Table 9. Parameters used for comparison of Decision Tree, Random Forest, KNN, AdaBoost, MLP, and SVM.
Classifier | Parameters |
---|---|
Decision Tree | criterion=‘entropy’, splitter=‘best’, random_state = 0, min_samples_split = 2 |
Random Forest | criterion=‘entropy’, n_estimators = 10, random_state = 0 |
KNN | leaf_size = 30, metric=‘minkowski’, n_neighbors = 5, p = 2, weights=‘uniform’ |
AdaBoost | n_estimators = 50, random_state = None |
MLP | activation=‘relu’, alpha = 0.0001, max_fun = 15000, max_iter = 50, random_state = 0, solver=‘adam’ |
SVM | estimator=‘LinearSV’, max-iter=[500, 1000], C=[0.1,1] |