&E performs similarly on vH&E images. Additionally, we validated our model 

performance with a study involving five neuropathologists, who found the virtual H&E 

images functionally equivalent to the standard H&E images for potential surgical guidance.

Moreover, qOBM enables 3D sectioning with vH&E contrast, overcoming limitations of 

many current slide-free histology methods. Volumetric imaging can be especially important 

as it can provide a more comprehensive understanding of a tissue specimen and therefore 
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enables more accurate diagnoses [39]. In fact, in this work, we observed that the volumetric 

imaging capabilities of qOBM can provide critical insights for human specimens that could 

otherwise be missed with surface-level-only (2D) technologies, even ex vivo. Note that 

while the deepest vH&E slices we show here are 100 μm from the cut surface, qOBM can 

achieve a penetration depth of >120 μm with 720 nm LED illumination (data not shown). 

The full depth range of qOBM could potentially be used for vH&E with improvements in 

signal-to-noise ratio. Moreover, further improvements in the penetration depth of qOBM and 

hence vH&E can be achieved by using longer wavelengths extending into the near-IR.

Recent work using reflectance confocal microscopy (RCM) and deep learning also showed 

an ability to provide pseudo-H&E virtual staining [23]. While extremely promising, 

this approach is not without limitations. In contrast to the case with qOBM, RCM is 

generally unable to capture the same level of cellular and subcellular details, resulting from 

inherent differences in the object-frequency content acquired with each method [18,19]. 

Consequently, the RCM to pseudo-H&E pipeline [23] requires a two-step process with 

“ground-truth” pseudo-H&E images constructed from tissues stained with acetic acid and 

an analytical pseudo-H&E algorithm. This approach did not make use of real H&E images 

as ground truth to compare the pseudo-H&E accuracy. While acetic acid can also enhance 

the nuclear contrast in qOBM images [40], we find that acquiring pixel-matched pairs of 

qOBM images before and after staining is quite challenging, especially in soft tissue like 

brain (see Supplement 1, Fig. 8). The proposed pipeline using qOBM and direct conversion 

to H&E overcomes these limitations and enables improved histological detail with simpler 

instrumentation (wide field versus point scanning, and LED light sources versus lasers) 

while achieving the same penetration depth.

In terms of computational speed, our implementation of CycleGAN takes less than 1 ms 

to acquire and virtually stain an FOV using an NVIDIA A100 GPU, while it only takes 

~4 ms with an NVIDIA GeForce RTX 2080 GPU. For eventual clinical applications, we 

expect such a model to be run on more modest computer units where inference time could 

be longer. However, we believe there are many opportunities for further optimization, either 

through the use of deep learning compilers that speed up the existing model, or compression/

distillation approaches [41] that train a smaller, faster model that matches the performance 

of the original model.

While the qOBM-to-vH&E conversion algorithm serves as a useful visualization tool for 

clinicians to interpret qOBM images, we envision the usage of qOBM-to-vH&E conversion 

as part of an AI-based diagnostic and decision support pipeline. Various diagnostic AI 

systems have been developed for H&E-stained images with high accuracy [42,43]. In 

contrast, due to the limited data available for a novel technology like qOBM, it would 

be challenging to develop diagnostic AI systems from scratch. Instead, the qOBM images 

can be converted to vH&E, and diagnostic pipelines already developed based on standard 

H&E-derived data can then be applied. A proof-of-concept example was demonstrated here 

by the use of a simple CNN trained on H&E images that was subsequently applied to 

the vH&E images (Fig. 5). The utilization of qOBM-to-vH&E conversion may allow us to 

leverage recent advances in computational pathology in new settings, widening the potential 

of qOBM imaging and slide-free histology.
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While our virtual staining results are promising and vH&E images retain diagnostically 

relevant features, conversion is not pixel-wise perfect. As shown in Supplement 1, Fig. 

4, the CycleGAN occasionally has the tendency to hallucinate nuclei or omit them (Fig. 

2), primarily around blood vessels. We believe this is due to inherent differences between 

fresh tissues imaged in qOBM and processed tissues imaged in standard brightfield H&E 

images, which makes the unpaired image-to-image translation difficult in certain scenarios. 

We note that the main difficulties appear when artifacts are present in the target domain 

(H&E of fixed tissues) that are not observed in the original domain (qOBM of fresh 

tissues). However, the model does well when additional features are present in the original 

domain but missing in the target domain. This is further discussed in Supplement 1, Note 

4. Future work can examine unpaired image-to-image translation techniques that better 

ensure the content of the original image is preserved appropriately. However, the underlying 

challenge limiting conversion efforts is the lack of paired pixel-matched ground-truth data. 

Specifically, the exact same cells and structures cannot be captured by both qOBM and 

standard brightfield H&E due to the additional tissue processing and sectioning steps 

involved in the latter. This challenge is what necessitated the use of unpaired image-to-image 

translation. Therefore, for further improvements and pixel-wise agreement, an alternative 

approach could be to incorporate a complementary slide-free microscopy technology as part 

of the training process that can provide images similar to H&E in a multimodal system.

Given the lack of pixel-wise ground truth, we validated the virtual H&E brain images by 

conducting a neuropathologist study, which indicated no significant difference between how 

board-certified neuropathologists interpret standard brightfield H&E and vH&E images. 

This, together with the results of the CNN trained on H&E images and applied to the 

vH&E images, strongly supports the potential utility of the approach to provide clinically 

interpretable, valuable, and actionable information, even in the absence of pixel-wise ground 

truth for the vH&E images. Future work will focus on imaging in vivo and in real-time, to be 

evaluated using a handheld-probe-based system [44] to collect and virtually stain images.

The proposed technology has the potential to significantly save time, labor, and expense 

while enabling new capabilities for non-invasive, in-vivo imaging. For analysis of ex-vivo 
samples, as demonstrated here, an existing digital brightfield microscope (present in most 

laboratory and clinical spaces) can be modified to deliver 3D quantitative phase imaging and 

vH&E with qOBM for less than $500 USD (see Supplement 1, Table 1). No reagents for 

staining are required, as this is a label-free technology. Further, as we have previously shown 

[20,21,44], qOBM can be configured as a handheld probe or endoscope, which could enable 

novel in-vivo capabilities.

In this study, we specifically focused on the application of brain tumor margin assessment, 

where real-time, label-free in-vivo histological analysis is gravely needed; however, the 

proposed workflow enabled by deep-learning-based virtual staining of qOBM images 

could be transformative and widely used to improve cancer screening, detection, treatment 

guidance, and more.

Abraham et al. Page 11

Optica. Author manuscript; available in PMC 2024 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. METHODS

A. Label-Free qOBM Imaging

The qOBM system consists of a conventional inverted microscope with a modified epi-

illumination scheme, as shown in Fig. 1(B). The illumination consists of four LED light 

sources (720 nm) coupled into 1 mm multimode fiber optics with a 0.5 NA. The fibers 

are evenly distributed around the microscope objective (Nikon Plan Fluor ELWD, 60×, 0.7 

NA) at a 45 deg angle from the optical axis. LEDs illuminate samples sequentially, and for 

each illumination, a raw brightfield image is collected using a PCO.edge 4.2 LT sCMOS 

camera. By way of multiple scattering, this illumination configuration produces an effective 

oblique illumination [18,45]. Upon subtraction of two captures with diametrically opposed 

illumination, we obtain a differential phase contrast (DPC) image, IDPC, which provides 

tomographic cross-sectioning capabilities with qualitative differential phase contrast.

To reconstruct a 3D quantitative phase image with qOBM, two DPC images from orthogonal 

angles (or shear directions) are processed and deconvoluted with the system’s optical 

transfer function through a Tikhonov regularized deconvolution following

ϕ = ℱ−1 ∑
k

IDPC
k ⋅ CDPC

*

∑
k

CDPC
2 + α

.

(1)

Here, ϕ represents the quantitative phase, IDPC
k  is each DPC image along the kth shear 

direction, alpha is a regularization parameter, and CDPC is the optical transfer function of the 

system, which can be obtained by characterizing the distribution of the multiple-scattered 

light passing through the focal plane within the sample [18,19]. This light distribution at the 

focal plane is dependent on the optical properties of the tissue. Therefore, the liver images 

and brain images were processed with independent transfer functions. However, the optical 

properties of soft tissues remain sufficiently consistent across species to avoid requiring a 

different transfer function for the human and rat brain images.

The qOBM images capture the quantitative phase of the samples, which is directly 

correlated to the refractive index and dry mass of the sample. Additionally, the qOBM 

images show outstanding detail in all directions of illumination, with a lateral resolution of 

~0.6 μm, axial resolution of ~3.5 μm (measured experimentally with a 200 nm polysterene 

bead) and a sensitivity of ~2 nm [18,20]. qOBM image acquisition is at 10 Hz (limited 

by the frame rate of the camera), and processing of the quantitative phase images is 

achieved in real-time using a regular tabletop computer. The penetration depth is limited 

to approximately one to two mean free scattering pathlengths, which is ~120 nm in the brain 

for 720 nm light.

B. Sample Preparation and Imaging

In this work, we studied the virtual staining of qOBM images from three types of tissues: 

mouse liver, rat brain 9L gliosarcoma tumor model, and human brain tumors. All animal 
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tissue excision and imaging protocols were approved by Institutional Animal Care and Use 

Committee of the Georgia Institute of Technology. All human samples were de-identified 

and obtained through the Winship Cancer Institute of Emory University using approved 

protocols. Tissues were imaged fresh and untreated, ex vivo, within 6 to 12 h of removal. 

The imaged mouse livers from eight healthy animals were donated by the Haider lab 

at Georgia Tech and Emory University from mice sacrificed for various purposes. The 

livers were excised and imaged unfixed within 3 h of the procedure. Details about the 9L 

gliosarcoma rat tumor model protocol and imaging may be found in Costa et al. [20]. In 

short, 14 Fisher rats were intracranially implanted with 9L gliosarcoma cells. The animals 

were sacrificed 9–12 days after the implant, and brains were excised, cut coronally to expose 

the tumor, and imaged unfixed within 12 h of extraction. In this animal model, the tumor 

is confined to the side of the brain where the tumor cells were implanted, leaving the 

contralateral side of all treated brains as an additional control. This also allows for a priori 
knowledge of the location of the tumor. Human tissue specimens from five patients were 

imaged post-surgery, within 6 h of resection.

The qOBM imaging sessions consisted of multiple lateral and axial scans of different 

regions of each tissue. These scans were performed in an automated manner, enabled by the 

X-Y-Z automatic stages built into the microscope. Axial stacks were taken by translating the 

objective by ~1.5-μm steps. The lateral scanning was performed with an overlap of 20% to 

facilitate stitching of mosaics and combined with axial scans.

After being imaged with qOBM, all tissues were formalin-fixed for 48 h, processed, and 

embedded in paraffin. Then, the samples were sliced into 5 μm sections and stained 

with H&E. The whole H&E sample slides were then digitally scanned by an Olympus 

NanoZoomer whole-slide scanner at either 20× or 40× magnification. Finally, the H&E 

slide scans were inspected to select similar regions to those acquired with qOBM for the 

CycleGAN training process, described below.

C. Virtual H&E Staining with CycleGAN

We define two image domains, one for qOBM images (X), and one for H&E images (Y). 

We attempt to determine a transformation G: X → Y. In the CycleGAN framework used 

here [25], there are two tasks: one task is to learn GX : X → Y that maps x ∊ X to y ∊ 
Y; the auxiliary task is to learn a generator GY : Y → X. Additionally, we have adversarial 

discriminators DX and DY· DX discriminates between the fake outputs of GX and real 

images from the domain Y. On the other hand, DY discriminates between the fake outputs 

of GY and real images from the domain X. The CycleGAN framework then exploits the 

cycle-consistency property that GY (GX (x)) ≈ x and GX (GY (y)) ≈ y. This is expressed as 

the following loss:

ℒcycle GX, GY = Ex pdata(x) GY GX(x) − x 1 + Ey pdata(y) GX GY (y) − y 1 ,

(2)

Where ǁ·ǁ1 is the L1 norm. This is trained with traditional least-squares adversarial losses:

Abraham et al. Page 13

Optica. Author manuscript; available in PMC 2024 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ℒG(D, G, X, Y ) = Ex pdata(x) (D(G(x)) − 1)2 ,

(3)

ℒD(D, G, X, Y ) = 1
2Ey pdata(y) (D(y) − 1)2 + 1

2Ex pdata(x) (D(G(x)))2 .

(4)

Finally, for regularization, an identity constraint is imposed:

ℒidt GX, GY = Ex pdata(x) GY (x) − x 1 + Ey pdata(y) GX(y) − y 1 .

(5)

Thus, the full objective is

min
G

ℒfull = λcycℒcycle GX, GY + ℒG DY , GX, X, Y + ℒG DX, GY , X, Y + λidtℒidt GX, GY ,

(6)

min
D

ℒfull = ℒD DY , GX, X, Y + ℒD DX, GY , X, Y ,

(7)

where λcyc = 10 controls the impact of the cycle-consistency loss, and λidt = 0.5 controls the 

impact of the identity loss.

The generator architecture (GX, GY) was a ResNet-based fully convolutional network 

described by Zhu et al. [25]. Unless otherwise specified, the generator had nine residual 

blocks. A 70 × 70 PatchGAN [46] was used for the discriminator (DX, DY). Unless 

otherwise specified, the discriminator had three layers. The same loss function and optimizer 

as described in the original paper [25] was used. The learning rate (LR) was fixed at 2e−4 in 

the first 100 epochs and linearly decayed to zero in the next 100 epochs. A batch size of four 

was used.

qOBM images were center-cropped to 1536 × 1536 pixel images and divided into nine 512 

× 512 tiles. Unless otherwise noted, all qOBM images were intensity-inverted. The H&E 

images were upscaled with bilinear interpolation by a factor of either 1.5× or 2× (depending 

on the dataset) such that the images had features of comparable pixel dimensions to those in 

the qOBM images.

To enable a scalable inference pipeline, we utilized a tiled inference procedure as described 

in Abraham et al. [27]. Briefly summarized: the model was applied to overlapping 512 × 512 

tiles of the original FOV, and the tiles were stitched by defining a given pixel’s intensity as 
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the weighted average of intensity values from the vH&E patches, which overlapped at the 

given pixel location. The weighting was based on a Gaussian kernel.

Since four raw captures are taken with qOBM, from which two DPC images are 

reconstructed, single capture- and DPC-to-vH&E conversion was also performed and 

compared to qOBM-to-vH&E (the images used for training come from the exact same 

fields of view), except the images were not inverted, since the nuclei appeared dark and 

therefore should be the best-case scenario for conversion efforts. Neither the raw capture nor 

the DPC images alone supported high-quality CycleGAN conversions (Supplement 1, Fig. 3 

and Supplement 1, Note 3).

For the conversion of mouse liver qOBM images, the imaged mouse livers from seven of 

the animals were used for training, and the images from one of the animals were used as a 

held-out test set. A total of 2358 qOBM and 1737 H&E tiles of size 512 × 512 pixels were 

used for training, and 51 qOBM images of size 1848 × 1848 pixels were used for testing.

For the conversion of rat brain qOBM images, a single larger model was trained on all four 

observed tissue subtypes simultaneously. As commonly noted with CycleGANs, model size 

played a role in conversion performance (see Supplement 1, Note 2). Our larger model had 

12 residual blocks in the generator and six layers in the discriminator. Images from a total 

of 12 rats implanted with tumors were used for training. Some held-out images from the 

same rat specimens were used for testing (but none of these test images was included in the 

training set), along with held-out images from two additional rats implanted with tumors. A 

total of 1377 qOBM and 1744 H&E tiles of size 512 × 512 pixels were used for training, and 

30 qOBM images of size 1848 × 1848 pixels were used for testing.

Fine-tuning of the rat CycleGAN on the human specimens simply consisted of initializing 

the model with the rat CycleGAN model weights and training at an LR of 2e−4. Images 

from a total of five specimens were used for training. Held-out test images came both from 

specimens used for training and from those that were not, but none of these test images was 

seen during training. A total of 837 qOBM and 372 H&E 512 × 512 pixel tiles of human 

glioma tissue were used for fine-tuning; 38 qOBM images of size 1848 × 1848 pixels were 

used for testing.

For conversion of the qOBM strip, the full stitched strip was taken and passed into our tiled 

inference algorithm, rather than the individual FOVs from the strip.

D. Quantitative Evaluation of Virtual H&E Staining Results

We first trained a convolutional neural network on standard brightfield H&E images to 

classify healthy (cortex or basal ganglia) regions and tumor regions. We performed five-fold 

cross-validation. The model was trained on a total of 1744 standard H&E images, so in each 

fold, this led to a train-validation split of 1395–349 image tiles. An ImageNet-pretrained 

ResNet18 [47] was fine-tuned with a batch size of 128 for four epochs. In the first epoch, 

only the linear head layer was trainable, and for the remaining epochs the model weights 

were frozen (not updatable). It was trained with an LR of 1e−2 with a short LR warmup 

followed by a cosine decay. The remaining three epochs were trained with all layers 
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updatable, with a base LR of 5e−3, but using discriminative LRs [48] where early layers 

in the neural network have even lower LRs. These three remaining epochs were trained with 

a one-cycle LR schedule [49]. The mean and standard deviations of the accuracies for the 

classifiers trained on each of the five folds were reported.

Once accurate H&E healthy versus tumor classifiers were trained, they were applied to 

vH&E images. The accuracy was calculated by comparing the labels predicted by the 

classifier to the ground-truth labels of the original qOBM images, and the mean and standard 

deviations of the accuracies were reported.

E. Computational Hardware and Software

All deep learning models were trained on NVIDIA A100 80 GB GPUs. The PyTorch 

(version 1.9.1) [50], fastai (version 2.6.3) [51], and UPIT (version 0.2.3) [52] libraries were 

used for training and inference of all models.

F. Clinical Validation of vH&E Images of Brain Tissue

To evaluate the quality and usefulness of the virtually stained qOBM images compared to 

the gold standard H&E-stained images, we conducted a panel study with five board-certified 

neuropathologists. In this study, the neuropathologists were asked to evaluate a total of 100 

180 μm × 180 μm images. The image set contained 30 real H&E rat brain images (10 tumor, 

10 healthy, and 10 mixed fields of tumor and healthy), 30 virtually stained qOBM images 

(10 tumor, 10 healthy, and 10 mixed fields of tumor and healthy), 20 real H&E human 

brain tumor images, and 20 virtually stained qOBM human brain tumor images. The order 

of images presented in the survey was randomized with healthy and tumor regions from 

both humans and rats combined. For each image, neuropathologists were asked if tumor 

cells were present in the image (Y/N/cannot assess), based on the image if they would 

recommend continued resection of the area (Y/N), and how confident they were in giving 

that recommendation with numerical scores (1, unsure, to 5, very confident).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Deep-learning-enabled qOBM imaging workflow. (A) The standard histology workflow 

requires several sample preparation steps before viewing under a brightfield microscope and 

interpretation. This process can take about 8 h or longer. (B) Our proposed workflow utilizes 

qOBM imaging to image a fresh specimen of tissue and virtual staining to obtain similarly 

interpretable images in about 1 s.
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Fig. 2. 
qOBM-to-vH&E conversion of mouse liver tissue. (A) Label-free 60× qOBM image of 

mouse liver tissue. (B) Corresponding vH&E image. (C) Standard brightfield H&E image 

provided for comparison. The white boxes and insets show a representative appropriately 

converted hepatocyte with appreciable subnuclear detail, the yellow arrows refer to nuclei 

missed by the conversion, and the blue arrows refer to capillaries. Scale bar is 50 μm.
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Fig. 3. 
qOBM-to-vH&E conversion of brain tissue from the 9L gliosarcoma rat tumor model. (A)–

(D) Label-free 60× qOBM images of each of the four rat brain tissue subtypes, including 

two types of tumor structure (A) and (B), heathy basal ganglia (C), and healthy cortex 

(D). (E)–(H) Corresponding vH&E images produced by a CycleGAN trained on rat brain 

images. (I)–(L) Standard brightfield H&E images of the same tissue subtypes, provided for 

comparison. Scale bar is 50 μm.
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Fig. 4. 
qOBM-to-vH&E conversion for images with a mix of healthy and tumor rat brain tissue, 

never seen during training. (A), (B) Label-free 60× qOBM images of mixed rat brain tissue. 

(C), (D) Corresponding vH&E images. (E)–(F) Standard brightfield H&E images of the 

same tissue subtypes, provided for comparison. Scale bar is 50 μm.
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Fig. 5. 
Quantitative evaluation of qOBM-to-vH&E conversion for rat brain tissue. A classifier 

trained on standard H&E images to differentiate between tumor and healthy images is 

assessed using vH&E images. Summary of results: (A) accuracy of training H&E set with 

five-fold cross-validation and the accuracy of the vH&E test set. (B) Confusion matrix of 

this H&E healthy/tumor classifier applied to the vH&E images.
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Fig. 6. 
Label-free qOBM imaging of a strip of rat brain tissue and corresponding vH&E. Virtual 

H&E strip mosaic of rat brain tumor obtained by applying the CycleGAN trained on rat 

brain to the whole mosaic at once. (A) Virtual-H&E mosaic (6.3 mm × 270 μm). Scale bar is 

300 μm. (B) Zoomed-in region of the label-free 60× qOBM strip (600 μm × 270 μm). Scale 

bar is 50 μm. (C) Zoomed-in region of the corresponding vH&E strip. (D) Zoomed-in region 

of a brightfield H&E strip region provided for comparison.
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Fig. 7. 
qOBM and corresponding vH&E 3D volumetric stack of a rat brain tumor margin. vH&E 

volumetric stack (270 μm × 270 μm × 100 μm) obtained by applying the trained rat brain 

CycleGAN to each image in the stack. (A) qOBM-to-vH&E conversion of the volumetric 

stack is depicted. (B) vH&E volume, with X-Y (60 μm deep), X-Z, and Y-Z cross sections 

shown. Tissue surface is on top of the volume. See Supplement 1, Fig. 6 for the qOBM 

equivalent. (C) qOBM image slices at various depths and the corresponding vH&E image 

slices. Scale bar is 50 μm. See Supplement 1, Visualization 1 and Visualization 2 for a depth 

sweep-through of this volumetric stack.
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Fig. 8. 
qOBM-to-vH&E conversion of human gliomas. Each row contains a qOBM image, 

corresponding vH&E, and standard brightfield H&E images, provided for comparison. (A)–

(I) Three separate human grade 3 glioma specimens (one per row). (J)–(L) Human grade 2 

(low-grade) glioma specimen. (M)–(O) Healthy human tissue specimen from the edge of a 

grade 3 astrocytoma. Scale bar is 50 μm.
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Fig. 9. 
qOBM and corresponding vH&E 3D volumetric stack of a human glioma margin. Virtual 

H&E volumetric stack obtained by applying the trained human glioma CycleGAN to each 

image in the stack. (A) qOBM-to-vH&E conversion of the volumetric stack is depicted. (B) 

vH&E volume, with X-Y (55 μm deep), X-Z, and Y-Z cross sections shown. Tissue surface 

is on top of the volume. (C) qOBM image slices at various depths and the corresponding 

vH&E image slices. The white arrow highlights an irregular nucleus. Scale bar is 50 μm. 

See Supplement 1, Visualization 3 and Visualization 4 for a depth sweep-through of this 

volumetric stack.
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Table 1.

Neuropathologist User Study Comparing Standard H&E and Virtual H&E for Interpretationa

Parameter H&E Virtual H&E Significance Statistical

Accuracy 94% 96% N.S.

Overall group concordance 0.74 0.81 —

Diagnostic confidence 4.6 4.7 N.S.

Average standard deviation of confidence score 0.38 0.33 —

a
Group concordance is reported as average pairwise Cohen’s Kappa value. Diagnostic confidence is scored from 1 (unsure) to 5 (very confident), 

and average score is reported.

Optica. Author manuscript; available in PMC 2024 December 05.


	Abstract
	INTRODUCTION
	RESULTS
	Virtual Staining of Label-Free qOBM Images of Fresh Mouse Liver
	Virtual Staining of Label-Free Microscopy Images of Rat Brain Tumor
	Virtual H&E Staining of Mosaics and Tomographic Volumes
	Virtual Staining of Label-Free Microscopy Images of Human Glioma Specimens
	Neuropathologist Validation of Virtually Stained qOBM Images

	DISCUSSION
	METHODS
	Label-Free qOBM Imaging
	Sample Preparation and Imaging
	Virtual H&E Staining with CycleGAN
	Quantitative Evaluation of Virtual H&E Staining Results
	Computational Hardware and Software
	Clinical Validation of vH&E Images of Brain Tissue

	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	Table 1.

