Skip to main content
. 2024 Dec 5;19(12):e0313274. doi: 10.1371/journal.pone.0313274

Table 5. Tests of fixed effects generated from LMEM, assess how PAC (nMI) varied across data types (real or random nMI values), low-frequency phase (LFP), high-frequency amplitude (HFA) and age (4-, 7- or 11-months).

Results reported for separate LMEMs run on the first half, second half and full sample of data. Significant results (p<0.05) denoted by bold italic text. The Satterthwaite approximation was applied to approximate the degrees of freedom, due to the missing cases.

PAC
1st half of sample 2nd half of sample
F p F p
Data type (rand vs real nMI) F(1, 1178.08) = 4921.51 <0.001 F(1, 1113.52) = 4409.87 <0.001
Low freq. phase (LFP) F(1, 1178.08) = 55.79 <0.001 F(1, 1113.52) = 64.77 <0.001
Age F(2,686.71) = .06 0.941 F(2, 202.36) = 1.81 0.167
High freq. amp (HFA) F(1, 1178.08) = .05 0.824 F(1, 1113.52) = 1.68 0.196
Data type * LFP F(1, 1178.08) = 54.34 <0.001 F(1, 1113.52) = 62.86 <0.001
Data type * HFA F(1, 1178.08) = .00 0.949 F(1, 1113.52) = 4.00 0.046
Data type * Age F(2, 1178.08) = 1.68 0.187 F(2, 1113.52) = 3.26 0.039
LFP * Age F(2, 1178.08) = .47 0.626 F(2, 1113.52) = 2.10 0.123
HFA * Age F(2, 1178.08) = 2.01 0.134 F(2, 1113.52) = .28 0.757
LFP * HFA F(1, 1178.08) = .11 0.738 F(1, 1113.52) = 2.48 0.115
Age * LFP * HFA F(2, 1178.08) = .64 0.526 F(2, 1113.52) = .69 0.504
Full sample
F p
Data type (rand vs real nMI) F(1,2269.31) = 9217.24 <0.001
Low freq. phase (LFP) F(1,2269.31) = 118.88 <0.001
Age F(2,790.87) = 1.40 0.247
High freq. amp (HFA) F(1,2269.31) = 1.10 0.294
Data type * LFP F(1, 2269.31) = 115.42 <0.001
Data type * HFA F(1, 2269.31) = 1.78 0.182
Data type * Age F(2, 2269.31) = 2.31 0.100
LFP * Age F(2, 2269.31) = 2.21 0.110
HFA * Age F(2, 2269.31) = 1.79 0.167
LFP * HFA F(1, 2269.31) = 0.71 0.399
Age * LFP * HFA F(1, 2269.31) = 0.44 0.642