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Abstract

Fine-tuning pre-trained vision-language models, like CLIP, has yielded success on diverse 

downstream tasks. However, several pain points persist for this paradigm: (i) directly tuning 

entire pre-trained models becomes both time-intensive and computationally costly. Additionally, 

these tuned models tend to become highly specialized, limiting their practicality for real-world 

deployment; (ii) recent studies indicate that pre-trained vision-language classifiers may overly 

depend on spurious features - patterns that correlate with the target in training data, but are 

not related to the true labeling function; and (iii) existing studies on mitigating the reliance on 

spurious features, largely based on the assumption that we can identify such features, does not 

provide definitive assurance for real-world applications. As a piloting study, this work focuses 

on exploring mitigating the reliance on spurious features for CLIP without using any group 

annotation. To this end, we systematically study the existence of spurious correlation on CLIP 

and CLIP+ERM. We first, following recent work on Deep Feature Reweighting (DFR), verify that 

last-layer retraining can greatly improve group robustness on pretrained CLIP. In view of them, we 

advocate a lightweight representation calibration method for fine-tuning CLIP, by first generating 

a calibration set using the pretrained CLIP, and then calibrating representations of samples within 

this set through contrastive learning, all without the need for group labels. Extensive experiments 

and in-depth visualizations on several benchmarks validate the effectiveness of our proposals, 

largely reducing reliance and significantly boosting the model generalization. Our codes will be 

available in here

1. Introduction

In recent years, large-scale pre-trained vision-language models (VLMs) [3, 18, 29, 48, 

62, 70] have showcased impressive capabilities across various downstream tasks, including 

visual understanding [11, 27, 28, 49], image-text generation [39, 44] and more [13, 26, 74]. 
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Leveraging these well-learned and rich representations, fine-tuning pre-trained VLMs has 

been the dominant methodology, starting from pre-training from extensive web-crawled data 

and then tuning it towards specific downstream tasks. However, when relying on standard 

Empirical Risk Minimization (ERM) for training, it raises a risk of inadvertently amplifying 

spurious correlations, which may compromise robustness, especially for underrepresented 

groups [9]. Consequently, even these advanced VLMs are not exempt from the challenges 

posed by spurious correlation, where patterns may correlate with the target class without 

truly pertaining to the classification function. This can inadvertently sideline certain 

minority groups within the training data, which poses practical challenges and limits the 

efficacy of these models in safetycritical applications. For example, on Waterbirds dataset 

[51], tasked with classifying “landbird” and “waterbird”, there exists a bias where an “water 

(land)” background is spuriously correlated with the “waterbird (landbird)” class, leading to 

a minority groups of “waterbird on land” and “landbird on water”.

As a result, a considerable body of work has aimed at improving group robustness of 

vision models [6, 17, 23, 33, 40, 41, 51]. Specifically, to ensure learning models do not 

depend on spurious correlations, which can lead to high error rates in certain data groups, 

we align with mainstream practices and focus on enhancing the worst-case accuracy (WGA) 

across different groups. Yet, this remains underexplored in the vision-language context. We 

therefore attempt to explore the central question motivating this work:

(Q) Does there exist an efficient way to mitigate multimodal spurious correlations 

without retraining the entire model, thereby enhancing its group robustness without 

relying on any group annotations?

To address Q , we aims to achieve two key objectives: (i) parameter-efficient fine-tuning 

- traditional fine-tuning typically involves updating a large proportion of or even all 

the parameters of the pre-trained model. Yet, in many practical scenarios, this paradigm 

becomes challenging owing to the significant memory and computational demands; and 

(ii) group label efficiency - since many real-world problems inherently contain spurious 

correlations, the existing methods often require prior group information to adapt large-

scale pre-trained models for specific downstream datasets, which poses impediments to 

the deployment in real-world resource-constrained settings. Additionally, even when such 

spurious features are identifiable, the task of annotating vast datasets with group labels 

becomes prohibitively demanding.

In this paper, our research trajectory unfolds as follows: the first part of our work provides 

comprehensive analysis to ascertain the presence of spurious correlations within CLIP:

• Identifying spurious correlation issues in CLIP: Our investigation uncovers 

spurious correlation issues within the large pre-trained multi-modal models. In 

plain words (detailed analysis in Sec. 4), we use t-SNE [59] and UMAP [36] 

to inspect group-wise embeddings from benchmark datasets such as Waterbirds 

and CelebA. Our findings clearly indicate the presence of unintended spurious 

correlations in both the pre-trained CLIP and CLIP+ERM representations. This 
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limitation arises from an over-reliance on spurious features, indicating a need for 

more robust feature calibrator tailored to specific downstream tasks.

• Verifying the efficacy of feature extractor in CLIP: To tackle the challenge 

of spurious correlations without incurring substantial computational overhead, 

we draw inspiration from [23] to calibrate feature representation quality by 

re-training of CLIP’s final layer. This approach allows seamless adaptation 

of large pre-trained multi-modal models to specific downstream benchmarks. 

Empirical results suggest the feasibility of recalibrating the pretrained feature 

representation to neutralize spurious correlations. These findings further 

motivates us to explore more parameter-efficient methods devoid of group 

information reliance.

The second part of our work is to put forth a streamlined approach to address the 

aforementioned concerns. To this end, we present a robust representation calibration 

approach that functions without the need for any group annotations. This novel framework, 

Contrastive Feature Recalibration (CFR), integrates a contrastive learning paradigm into 

representation calibration, as shown in Figure 5 (Appendix).

• Using the pre-trained CLIP, we construct a calibration set curated from the 

training data. The samples within this set act as pivotal anchor points. By 

calibrating the representation of these anchors, we aim to enhance robustness 

across the entire dataset. In curating this set, CFR employs an intuitive strategy, 

selecting samples misclassified by the pre-trained CLIP.

• With the calibration set established, CFR refines the sample representations, 

aligning them more closely with the centroid of their designated class in the 

feature space and distancing them from opposing class centroids. This calibration 

is adeptly achieved using a contrastive loss.

Our extensive experiments on CLIP (underexplored in semi-supervised spurious correlation 

literature till date) across multiple datasets illustrate that CFR not only significantly 

improves group robustness compared to semisupervised methods but also rivals the 

performance of supervised approaches. Furthermore, utilizing t-SNE and UMAP, we 

observe that our proposed method exhibits substantially better class separation patterns 

compared to the pre-trained CLIP and CLIP fine-tuned with ERM. In addition, referring to 

the training-validation curves of different methods across four benchmark datasets (Figure 

4), it becomes evident that CFR maintains its superiority in the ability to converge towards 

an optimal solution when compared to other methods. Collectively, these experiments 

provide strong support for the efficacy of CFR in addressing spurious correlations, all 

without reliance on group-specific information.

2. Related Work

On spurious correlations.

There has been recently a burgeoning interest in examining the role of spurious correlations 

in the context of deep learning, particularly as it pertains to a wide range of real-world 
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challenges. Existing work [9] shows that neural networks typically exhibit an inherent 

inclination to emphasize the intended features over the shortcut - shallow features that are 

spuriously correlated with the classification targets, which may be particularly problematic 

in high-stakes and safety-critical scenarios. In vision, models often hinge on semantically 

irrelevant attributes such as an image’s background [26, 38, 51, 63], texture [8], and 

secondary objects [50, 54, 55], and other semantically irrelevant features [4, 14, 30]. 

Particularly concerning is their use in high-stakes areas like medical imaging, where 

networks might erroneously focus on hospital-specific tokens [69] or incidental cues [43] 

rather than actual disease symptoms. Similarly, in natural language processing (NLP), pre-

trained models often exhibit a reliance on superficial features. This reliance allows them 

to perform well on benchmarks, even when not genuinely comprehending the tasks. For 

instance, models might leverage basic syntactic patterns, like lexical similarities between 

sentences, to deduce their interrelationship [12, 19, 35, 42]. Broader introductions are 

provided in [9, 67]. In this paper, we take a step further to meet more practical requirements 

- without relying on any group annotations, but with the help of language attributes on a 

pre-trained VLM with fine-tuning contrastive feature calibration. To our best knowledge, 

this training paradigm is underexplored in the spurious correlation literature, offering a new 

view to improve group robustness of large-scale pre-trained multi-modal models.

Robustness and group annotations.

Group robustness has recently garnered significant attention owing to the prevalence of 

spurious correlations, and hereby we focus our discussion on closely related works, both 

those that rely on group annotations and those that do not. (i) Annotation-dependent 
methods: A body of research has explored leveraging the group annotation. Much of this 

has aimed to improve robustness based on some heuristics like minimizing the worst-group 

loss [51], learn invariant or diverse features [1, 10, 32, 64, 71], class or group balancing 

or weighting [7, 15, 17, 23, 28, 37], or contrastive learning [58, 66]. It usually leads 

to competitive performance but is hard to deploy in the real-world applications due to 

annotation costs. (ii) Annotation-free methods: Another line of work, which discards the use 

of group annotations, can be roughly categorized into various groups. For instance, existing 

studies leverage auxiliary models to pseudo-label the minority group or spurious features 

[2, 6, 21, 22, 25, 27, 40, 56, 57, 65, 73]. Others have emphasized upweighting samples 

misclassified by an early-stopped model [33], reweighting or subsampling classes [15, 47], 

or employing robust losses and regularizations [46, 68, 72]. These methods seek to bolster 

group robustness, albeit often necessitating held-out group annotations, dual-phase training, 

or the deployment of additional auxiliary models. To the best of our understanding, the 

integration of feature recalibration with the absence of group labels has been underexplored 

for the efficient fine-tuning of pre-trained CLIP models.

Spurious correlation in vision-language models.

The advent of transformer-based architecture has led to the development of advanced large-

scale pre-trained multi-modal models, aiming to enhance the effectiveness of these models. 

Some prior work has introduced language features aimed at making vision classifiers more 

robust, including attention maps [45], changes to feature attributes [75]. Several pioneering 
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efforts [66, 72] have been made to obtain pre-trained multi-modal models that are robust 

to spurious correlations. For example, [72] designs a new contrastive adapter, integrating 

it with transfer learning to enhance group robustness. Nevertheless, this approach does 

not always guarantee improved performance, particularly for specialized downstream tasks. 

[66] for the first time introduces a fine-tuning approach specifically tailored to mitigate 

spurious correlations in pre-trained multi-modal frameworks. In contrast to this work, our 

goal is to devise a pragmatic training paradigm that functions without relying on any group 

annotations.

Our approach stands distinct from prior studies, anchored in two key insights: (i) the pivotal 
role of feature recalibration in bolstering robustness without the need for group annotations, 
and (ii) the advantageous influence of language attributes on vision classifiers’ group 
robustness. Our approach directly refines the sample representations using a contrastive 

loss with specially sampled positive and negative batches. Consequently, we achieve 

enhanced robustness against spurious correlations, optimizing group accuracy, efficiency, 

and practicality.

3. Preliminaries

Setting.

In this work, we consider classification tasks within the group robustness setting [51], 

wherein the input is denoted as x ∈ X and target classes as y ∈ Y. Specifically, we assume 

the data distribution consists of multiple groups g ∈ G. Typically, these groups are defined 

by a combination of the class label y ∈ Y and a spurious attribute s ∈ S. Consider the 

Waterbirds dataset [51]. Here, the classification task involves classifying y ∈ {landbird, 

waterbird}, and the background depicted in the image serves as the spurious attributes s ∈
{land, water}. Consequently, the groups are formulated from the combinations of the class 

label and the spurious attribute, denoted as G = Y × S.

The attribute s is considered spurious when it correlates with y but lacks a causal 

relationship. For example, within the Waterbirds dataset, approximately 95% of data points 

labeled as y = waterbird possess the spurious attribute s = water. Consequently, models 

trained on this dataset may heavily depend on the background (water) to predict the class 

(waterbird), leading to reduced performance on the minority group g = (water, landbird).

To safeguard against models relying on spurious correlations, we align with mainstream 

practices [6, 17, 23, 33, 40, 41, 51], and utilize worst group accuracy (WGA) as our 

evaluation metric, which denotes the minimum predictive accuracy of our model across all 

groups.

Access to spurious attributes.

Many current approaches addressing robustness against spurious correlations presuppose the 

availability of spurious attributes s within the training data [51, 66] or at least within a 

subset of data designated for model training [23, 41, 57]. In contrast, we delve into a more 

challenging scenario where the group information remains inaccessible for fine-tuning.
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CLIP.

Contrastive Language-Image Pre-training (CLIP) [48]1 learns from over 400M image-

caption pairs collected from the web2 by maximizing the similarity between the image 

and text. Specifically, CLIP consists of (i) a visual encoder, (ii) a text encoder, and (iii) 

the dot product of their outputs serves as “alignment score” between the input image 

and text. Formally, given a batch of N images and their associated captions, each image 

representation v should align with its corresponding text representation u. The likelihood of 

image i aligning with caption j is expressed as exp βvi
Tuj /∑k = 1

N exp βvi
Tuk , with β being a 

hyperparameter3.

4. Representation of Pretrained Models

In this section, we investigate the inherent spurious correlations present in the CLIP model. 

Utilizing widely-used feature visualization techniques, including t-SNE, UMAP [36], and 

GradCAM [52], our objective is to substantiate the presence of spurious correlations within 

the CLIP framework. We chart our investigation as below:

i. Revealing spurious correlations in pre-trained CLIP: Our initial step involves 

illustrating spurious correlations in pre-trained CLIP. We utilize dimensionality 

reduction techniques such as t-SNE and UMAP to unveil the separation between 

class features and spurious attributes in both ERM and pre-trained CLIP. Our 

t-SNE visualization, as shown in Figure 1, indicates that the pre-trained CLIP 

model inadequately separates between classes, yet efficiently identifies spurious 

attributes, thus corroborating the existence of spurious correlations. Remarkably, 

a similar pattern emerges when examining ERM-tuned CLIP. The resemblance 

between pre-trained CLIP and ERM-tuned CLIP in their t-SNE visualizations 

underscores the severe issue of spurious correlation in the pre-trained models, 

as ERM training is well-known to be prone to such correlations. The UMAP 

visualization further confirms our findings with a similar discernment (See 

Figure 1).

ii. Investigating the underlying cause of spurious correlations: To further 

substantiate the presence of spurious correlation, we employ GradCAM to 

analyze various layers of the pre-trained CLIP model. This analysis reveals that 

pretrained CLIP tends to focus on spurious attributes in the data, rather than 

the desired complex features (e.g., the bird) for classification. In Figure 2, we 

present the GradCAM results from each of the four layers of the ResNet-50 

backbone in CLIP. A noticeable trend emerges: in shallower layers, the model’s 

attention spans a broader region of the image. As we delve deeper into the 

layers, the model progressively narrows its focus to smaller regions of the image. 

Notably, in the final layer, the model concentrates its attention on an extremely 

1 https://github.com/openai/CLIP 
2This dataset is not public.
3viand uj are normalized prior to the dot product calculation.
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limited portion of the image, which is often the background rather than the object 

of interest (e.g., the bird). This observation underscores the model’s tendency 

to concentrate on spurious attributes, providing a plausible explanation for the 

prevalence of spurious correlation in pre-trained CLIP.

Overall findings:

Our comprehensive examinations confirm the presence of spurious correlations in the 

features learned by the pre-trained CLIP. These insights prompt us to recalibrating CLIP 

model’s features. Encouraged by these findings, we introduce our proposed approach, 

Calibrated Feature Refinement (CFR), in the subsequent section, aimed to mitigate the 

spurious correlation issue within the model.

5. Feature Recalibration

In this section, we introduce CFR, a novel representation calibration method, aimed at 

enhancing group robustness in pre-trained CLIP models, without the need for group 

annotations. As shown in Figure 5 (Appendix), CFR unfolds in two pivotal steps: the 

initial step involves the assembly of a calibration set, thoughtfully curated from the training 

data. In the second step, we augment the robustness of the CLIP feature by calibrating the 

representation using the samples from the previously curated set.

5.1. Calibration Set Formulation

Sample selection strategies have been widely explored in the context of addressing spurious 

correlations [23, 25, 33, 72, 73]. Such issues often arise when using the full training data. To 

mitigate this issue, researchers have focused on identifying more group-balanced subsets for 

refining models. In real-world scenarios where group information is commonly inaccessible, 

a widely accepted solution is to generate pseudo-group-labels, commonly achieved by using 

an auxiliary model trained with Empirical Risk Minimization (ERM). Existing works in this 

direction have taken three angles: (1) disagreement-based methods (e.g., selecting samples 

where ERM predictions contradict group-truth labels [25]; (2) uncertainty-based method 

(e.g., opting for samples with high uncertainty in ERM predictions [47]), and (3) clustering-

based method (e.g., interpreting clusters formed by ERM-learned features as pseudo-groups 

[56, 73]), etc.

Inspired by these, we propose a straightforward yet highly effective approach tailored 

for vision-language models. Rather than training an entire model from the ground up 

using ERM, we opt to utilize the feature representation inherent in the pre-trained CLIP. 

Our strategy involves training only the projection head of CLIP using cross-entropy loss, 

subsequently selecting samples that are misclassified by this ERM-tuned CLIP for further 

rectification. Our empirical results underscore the efficacy of this approach, showcasing its 

impressive performance in recalibrating CLIP. Furthermore, we recognize the potential of 

exploring alternative selection methods as a promising avenue for future research.
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5.2. Contrastive Feature Recalibration

The subsequent phase is centered around recitifying the features of samples within this 

calibration set. By recalibrating these specific samples, our objective is to improve the 

quality of feature representation across the entire training dataset. Inspired by insights 

gained from the feature visualization of the pre-trained CLIP and ERM-tuned CLIP in Sec. 

4, our proposed CFR method is capable of recalibrating the feature of a given sample. This 

is achieved by pulling the sample’s feature closer to the centroid of its designated class while 

simultaneously pushing it away from centroids associated with opposing classes.

Take an arbitrary sample x, y  from the calibration set as the anchor. We define v as 

the visual feature of x, encoded by the pre-trained CLIP, situated prior to the final-layer 

projection head. Note that v remains constant throughout the recalibration process as 

updates are exclusively applied to the model parameters within the projection head. For 

ease of reference, we encapsulate a single sample with the tuple x, y, v . Subsequently, v is 

processed through the projection head, denoted as fθ ⋅ , with θ representing the parameter. 

This yields the final output feature fθ v . CFR fine-tunes fθ, resulting in the recalibration 

of the output visual feature fθ v . It is crucial to note that v itself remains unaltered during 

training, as all layers preceding the projection head are frozen. Let cy represent the ‘optimal’ 

centroid of class y within the feature space, which remains unknown and is an idealized 

concept. The centroid of a class can be conceptualized as the geometric center of all 

samples pertaining to that class within the feature space. CFR is designed to enhance the 

similarity between fθ v  and cy, while ensuring fθ v  remains distant from samples belonging 

to opposing classes.

We would like to emphasize that these class centroids are unknown a priori, necessitating 

their estimation or on-the-fly learning during the training process. In the subsequent section, 

we present an in-depth discussion on the implementation of centroid estimation, employing 

various sample selection strategies. At a conceptual level, our approach draws inspiration 

from the state-of-the-art contrastive learning framework [5], which guides our feature 

recalibration process. Specifically, we conduct feature recalibration by strategically selecting 

positive and negative samples within each batch, which will serve as the anchor points for 

the recalibration process. This method allows us to refine and enhance the features in a 

manner consistent with [5].

Estimation via Sample Selection.—In our pursuit of refining the sample features 

within the calibration set, a naïve approach is to estimate the class centroid cy as the mean 

representation of all samples within class y, that is, cy = ∑y′ = y fθ v′ /My, where My represents 

the total sample count in class y′ = y within the training dataset. However, this method has 

two significant limitations: (1) It does not ensure the accuracy of cy as an optimal centroid, 

given that the averaging includes samples that may be incorrectly predicted, leading to 

potential misalignments in the feature space. (2) The iterative updates to fθ ⋅  render the 

exact computation resource-intensive. To address the first concern, we refine our strategy 

to consider solely those samples in class y accurately identified by the pre-trained model, 
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ensuring y′ = y. From this curated subset, we randomly select a subset of data, denoted as 

P x  (with P  standing for ‘positive’), to mitigate the influence of misaligned samples. To 

tackle the second (computational) challenge, we employ an Exponential Moving Average 

(EMA) update, formulating the class centroid updating scheme as follows:

cy 1 − γ cy + γ
x′ ∈ P x

fθ v′ / P x ,

(5.1)

where P x  denotes the cardinality of P x .

To intensify the recalibration effect, we pair the positive subset P x  with the centroid cy

to form a positive minibatch for a data point x, y, v . That is, the positive minibatch is given 

as P x ∪ cy . We term this sample selection strategy for the positive mini-batch as Dynamic 

Positive Centroid Sampling (DPS).

For distancing the feature representation fθ v  from different classes, CFR selects a negative 

mini-batch N x  through two strategies: (1) Random Negative Sampling (RNS): randomly 

choosing negative samples outside the anchor’s class, and (2) Nearest-neighbour Negative 
Sampling (NNS): selecting negative samples from the top-k instances closest to the anchor 

within the feature space.4 While the latter strategy, initially validated by [72], is effective, it 

also incurs significant computational load on large datasets. To address this, we implement a 

batch sampling method followed by a top-k selection within the batch.

Combining the positive and negative sample selection, we now have two options: 

{DPS+RNS} and {DPS+NNS}, which differ only in how the negative batch is selected.

Calibration loss.—With the positive and negative batches in place, CFR applies a 

contrastive loss for recalibration. For an individual instance (x, y, v) as the anchor, its loss is:

ℒcal(x) = − 1
P(x) + 1 ∑

v+ ∈ P(x) ∪ cy
log ez+

ez + + ∑v − ∈ N(x)ez−
,

(5.2)

where each z+ replies on v+and is given by z+ = fθ v , fθ v+ /τ. Similarly 

z− = fθ v , fθ v− /τ. In other words, ℒCal is a contrastive loss applied to the anchor (x, y, v) 

with the positive and negative batch selected by either of the two strategies (i.e., DPS+RNS 

and DPS+NNS).

4The feature space here refers to the feature before the final projection layer of CLIP’s visual branch, represented as v (introduced in 
Sec. 5.2).
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Holistic Data Integration.—Determining the size and distribution of the calibration set 

beforehand is a challenge, since the composition of this set can significantly differ across 

various downstream tasks. Particularly when dealing with a limited-sized calibration set, 

there is a considerable risk of model overfitting if training relies solely on this small subset, 

jeopardizing the model’s ability to generalize.

Recognizing this potential pitfall, we incorporate the entire training dataset into the loss 

function for adjustment. Specifically, we start by selecting a mini-batch from the entire 

training dataset. For each sample (x, y, v) within this mini-batch, we identify positive 

examples (those belonging to the same class) and negative examples (those from different 

classes). To optimize the model, we adopt cosine similarity loss, aiming to reduce the 

distance between positive pairs while increasing the distance between negative pairs. The 

loss is formulated as follows:

ℒCS x = −
p = 1

P u⊤up
∥ u ∥ ⋅ ∥ up ∥ +

j = 1

J u⊤uj
∥ u ∥ ⋅ ∥ uj ∥,

(5.3)

where u, up p = 1
P  and uj j = 1

J  denote the final visual representation of the image x, 

images from the same group, and images from other groups, respectively. That is, 

u = fθ v , up = fθ vp , and uj = fθ vj .

Final loss function.—The final loss combines the cosine similarity loss ℒCS (Eq. 5.3) and 

the calibration loss ℒcal (Eq. 5.2):

ℒtotal  = λ
x ∈ Dcal 

ℒcal  x +
x ∈ Dall 

ℒCS x ,

(5.4)

where λ is a tunable parameter and Dcal and Dall are the calibration set and the entire training 

set, respectively.

6. Experiments

In this section, we evaluate CFR across various benchmarks with spurious correlations, 

accompanied by comprehensive ablations on design choices and hyperparameter settings. 

Due to limited space, additional dataset and implementation details are discussed in 

Appendix A and B.

Evaluated methods.

As baseline methods, we compare against other semi-supervised methods, including JTT 

[33], CnC [73] and AFR [47]. We also compare against methods that require group 

annotations, including GroupDRO [51], DFR [23], S-CS/S-CL [66].
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Sampling Setup.

In Section 5.2, we detailed our DPS strategy for creating a positive batch for an anchor. 

DPS combines P x , a subset of correctly predicted instances by pre-trained CLIP within 

the anchor’s class y, with cy, the Exponential Moving Average (EMA) estimated centroid 

of class y (Eq. 5.1). To assess the impact of incorporating the positive centroid cy into the 

contrastive loss term ℒcal, we propose to try CFR with cy removed from the loss term. 

Therefore, we explore an alternative to DPS, termed Random Positive Sampling (RPS). RPS 

involves simply removing cy from the positive batch of the contrastive loss ℒcal, resulting in a 

modified calibration loss term5:

ℒcal(x) = − 1
P(x) ∑

v+ ∈ P(x)
log ez+

ez+ + ∑v− ∈ N(x)ez−

Considering the setting of {DPS,RPS} × {RNS,NNS}, we evaluate in total 4 sample 

selection strategies for CFR: {DPS+RNS}, {RPS+RNS}, {DPS+NNS}, {RPS+NNS}.

6.1. Results

We now present the results of the methods across multiple benchmarks, using WGA as the 

performance metric.

Main Results.—We adopt classical visual backbones in CLIP, i.e., {ResNet, ViT}, 

and train them in the combination of positive and negative sampling on {DPS+RNS, 

DPS+NNS, RPS+RNS, RPS+NNS}. Main results are in Table 1, Figure 3, and Figure 6 

(Appendix). Of note, we refer more discussion in Appendix C The following observations 

can be drawn: ➊ Our CFR demonstrates superior performance compared to all other 

semi-supervised training algorithms. Specifically, CFR-ResNet with DPS+RNS obtains 

15.25 28.55, 9.77 20.22, 8.55 9.34, 3.08 4.62  WGA improvements across the datasets over 

AFR, JTT, CnC, respectively. This validates the effective of our proposed method. 

➋ Appropriate selection strategies show consistent performance benefits across all 

two network backbones. Moreover, our DPS+RNS strategy surpasses the completely 

random strategy (RPS+RNS) in CLIP, which aligns well with our expectations as 

our assignment process is implicitly “optimized” by leveraging the naturally evolved 

feature embeddings. ➌ When using ViT backbone, CFRViT with DPS+RNS has up 

to 3.74 14.81, 5.55 14.77, 5.22 15.39, 1.57 3.41  compared to all three semisupervised 

baselines, respectively. ➍ As is shown in Table 1, we observe that the improvements are 

more significant using ViT backbone than ResNet backbone. Our DPS+RNS approach the 

benchmarks set by fully supervised models. Besides, when using a ResNet backbone, a 

performance gap remains, suggesting room for further improvement. A possible reason is 

that, under the guidance of multi-modality information during fine-tuning, using ViT are 

less prone to capture spurious correlation features. ➎ By visualizing the training-validation 

curve6 (See Figure 4) of our method and other semi-supervised baselines, we observe that 

5This variant, compared to the DPS loss term (Eq. 5.2), simply excludes cy  from the summation.
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CFR converges to a better optimal solution at a faster convergence rate, demonstrating the 

effectiveness of our approach.

Analysis of Sample Selection.—We conduct an extensive study to understand the 

performance benefits of different selection strategies in terms of WGA by comparing 

them against multiple state-of-the-art methods. Through comparison upon the following 

perspectives: (1) positive selection: method w/o and w/ DPS strategy; (2) negative 
selection: method w/o and w/ NNS strategy, we have the following findings. ➊ DPS 
generally contributes to competitive performance gains. With the assistance of an 

adaptive sample selection process, DPS can lead to more robust and accurate models 

by effectively addressing challenges such as data imbalance and improving the model’s 

focus on more minority-group features. As shown in Figure 3 and Table 1, equipped 

with DPS+RNS, CLIP+ResNet achieves {3.85, 0.88, 4.94, 1.44} WGA accuracy gains 

compared to RPS+RNS on Waterbirds, CelebA, CheXpert, and Metashift, respectively. 

Furthermore, we alter the model backbone to ViT, and observe a similar phenomenon 

happens to DPS+RNS with CLIP-ViT. A comparison between DPS+RNS and RPS+RNS 

shows that DPS+RNS performs better than RPS+RNS when using the ViT backbone. 

Similarly, as in Figure 6 (Appendix) and Table 1, we observe that DPS+NNS outperforms 

RPS+NNS in terms of WGA across four benchmarks. This is clear evidence that DPS is 

able to better capture minority-group than RPS. ➋ In a principled way, RNS further 
boosts CLIP performance with DPS across all the evaluated benchmark datasets. 
Given the advancements of NNS, it is naturally expected that it would lead to better 

performance. However, as depicted in Figure 3 and Table 1, the utilization of DPS+RNS 

with CLIP-ResNet, compared to the baseline using DPS+NNS, achieves better performance 

across Waterbirds, CelebA, CheXpert, and Metashift. Furthermore, our observations also 

reveal comparable improvements in WGA when utilizing CLIP-ViT (Appendix Figure 

6). This underscores the effectiveness of DPS+RNS compared to using DPS+NNS. Our 

findings suggest that employing RNS during the fine-tuning of CLIP-ResNet50 facilitates 

the model’s ability to seeking the most informative features, particularly those are more 

correlated with minority-group features. We hypothesize that the observed decrease in 

effectiveness with NNS may be attributed to its sensitivity to the hyperparameter k. Unlike 

RNS, top-k sampling is less random and, as indicated by [72], might require a larger batch 

size to be more effective. Nevertheless, it is important to note that a larger batch size for 

fine-tuning VLMs corresponds to increased computational resource requirements, which 

contradicts our objective of achieving lightweight fine-tuning. We hope that our finding 

inspires future work to further explore utilizing larger batch sizes for NNS in VLMs when 

computational budget allows.

6.2. Ablation

In this subsection, we conduct comprehensive ablation studies to gain deeper insights into 

the rationale behind our design choices. Note that all these experiments are conducted using 

the Waterbirds dataset with both CLIP-ResNet50 and CLIP-ViT models.

6WGA results on the validation dataset during the training process.
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Importance of Holistic Data Integration.—We analyse the necessity of adding the 

loss component ℒCS from the Holistic Data Integration introduced in Sec. 5.2. We evaluate 

the setting with and without ℒCS using WGA as the metric, as shown in Table 2. Our 

findings reveal a notable performance gains when employing Holistic Data Integration, 

particularly when using CLIP-ResNet50. This underscores the significant role of ℒCS in 

achieving performance improvements, especially considering that the calibration loss term 

ℒcal is confined to a relatively small calibration set.

Extra Study.—More studies on (1) weights of loss functions; (2) batch sizes in sample 

selection are in Appendix D.

7. Conclusion

In our work, we study into the group robustness of the CLIP model without using any 

group annotations. Our initial findings indicate that retraining the last layer can considerably 

improve the group robustness of a pre-trained CLIP. Building upon this, we introduce a 

novel and efficient representation calibration technique for fine-tuning CLIP. This method 

involves creating a calibration set with the pre-trained CLIP and subsequently refining the 

representations of the samples within this set via contrastive learning, all without the need 

for group labels. Through comprehensive experiments and detailed visualizations across 

multiple benchmarks, our method demonstrates its capability to achieve state-of-the-art 

results in robust classification.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. t-SNE and UMAP visualizations for pre-trained CLIP, ERM-tuned CLIP, and CFR 
(ours) on Waterbirds.
We observe that both the pre-trained and ERM-tuned CLIP exhibit noticeable spurious 

correlations, with feature separations inappropriately aligned with spurious attributes, 

specifically the background, rather than the target class. In contrast, our method, 

as visualized through t-SNE and UMAP, demonstrates a significantly improved class 

separations, underscoring the robustness of our method in reducing spurious correlations.
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Figure 2. Layer-by-layer GradCAM analysis of the CLIP-ResNet50.
Each row starts with the original image on the left, followed by four GradCAM 

visualizations corresponding to the four successive layers of the ResNet-50, with the depth 

of the layers increasing from left to right.
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Figure 3. Comparison of methods using the CLIP-ResNet50 architecture on four benchmark 
datasets.
We use Worst Group Accuracy to evaluate the performance for various methods, including 

ERM, semi-supervised baselines (i.e., AFR [47], CnC [73], JTT [33]), and our proposed 

methods. We observe that CFR combined with the sample selection strategies (i.e., {DPS, 

RPS}×{RNS,NNS}) outperforms all semi-supervised baselines across all benchmarks.
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Figure 4. Training-validation curves of various semi-supervised methods using CLIP-ResNet.
We plot WGA on a validation dataset at regular intervals of 25 epochs throughout the 

training process. Results are averaged across 3 random seeds.
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Table 2.

Ablation on the loss component ℒCS from Holistic Data Integration in Sec. 5.2. Adding ℒCS brings significant 

performance gain, especially with ResNet-50.

Method

ResNet-50 ViT

WGA

Gain ↑

WGA

Gain↑◦ w. LCS (ours) w/o Lcs ◦ w. LCS (ours) w/o LCS

DPS+RNS 76.93 69.67 7.26 88.23 87.07 1.16

RPS+RNS 73.08 65.98 7.10 85.67 85.23 0.44

DPS+NNS 76.63 69.14 7.49 87.58 86.61 0.97

RPS+NNS 72.43 70.40 2.03 84.89 83.02 1.87
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