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Abstract

The association of gut microbial features with type 2 diabetes (T2D) has been inconsistent due in 

part to the complexity of this disease and variation in study design. Even in cases where individual 

microbial species have been associated with T2D, almost no cases have attributed mechanisms 

to these associations based on specific microbial strains. We conducted a comprehensive study 

of the T2D microbiome, analyzing 8,117 shotgun metagenomes from ten cohorts of individuals 

with T2D, prediabetes, and normoglycemic status in the US, Europe, Israel, and China. Dysbiosis 

in 19 phylogenetically diverse species was associated with T2D (false discovery rate <0.10), 

e.g., enriched Clostridium bolteae and depleted Butyrivibrio crossotus. These microorganisms also 

contributed to community-level functional changes potentially underlying T2D pathogenesis, e.g., 

perturbations in glucose metabolism. Our study revealed within-species phylogenetic diversity for 

strains of 27 species that explained inter-individual differences in T2D risk, such as Eubacterium 
rectale. In some cases, these were explained by strain-specific gene carriage, including loci 

involved in various mechanisms of horizontal gene transfer and novel biological processes 

underlying metabolic risk, e.g., quorum sensing. In summary, our study provides robust cross-

cohort microbial signatures in a strain-resolved manner and offers new mechanistic insights into 

T2D.

Introduction

Type 2 diabetes (T2D) affects approximately 537 million individuals globally1. It is 

characterized by a gradual decline in β-cell mass and function, often accompanied by 
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low-grade systemic inflammation and insulin resistance2. In the last two decades, the gut 

microbiome has been increasingly recognized as a metabolically active “organ” situated 

at the crossroads of host genetics and environmental factors3. While human studies 

have identified diverse microbial signatures of T2D4–11, the existing findings are mostly 

inconsistent, partly due to small study populations and variations in design and analytic 

approaches across different studies. In addition, early studies failed to adjust adequately for 

major risk factors of T2D and confounders, such as metformin use and adiposity, limiting 

the validity of the observed associations while contributing to the variation4. Therefore, 

studies in a large population that standardized data processing and analysis are needed 

to elucidate the potential mechanisms by which gut microbes and their corresponding 

molecular activities contribute to the pathology of T2D.

Previous studies have linked the microbial community structure and specific species to 

metabolic risk factors12,13 and T2D4–11. However, pathogenic mechanisms are potentially 

strain-specific, meaning that specific microbial strains are causally linked to disease 

outcomes or that microbial functional processes responsible for host disease development 

are carried out by a subset of strains within a microbial species. A classic example 

of radically different microbial physiology among closely related strains is Escherichia 
coli, which includes strains ranging from benign (e.g., strain K12) to pathogenic (e.g., 

enterohemorrhagic E. coli O157:H7) to probiotic (e.g., strain Nissle 1917)14. Understanding 

strain-specific mechanisms is particularly important for T2D, a condition with a strong 

dietary and inflammatory basis, as the host diet and immune system are crucial selective 

pressure factors in shaping within-species variation in the gut microbes15. However, a 

high unmet need exists for a comprehensive survey of subspecific microbial features and 

strain-specific functions in T2D to gain in-depth mechanistic insights.

Here, we present a meta-analysis of 8,117 metagenomes from ten cohorts that included 

individuals with T2D, prediabetes, and normoglycemic status in the US, Europe, Israel, and 

China from our newly established Microbiome and Cardiometabolic Disease Consortium 

(MicroCardio). We first conducted uniform bioinformatic reprocessing and batch effect 

correction of raw metagenomic sequencing data and harmonized the diagnoses of diabetes 

and prediabetes endpoints across the different cohorts. Next, we identified specific gut 

microbial species and functions, i.e., the enzymes and pathways encoded by microbes, that 

were differentially abundant between cases and controls [false discovery rate (FDR)<0.10]. 

Finally, to gain deeper insights into the implications of within-species phylogenetic diversity 

and strain-specific carriage of functional genes in T2D, we applied a series of strain-resolved 

analysis methods. Our study, adopting a function-focused and strain-resolved approach, 

represents the most comprehensive investigation of T2D microbiome to date in an ethnically 

and geographically diverse population.

Results

Data harmonization in a global population

We uniformly processed sequence and phenotypic data from ten cohorts in the US, 

Israel, Sweden, Finland, Denmark, Germany, France, and China, including four databases 

generated de novo and six published datasets5,6,10,11,16 (Fig. 1a, Extended Data Fig. 1 and 

Mei et al. Page 3

Nat Med. Author manuscript; available in PMC 2024 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Table 1). Our final dataset consisted of 8,117 metagenomes from 1,851 T2D 

patients, 2,770 participants with prediabetes, and 2,277 normoglycemic participants (two 

cohorts included repeated microbiome sampling, see Methods), including both females and 

males (females: 54.4%) with wide ranges in age [mean= 57.9 years; standard deviation 

(SD)= 10.7 years] and body mass index (BMI, mean= 28.6 kg/m2; SD= 5.8 kg/m2, Fig. 

1a, Extended Data Fig. 1, and Supplementary Table 1). We harmonized the case-control 

status using the diagnosis criteria of the American Diabetes Association2 based on fasting 

plasma glucose, 2-hour oral glucose tolerance tests, hemoglobin A1C, and medication uses 

(Methods), major risk factors of T2D, e.g., BMI, and metabolic and inflammatory laboratory 

tests in blood samples, e.g., high-sensitivity C-reactive protein (hs-CRP), across cohorts. 

Using the bioBakery 3.0 workflows17, we generated taxonomic and functional profiles 

(biochemical pathways and enzymes) based on sequencing data. Among the identified 

microbial species, 30.9% were present in all the included cohorts (“universal species”), 

52.9% existed in two to nine cohorts (“overlapping species”), and 16.2% were unique to 

one specific cohort (“singular species,” Fig. 1b). As anticipated, the majority of variation in 

the gut microbiome was driven by a tradeoff between Bacteroidetes versus Firmicutes phyla 

(Fig. 1c). More details of population distributions of microbial features are in Supplementary 

Text. We applied the MMUPHin workflow18, which reduced the variance explained by batch 

effects, as quantified by permutational multivariate analysis of variance (PERMANOVA), 

from 8.4% to 4.0% while retaining biologically meaningful inter-individual variation 

(Extended Data Fig. 2). Furthermore, we took a conservative meta-analysis approach, i.e., 

to conduct separate analyses within each cohort and pool the summary statistics across all 

cohorts, in the downstream analyses to further adjust for potential batch effects.

Microbial configuration and species and type 2 diabetes

We first assessed the association between the overall microbiome configuration and T2D 

status. Although case-control status was not a major driver of overall structural variation of 

the microbiome (Fig. 1c), PERMANOVA revealed that its association was significant with 

respect to taxonomy [percentage of variance explained (R2) =0.47%; P <0.001], biochemical 

pathways (R2 =0.47%; P <0.001), and enzymatic profiles (R2 =0.30%; P <0.001). In 

addition, T2D status accounted for the largest proportion of variation in the microbiome 

composition (0.47%) among T2D status, covariables, and circulating biomarkers (Fig. 1d, 

Details of PERMANOVA results are in Supplementary Text).

To identify harmonized species-level signatures, we employed regression models in 

MaAsLin219 to identify microbial features with different distributions across T2D status 

in each cohort and pooled the effect estimates from the models across cohorts using 

meta-analysis18,20 (Methods). Our primary model classified case-control status as T2D, 

prediabetes, or normoglycemic controls ordinally (Extended Data Fig. 3a). Secondarily, we 

modeled the case-control status as a binary variable (T2D or normoglycemic controls) in 

a subpopulation that excluded individuals with prediabetes (Extended Data Fig. 3b). Our 

meta-analysis identified 19 phylogenetically diverse species significantly associated with 

T2D (FDR <0.10), independent of age, sex, BMI, and metformin use, after correcting for 

multiple hypothesis testing (which we refer to as “biomarker species,” Fig. 2a and 2b). 

Among the 19 biomarker species, five were associated with T2D, and 14 were associated 
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with both prediabetes and T2D. We included meta-analyzed and cohort-specific results 

for all microbial species analyzed in Supplementary Tables 2 and 3. Of note, 14 of these 

species were identified by our study, as compared with previous metagenomic studies of 

T2D, while five species were reported previously, including three T2D-enriched species, 

Clostridium citroniae21, Clostridium bolteae4,6,10,21 and Escherichia coli6, and two T2D-

depleted species, Coprococcus eutactus10 and Turicibacter sanguinis11. Most biomarker 

species demonstrated a consistent upward or downward trend in their abundance across 

normoglycemic controls, individuals with prediabetes, and T2D patients (Fig. 2c), as 

indicated by their significant slopes from the ordinal models (Fig. 2a).

We identified two Streptococcus spp., common residents of the oral cavity, enriched in 

individuals with T2D, suggesting a potential translocation of oral microbes to the gut, 

indicative of a pro-inflammatory state22,23. In addition, we found that Bacteroides fragilis, a 

species that produces immunogenic fragilysin24, was enriched in T2D cases. In contrast, 

another Bacteroides species, Bacteroides plebeius, was depleted mainly in non-white 

T2D patients. This is consistent with the recent revelation of B. plebeius’s phenotypic 

difference from other Bacteroides spp. and its subsequent reassignment to the Phocaeicola 
genus25. Additional T2D-depleted species included butyrate-producing bacteria and primary 

degraders of plant-derived polysaccharides, such as Oscillibacter sp. 57_20, C. eutactus, 
Ruminococcus lactaris, and Butyrivibrio crossotus. We found an increased abundance of T. 
sanguinis in normoglycemic controls, corroborating previous reports of its link with low 

metabolic risk mediated through modifying host bile acid and lipid metabolisms26,27.

Next, we determined the extent to which the inclusion of microbial species improved the 

classification of T2D status using the random forest (RF) model and tested models by a 

leave-one-data-set-out procedure28. In the RF models classifying metformin-naïve T2D vs. 

normoglycemic controls, we found a moderate improvement in the areas under the curve 

(AUCs) from the basic model that included age, sex, and BMI (average AUC =0.63) to 

the model that additionally included microbial species (average AUC =0.69, Fig. 2d). The 

models classifying metformin-treated T2D vs. controls yielded an average AUC of 0.69 in 

the basic model and an average AUC of 0.79 in the model that further included microbial 

species.

We confirmed that metformin use strongly confounded the association between microbes 

and T2D4,29,30 in this international population, while further adjustments for insulin use and 

BMI only modestly altered the strength of the associations (Extended Data Fig. 3a–d). We 

found different microbial compositions between metformin-treated vs. -naïve T2D patients 

(PERMANOVA P <0.001, Extended Data Fig. 4a) and attenuated associations for many 

microbial species after further adjustment for metformin use (Fig. 2a). In a subsequent 

analysis, we identified 10 microbial signatures of metformin, i.e., those associated with 

metformin use in T2D cases only (Extended Data Fig. 4b). We confirmed that our modeling 

approach effectively addressed the confounding by metformin use by demonstrating a high 

correlation (Spearman correlation coefficient =0.95; Extended Data Fig. 4c) between the 

beta coefficients of species-T2D associations from the primary analysis and those calculated 

from a sensitivity analysis excluding metformin-treated T2D patients.
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To address the concern that the identified microbial signatures may have partially captured 

long-term diabetic status and its comorbidities, we undertook two sensitivity analyses, 

including a prospective analysis that leveraged incident T2D cases in the Hispanic 

Community Health Study / Study of Latinos (HCHS/SOL) and an analysis on insulin-naïve 

T2D cases. Both sensitivity analyses yielded associations that were largely consistent with 

those from the primary analyses (Extended Data Fig. 5; details of the sensitivity analyses 

are in Supplementary Text). Furthermore, we observed a significant dose-response of the 

abundance of the microbial signature across normoglycemic controls, prediabetes, and T2D 

(Fig. 2a), adding further weight to the evidence for the microbial biomarkers of T2D. 

Collectively, these analyses suggested that the identified microbial features were unlikely to 

reflect the long duration of T2D or its comorbidities.

Community-level microbial functions and type 2 diabetes

We next investigated whether community-level microbial functional features, including 

biochemical pathways31 and enzymes, were associated with T2D (FDR <0.10). We 

included meta-analyzed and cohort-specific results for all functional features analyzed in 

Supplementary Tables 4 and 5. The most prominent finding was community-level microbial 

functions indicating glucose dysregulation, manifested by intertwined relationships among 

insulin resistance, glycolysis, and glucose uptake, in T2D patients (Fig. 3a–c). We observed 

higher abundance of functions involved in bacterial cellular metabolism favoring glycolysis 

in T2D patients, e.g., glycolysis (from glucose 6-phosphate) pathway (GLYCOLYSIS-

PWY), and their constituent enzymes, e.g., glyceraldehyde-3-phosphate dehydrogenase (EC 

1.2.1.12). In addition, we found an enrichment of the super-pathway of methylglyoxal 

degradation (METHGLYUT-PWY) and its constituent enzymes in T2D patients, suggesting 

a higher demand for detoxifying methylglyoxal, a by-product of upregulated glycolysis. 

Furthermore, genes encoding pitrilysin, an enzyme with insulin-degrading capability32, 

had a high abundance in T2D patients (Supplementary Table 5). Lastly, the functions for 

the biosynthesis of saturated fatty acids that potentially contribute to insulin resistance33, 

e.g., pathways of fatty acid elongation-saturated (FASYN-ELONG-PWY) and palmitate 

biosynthesis II (PWY-5971) and long-chain-fatty-acid—CoA ligase (EC 6.2.1.3), were 

found to be enriched in T2D patients. Consistent with a previous report9, the microbial 

functions involved in glucose homeostasis were dominantly encoded by E. coli and a group 

of Bacteroides spp.

Our other major findings included upregulated biosynthesis of immunomodulatory bacterial 

structural components in T2D patients. We found that two pathways upstream to the 

productions of highly pro-inflammatory lipopolysaccharides (LPS) and teichoic acids 

(TAs), namely lipid IVA biosynthesis (NAGLIPASYN-PWY) and poly (glycerol phosphate) 

wall teichoic acid biosynthesis (TEICHOICACID-PWY), were enriched in T2D patients. 

This was also true for individual enzymes involved in the biosynthesis of LPS and 

TAs, such as peptidoglycan glycosyltransferase (EC 2.4.1.129) and lipid IVA 4-amino-4-

deoxy-L-arabinosyltransferase (EC 2.4.2.43, Fig. 3b). Positive associations between the 

abundance of enzymes participating in the LPS precursor biosynthesis, including N-

acetylglucosaminephosphotransferase (EC 2.7.8.33) and Lipid IVA 4-amino-4-deoxy-L-

arabinosyltransferase (EC 2.4.2.43), and circulating hs-CRP levels, further supported their 
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immunogenicity (Extended Data Fig. 6b and Supplementary Table 7). Corroborating 

with a previous report that membrane components of Bacteroides were particularly 

immunogenic34, a diverse group of Bacteroides spp. encoded these pathways and enzymes.

Subclades of Prevotella copri and type 2 diabetes

Previous studies from our group and others linked P. copri to metabolic risk13,35,36 

and postulated that the disease-causing potential of P. copri was subclade-dependent 

and population-specific37–39. We, therefore, sought to determine whether the association 

between P. copri and T2D varied across its subclades with different functional potentials. 

We first applied the pathway-specific random effects model in Anpan (ANalysis of 

microbial Phylogenies And geNes, see Methods) to identify functions encoded by P. copri 
that were differentially abundant between T2D patients vs. controls while controlling 

for its species-level abundance. We found that P. copri in T2D patients was more 

likely to carry biosynthetic functions of branched-chain amino acids (BCAAs), a group 

of diabetogenic metabolites40. These functions included the super-pathway of BCAA 

biosynthesis (BRANCHED-CHAIN-AA-SYN-PWY), L-valine biosynthesis (VALSYN-

PWY), L-isoleucine biosynthesis I (ILEUSYN-PWY, Fig. 3d), and a multifunctional enzyme 

that carries out the final step in BCAA biosynthesis (EC 2.6.1.42: Branched-chain amino 

acid aminotransferase).

Because of the known discrete sub-species structure of P. copri. we profiled its four 

subclades based on the published reference pan-genomes37 (Extended Data Fig. 7a). As 

expected, P. copri in non-Hispanic White participants in Europe and the US was dominated 

by Clade A, while a co-presence of all clades was nearly only observed in Chinese, Israeli, 

and US Hispanic populations (Extended Data Fig. 7a). We then tested whether the carriage 

of BCAA biosynthetic functions differed across the subclades and found that the abundance 

of the functions was significantly lower in P. copri dominated by Clade A, compared to 

P. copri with a co-presence of all clades (Extended Data Fig. 7b). However, we found 

that the unregulated BCAA biosynthesis in T2D patients was unique to P. copri Clade 

A and not detected in other P. copri subclades (Extended Data Fig. 7c). Taken together, 

we provided evidence that the BCAA biosynthetic capacity of P. copri is subclade and 

population-dependent, which would be otherwise undetected in the taxonomy-focused or 

community-level microbial function analysis.

Within-species phylogenetic divergence and type 2 diabetes

Next, we employed Anpan’s phylogenetic generalized linear mixed models (PGLMMs, 

Methods) to assess the extent to which within-species phylogeny accounted for inter-

individual heterogeneity in T2D risk (Supplementary Table 8). We observed that within-

species phylogenetic divergence was associated with inter-individual differences in T2D risk 

for 27 species (Fig. 4a). Several of these genetic structures were consistent with previous 

analyses41,42, while others were identified for the first time. As expected, many of the 

species contained subspecies that were specific to host geographical origins (Extended Data 

Fig. 8), aligning with the “isolation by distance” hypothesis proposing that co-dispersal 

of hosts and microbes contributes to the genetic stratification of species43. Due to this, to 

ensure the association between the within-species phylogenetic structure and T2D risk is 
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not confounded by ethno-geography, we included the cohort membership as a covariable in 

subsequent models.

Within E. rectale, we observed strong associations between strains from Southern China 

and T2D in subclade B, which is predominantly composed of strains from Chinese and 

US white participants. Subclade C, containing strains from diverse geographical origins, 

showed strong associations of a strain from the US Hispanic population and another 

from the Northern European populations with T2D (Fig. 4b). The subspecies structure 

of Coprococcus comes has not been well studied. Our phylogenetic analysis grouped C. 
comes strains into four discrete subspecies clades. In its subclade A that consisted of strains 

from China, Israel, and Sweden, two strains from Sweden and Eastern China exhibited 

significant associations with T2D (Fig. 4b). While many clusters of strains that were found 

to be strongly associated with T2D could be attributed to specific ethnic and/or geographic 

groups, we also identified exceptions. For example, both a Blautia wexlerae strain detectable 

in all the participating cohorts, as well as another strain from US Hispanic, Israeli, and 

Swedish populations, showed strong associations with T2D (Extended Data Fig. 8). These 

findings provide evidence that microbe-induced T2D risk can derive from both population-

specific and population-agnostic microbial genetics. None of the species showing strong 

subclade effects were T2D biomarker species, suggesting that analyses at the species level 

only would have overlooked critical microbe-T2D associations.

Strain-specific functional variations and type 2 diabetes

Complementary to the within-species phylogenetic analysis, we leveraged the UniRef90 

data to identify gene families associated with T2D within each species using the gene 

association model in Anpan (Supplementary Table 9 and Methods). Of note, among all the 

species with genes differentially distributed between cases and controls, only E. coli was a 

biomarker species; all other species were not biomarker species. This indicates that critical 

strain-specific functions may have been overlooked by solely focusing on species-level 

taxonomic features and community-level functions.

Taking E. coli as an example, several detected clusters of strains contain genetic markers of 

the species’ known subtypes44 (Fig. 5b). Notably, we revealed the presence of gene families 

that encode specific virulence factors of pathogenic E. coli subtypes, including adhesins, 

invasins, and toxins, within the T2D-enriched clusters. The T2D-enriched Block 5 (Fig. 5b), 

comprising strains from Chinese and Swedish populations, were enriched by gene families 

involved in various horizontal gene transfer (HGT) mechanisms, such as mobile genetic 

elements (MGEs), phages, conjugation, and genetic rearrangement, suggesting a potential 

acquisition of advantageous traits and virulence factors by E. coli strains through HGT45,46. 

Specifically, two virulence-related gene families were identified: one associated with 

plasmid virulence (UniRef90_A0A376NZ25) in enteroaggregative E. coli (EAEC), known 

for inducing inflammatory responses and mucosal toxicity47, and another that contains 

genes encoding a lipopolysaccharide biosynthesis protein (UniRef90_A0A3E1VFS6) 

linked to heightened inflammatory responses at mucosal and peripheral levels48. In T2D-

enriched Block 3, we observed enrichment in gene families that contain genes encoding 

a rearrangement hotspot element (rhsA; UniRef90_A0A377DDJ9), their associated YD-
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peptide repeat (UniRef90_A0A376MP41) and vgrG (UniRef90_A0A377LHH4) proteins, 

as well as Ail/Lom family proteins (UniRef90_A0A2G9A1M3). rhsA encodes immunity 

proteins delivered into targeted eukaryotic prey cells through a VgrG-dependent process 

in enterohemorrhagic E. coli (EHEC)49, while Ail/Lom family proteins serve virulence 

functions in EAEC50. Blocks 1 and 4, enriched in T2D patients from Chinese and US 

Hispanic populations, contained gene families encoding specific adherence factors of 

pathogenic E. coli, including a putative adhesin (UniRef90_A0A2Y0X8H8) and a fimbrial 

protein (UniRef90_A0A1Y4J7A6). The sole T2D-depleted cluster (Block 2) from diverse 

geographic origins contained various gene families associated with microbial response to 

environmental stress. These genes likely confer the strains with adaptive advantages, such as 

evasion from harmful environments and optimization of nutrient utilization51.

To extend this characterization of strain-specific biological processes across species, we 

performed a gene set enrichment analysis based on the gene association model results (Fig. 

5a, Extended Data Fig. 9, and Supplementary Table 10; Methods). A total of 31 GO terms 

were associated with T2D (FDR <0.10). Extending our findings in E. coli, GO terms related 

to HGT explained the strain-level diversity in multiple species. Among T2D patients, the 

enriched GO terms encompassed biological processes related to glycolysis, biosynthesis 

of bacterial structural components, and those crucial for survival in adverse conditions, as 

well as virulence factor and antibiotic resistance genes. Additionally, taking E. rectale as an 

example, we found genes involved in flagellum-dependent cell motility and chemotaxis were 

more prevalent in T2D patients, indicating strain-specific adaptations to oxidative stress 

and inflammation in the gut52,53, while the GO term of quorum sensing was enriched in 

normoglycemic controls, suggesting survival advantages of the strains54.

Discussion

Over the last decade, a compelling body of evidence on the gut microbiome and T2D 

has emerged, generating significant interest in the potential of the microbiome for clinical 

applications in understanding, preventing, and treating T2D. However, the literature has 

been inconsistent and often focused on high-level community composition, potentially 

impeding deeper functional insights and translational efforts. To overcome these challenges, 

we undertook what we believe is, to date, the largest and most demographically diverse 

comparison of well-characterized human subjects. Our study assessed overall microbial 

community structure, specific microbial taxonomic and functional features, and strain-

specific functions in an international collection of population-based microbiome studies 

of participants with T2D, prediabetes, and normoglycemic status within the MicroCardio 

Consortium. Our cross-cohort meta-analysis identified phylogenetically diverse, species-

level microbial features of T2D, of which a vast majority are newly identified. In 

addition, community-level functional shifts encompassing diverse pathways to T2D were 

observed, such as upregulated biosynthesis of immunogenic bacterial structural components, 

perturbations in glycolysis, and downregulated butyrate fermentation (see Supplementary 

Text for further discussion).

Importantly, our strain-resolved analyses showed within-species heterogeneity in microbe-

T2D associations and identified strain-specific functions that explained the heterogeneity, 
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such as those related to HGT, BCAA biosynthesis, and functions conferring fitness 

advantages in a gut environment with oxidative stress and inflammation. While animal 

models have provided multiple lines of evidence for the causal role of strain-specific 

functionality in metabolic conditions55, previous microbiome studies in T2D have not 

examined strain-level diversity. This is largely due to a prior lack of reliable strain 

identification methodologies combined with statistical approaches taking advantage of them. 

Our study revealed differences in specific genes carried by a species in T2D patients 

compared to their normoglycemic counterparts. Many of the identified functional elements, 

such as those related to phages, HGT, and MGEs, belong to processes leading to within-

species variation, i.e., mutations and gene flow, consistent with the established knowledge 

on the introduction of genetic variability into otherwise identical lineages of clonal daughter 

cells of microorganisms15. Furthermore, through HGT, microbes can acquire new traits that 

contribute to gut microbial evolution, conferring new phenotypes like virulence, symbiosis, 

and competitive fitness, which may give rise to strains with varying associations with T2D.

Our study has several strengths, including a large and diverse study population and uniform 

processing and analysis methodologies, and approaches to microbiome strain epidemiology. 

However, it is observational in nature, a limitation shared by many such microbiome 

investigations. Despite adjusting for major confounders in our statistical models, we were 

unable to control for covariates such as diet, physical activity, smoking, or medications 

other than metformin and insulin. In addition, despite applying batch correction and meta-

analysis to minimize the batch effects, we cannot eliminate their influence due to the 

inconsistent methods of sample collection, DNA processing, and DNA sequencing used 

across cohorts. Another limitation is our lack of subtyping of T2D and prediabetes based on 

the phenotypic and pathologic heterogeneity inherent to the conditions. Furthermore, while 

we identified microbial genes that are implicated in adaptive responses to environmental 

selective pressures and horizontal gene transfer are associated with T2D risk and account 

for strain-level functional variation, our study did not directly measure the magnitude of 

selective pressure or horizontal gene transfer in a specified environment. Last, although our 

study included multiple independent populations and presented cohort-specific results that 

show reproducibility across the populations, the absence of additional replication cohorts 

limits our ability to test the generalizability of our findings further.

While our study does not establish causal linkages and should be interpreted as hypothesis-

generating, it offers the most comprehensive evidence to date of the gut microbiome’s 

involvement in the pathogenesis of T2D from the population study perspective. These 

results lay the groundwork for future mechanistic studies. Additionally, we provide a 

more nuanced understanding of the biology and pathogenicity of microorganisms by 

studying the genetic makeup and characteristics of microbial strains, bringing us one 

step closer to causality. Our findings provide evidence for the gut microbiome’s potential 

functional role in the pathogenesis of T2D, underscoring the identification of taxonomic and 

functional biomarkers for future diagnostic applications. Furthermore, our examination of 

strain-specific functional genes builds upon prior mechanistic research in preclinical models, 

and we hope it will facilitate future investigations aimed at precisely characterizing the role 

of gut microorganisms in the development of T2D.
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Methods

Ethics statement

This study included de-identified data from participants who had consented to the use of 

their anonymized information for research purposes. Approval for these study protocols 

was granted by the Institutional Review Boards. The study protocols of the Health 

Professionals Follow-Up Study (HPFS) and the Nurses’ Health Study II (NHSII) were 

approved by the institutional review boards of Brigham and Women’s Hospital and the 

Harvard T.H. Chan School of Public Health (IRB protocol no. HSPH 22067-102 and IRB 

protocol no. 1999P001636/BWH). The Soroka Medical Center Medical Ethics Board and 

Institutional Review Board (IRB protocol no. 0280-16-SOR) and the institutional review 

boards of Brigham and Women’s Hospital (IRB protocol no. 2021P002635) approved 

the study protocol of the DIRECT-PLUS Study. The Institutional Review Boards of 

Albert Einstein College of Medicine (IRB protocol no. 2013-2702) approved the study 

protocols of the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Ethical 

approval for Fromentin_2022 (MetaCardis Study) was obtained from the Ethics Committee 

CPP Ile-de France, the Ethical Committees of the Capital Region of Denmark, and the 

Ethics Committee at the Medical Faculty at the University of Leipzig. The protocol of 

Karlsson_2013 was approved by the ethics committee at Sahlgrenska University Hospital. 

The study protocol of Qin_2012 (Shenzhen Cohort) was approved by the Ethical Committee 

for Clinical Research from the Peking University Shenzhen Hospital, Shenzhen Second 

People’s Hospital, and the Medical Research Center of Guangdong General Hospital. The 

study protocol of Wu_2020 was approved by the Ethics Review Board in Gothenburg. 

The study protocol of Zhong_2019 was approved by the Institutional Review Board of 

BGI-Shenzhen and the ethical review committee of the Suzhou Centre for Disease Control 

and Prevention.

Description of Participating Cohorts

Health Professionals Follow-Up Study (HPFS).—HPFS is an ongoing prospective 

cohort study of 51,529 US male health professionals initiated in 1986. The participants’ diet, 

lifestyle, and health-related information were collected at baseline and updated biennially. 

The HPFS microbiome sub-study comprised 307 males aged 45 to 80 years free from 

coronary heart disease, stroke, cancer, or major neurological disease. The participants 

provided up to two pairs of self-collected stool samples from 2011 to 2013.

Nurses’ Health Study II (NHSII).—NHSII is an ongoing prospective cohort study 

that enrolled 116,429 female registered nurses in 1989. The cohort collected participants’ 

information on diet, lifestyles, and medication use, ascertained diseases at baseline, and 

updated the information biennially using mailed questionnaires. The NHSII Mind Body 

Study enrolled 213 participants free from coronary heart disease, stroke, cancer, or major 

neurological disease and shared the same study design and protocols for assays with the 

HPFS microbiome sub-study. All the participants provided up to two pairs of self-collected 

stool samples from 2013 to 2014.
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DIRECT-PLUS.—The DIRECT-PLUS Study was an 18-month randomized controlled trial 

that tested the effects of Mediterranean dietary patterns on cardiometabolic risk56. This 

study only included metagenomes measured from the fecal samples collected before the 

interventions to rule out the possibility that intensive dietary interventions distorted the 

gut microbiome and T2D associations. In 2017, the DIRECT-PLUS Study enrolled 294 

females and males who met the eligibility criteria. These criteria consisted of being over 

the age of 30 with either abdominal obesity or dyslipidemia. In addition, participants who 

used antibiotics two months before the fecal sample collection were excluded from the 

microbiome study.

Hispanic Community Health Study/Study of Latinos (HCHS/SOL).—HCHS/SOL 

is a prospective, population-based cohort that recruited 16,415 Hispanic/Latino males and 

females aged 18 to 74 between 2008 and 2011. HCHS/SOL recruited participants with 

diverse national origins, including Cuban, Dominican, Puerto Rican, Mexican, and Central 

and South American, from randomly selected households near the four field centers across 

the US. The HCHS/SOL Gut Origins of Latino Diabetes (GOLD) ancillary study was 

conducted between 2016 and 2018 and enrolled 3,057 participants from the HCHS/SOL 

cohort, and the enrollment coincided with the second in-person visit period conducted 

between 2014 and 2017.

Fromentin_202216 (MetaCardis).—We included publicly available sequence and 

phenotypic data from this study. MetaCardis enrolled ischemic heart disease patients and 

control participants without cardiovascular disease aged 18-75 years in Denmark, France, 

and Germany between 2013 and 2015. We restricted our analysis to 1,005 males and females 

in the control group to circumvent the confounding due to ischemic heart disease in the 

associations between the gut microbiome and T2D. The exclusion criteria of MetaCardis 

included 1) antibiotic use in the past three months, 2) history of abdominal cancer, 3) 

intestinal resection except for appendectomy and inflammatory or infectious diseases, 

including hepatitis B, hepatitis C or HIV, 4) history of organ transplantation, 5) receipt 

of immunosuppressants, 6) estimated glomerular filtration rate <50 ml/min/1.73 m2, or 7) 

drug or alcohol addiction.

Karlsson_20135.—Our study included publicly available sequence and phenotypic data 

from this study. This study included 145 females aged 70 years in 2009 with T2D, 

prediabetes, and normoglycemic status from a cohort of 2,595 females in Gothenburg, 

Sweden. The exclusion criteria included chronic inflammatory disease, antibiotic treatments 

during the preceding three months, and type 1 diabetes. This study collected data on disease 

histories, medication use, and smoking habits and performed anthropometric measurements.

Qin_20126 (Shenzhen Cohort).—We included the publicly available sequence data 

from this study and obtained additional data on biomarkers and medication use from the 

authors. The Shenzhen Cohort recruited 368 female and male individuals with a mean 

age of 50 years with T2D, prediabetes, and normoglycemic status in Shenzhen, China. 

Participants who received antibiotic treatment within two months before sample collection 

were excluded from this study.
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Wu_202010.—Our study included sequence data stored at a public repository. The 

original authors transferred phenotypic and biomarker data to us. This study included 

two cohorts that recruited random sample populations of males and females aged 50-64 

years from the Gothenburg area, Sweden. The first cohort comprised 1,046 participants, 

and the second comprised 484 participants. The second cohort was a subset of the 

Swedish Cardiopulmonary Bioimage Study-Gothenburg cohort. Both cohorts included 

newly diagnosed, diabetes-treatment naïve T2D and prediabetes cases and normoglycemic 

controls. The exclusion criteria included 1) known diabetes, 2) inflammatory diseases, such 

as Crohn’s disease, ulcerative colitis, and rheumatic diseases, 3) treatment with steroids or 

immunomodulatory drugs, 4) cancer (unless relapse-free for the preceding five years), 5) 

cognitive dysfunction, 6) treatment for infectious diseases and antibiotic use in the past three 

months. In addition, participants who did not understand Swedish and were born outside 

Sweden were excluded.

Zhong_201911 (Suzhou Cohort).—Our study included sequence data stored at a public 

repository, and additional data on biomarkers and medication use in the Suzhou Cohort 

were obtained from the authors. The Suzhou Cohort recruited community-dwelling males 

and females (mean age =62 years) in Suzhou, including 97 normoglycemic participants, 

80 prediabetes participants, and 77 T2D patients. All the participants with prediabetes and 

T2D were newly diagnosed and treatment-naïve. Additional enrollment criteria include 1) 

age 40 or older; 2) free of cardiovascular disease, severe renal disease, cancer, type 1 or 

monogenic diabetes, and other autoimmune diseases; and 3) no antibiotic use during the 

past two months. This study conducted physical examinations to collect data on height, 

weight, blood pressure, and waist and hip circumference and administered questionnaires 

that inquired about demographics, medication history, family history, and lifestyles.

Fecal sample collection, sample handling, and shotgun metagenomic sequencing HPFS 
and NHSII.

Both cohorts collected the first pair of stool samples from two consecutive bowel 

movements, with a time interval of 24-72 hours between them. The second pair of samples 

were collected roughly six months following the first collection. Details on stool sample 

collection and immediate ex-situ conservation of metagenomic components, laboratory 

handling, and paired-end shotgun sequencing of DNA can be found in our previous 

publications35. Briefly, each participant preserved each bowel movement in a container 

with RNAlater. The collected stool samples were shipped overnight to the Broad Institute of 

MIT and Harvard and then stored in freezers at −80 °C until DNA extraction. To eliminate 

the excess of RNAlater, we centrifuged stool aliquots at maximum speed and added 110 

μl of Tris-EDTA buffer with Proteinase K (Qiagen) and lysozyme (Sigma-Aldrich) (15 mg 

ml−1) to the pellet with incubation on a laboratory shaker for 10 min. Mechanical lysis 

was performed by adding a 1.2 ml RLT buffer with 2-mercaptoethanol (Qiagen) and 1 ml 

of 0.1 mm glass beads (BioSpec Products). Subsequently, the mixture was subjected to 

bead beating for 3 min. The debris was removed by centrifugation, and the supernatant 

was used in Qiagen AllPrep spin columns (Qiagen). A NanoDrop 1000 (Thermo Fisher 

Scientific) was employed to determine the DNA concentration, quality, and purity. We used 
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the Nextera XT DNA Library Preparation Kit for library preparation. The metagenomic 

shotgun sequencing was performed using the Illumina HiSeq platform.

DIRECT-PLUS.—Stool samples were obtained at the study site, immediately frozen to 

−20 °C for 1-3 days, and subsequently transferred to −80 °C in preparation for DNA 

extraction. The sample processing and shotgun metagenomic sequencing were performed at 

Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, 

Houston, TX, USA. DNA extraction was performed using Qiagen DNeasy PowerSoil Pro 

Kit from fecal samples. Libraries were constructed using Illumina DNA Prep, with each 

sample being assigned a unique barcode using kit-appropriate Unique Dual Index adapter 

sets. Completed libraries were QC’d using a combination of PicoGreen (Thermo), Qubit 

(Invitrogen), Fragment Analyzer (Agilent), and Tapestation (Agilent) to assess concentration 

and fragment size distribution. Shotgun sequencing of pooled libraries was performed via 

the Illumina NovaSeq platform using the 2x150 bp paired-end protocol. Raw sequences 

were demultiplexed and processed using BBDuk to quality trim, remove Illumina adapters, 

and filter out PhiX reads. Trimmed FASTQ files were then mapped to a combined PhiX 

(standard Illumina spike in) and host reference genome database using BBMap to identify 

and remove host/PhiX reads.

HCHS/SOL.—This study used a self-collection kit to collect stool samples (ABC Medical 

Enterprises, Inc., Rochester, MN). All the stool samples were shipped to Albert Einstein 

College of Medicine, aliquoted into 1 ml tubes, and frozen at −80 °C after collection. 

The sample handling and shotgun sequencing conducted by the Knight laboratory at the 

University of California San Diego was published before57. Briefly, DNA was extracted 

from fecal samples following the Earth Microbiome Project protocol. Input DNA was 

quantified in a 384-well plate using a PicoGreen fluorescence assay (ThermoFisher, Inc.) 

and normalized to 1 ng using an Echo 550 acoustic liquid-handling robot (Labcyte, Inc.). 

Enzyme mixes for fragmentation, end repair, and A-tailing, ligation, and PCR were added 

using a Mosquito HV micropipetting robot (TTP Labtech). Fragmentation was carried 

out at 37°C for 20 min, followed by end-repair and A-tailing at 65°C for 30 min. 

Sequencing adapters and barcode indices were introduced in two steps by following the 

iTru adapter protocol. Universal “stub” adapter molecules and ligase mix were applied to 

the end-repaired DNA using the Mosquito HV robot. The ligation was performed at 20°C 

for one hour. Unligated adapters and adapter dimers were eliminated using AMPure XP 

magnetic beads and a BlueCat purification robot (BlueCat Bio). Next, individual i7 and i5 

were added to the adapter-ligated samples using the Echo 550 robot. Eluted bead-washed 

ligated samples are then added to the PCR master mix and PCR amplified for 15 cycles. 

The amplified and indexed libraries are purified again using magnetic beads and the BlueCat 

robot, resuspended in water, and transferred to a 384-well plate using the Mosquito HTS 

liquid-handling robot for library quantitation, sequencing, and storage. Samples are then 

normalized using a PicoGreen fluorescence assay before being prepared for sequencing on 

the Illumina NovaSeq platform.

Fromentin 2022.—Fecal samples were collected by participants at home and immediately 

stored at −20 °C. These samples were transported on dry ice and subsequently frozen at 
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−80°C within 4-24 hours after arrival at the biobanks. DNA was extracted following the 

IHMS guidelines (SOP 07 V2 H)58. Metagenomic sequencing was performed using the ion 

proton technology (Thermo Fisher Scientific), resulting in 23.3 ± 4.0 million (mean ± s.d.) 

single-end short reads with an on-average length of 150 bases.

Karlsson 2013.—Fecal samples were collected at the participants’ homes, shipped to 

the laboratory one day after the collection, and stored at −80 °C until DNA extraction. 

The extraction of DNA followed the method in Salonen et al.59. DNA concentration was 

determined using a Nanodrop instrument (Thermo Scientific), and the DNA quality was 

evaluated by agarose gel electrophoresis. All samples were sequenced on the Illumina 

HiSeq2000 instrument at GATC Biotech. Up to 10 samples were pooled together in a single 

lane for sequencing. Libraries were prepared with a targeted fragment length of around 

300 bp. Paired-end reads were then generated with 100 bp in both the forward and reverse 

directions.

Qin 2012.—Fresh fecal samples were collected at the participants’ homes, immediately 

frozen in a home freezer for less than 24 hours, shipped to the lab, and stored at −80°C 

until DNA extraction. A frozen aliquot (200 mg) of each fecal sample was reconstituted in 

a solution consisting of 250 μl of guanidine thiocyanate, 0.1 M Tris (pH 7.5), and 40 μl 

of 10% N-lauroyl sarcosine. DNA was extracted using the method described in Courtois 

et al.60. DNA concentration and molecular weight were assessed by utilizing a nanodrop 

instrument (Thermo Scientific) and agarose gel electrophoresis. Libraries were prepared 

with an insert size of 350 bp for each sample. The shotgun sequencing was performed using 

Illumina GAIIx and HiSeq 2000. Paired-end reads were generated with 75-90 bp in the 

forward and reverse directions. From the raw reads, adaptor contamination and those of low 

quality were removed, and the remaining reads were filtered to exclude human host DNA, 

using the human genome reference (hg18) as a reference.

Wu 2020.—This study collected stool samples at the participants’ homes and stored them 

at room temperature for a maximum of 36 hours before storage at −80°C. The extraction 

of DNA followed the method in Deschasaux et al.61. Shotgun metagenomic sequencing was 

performed on an Illumina HiSeq 4000 instrument (150 bp; paired-end) at GATC Biotech.

Zhong 2019.—The Suzhou Cohort collected stool samples in 2 ml fecal containers, 

immediately shipped the samples to the laboratory on dry ice and stored them at −80 °C 

until DNA extraction. The stool DNA was extracted following the MetaHIT protocol60. The 

DNA concentration was estimated by Qubit (Invitrogen). This study generated single-strand 

circular DNA libraries following the method described in Fang et al.62 and performed 

shotgun metagenomic sequencing using the BGISEQ-500 platform.

Measurements of circulating biomarkers

HPFS and NHSII.—HPFS and NHSII collected two fasting blood samples during the 

same period as fecal samples collection. Participants were asked to fast for 12 hours 

before the blood collection. Hemoglobin A1c (HbA1c) was measured by turbidimetric 

immunoinhibition using packed red cells (Roche Diagnostics), which is a standard approved 
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by the US National Glycohemoglobin Standardization Program and FDA for clinical 

use. High-sensitive C-reactive protein (hs-CRP) concentrations were determined using an 

immunoturbidimetric high-sensitivity assay using reagents and calibrators from Denka 

Seiken (Niigata, Japan) with assay day-to-day variability between 1 and 2%. TC, HDL-c, 

and TG were measured using standard methods with reagents from Roche Diagnostics 

(Indianapolis, IN) and Genzyme (Cambridge, MA). LDL-c was calculated using the 

Friedewald equation.

DIRECT-PLUS.—Blood samples were collected after a 12-hour fast, centrifuged, and 

stored at −80°C pending analysis. Serum TC, HDL-c, LDL-c, and TG were determined 

enzymatically with a Cobas-6000 automatic analyzer (Roche). Plasma concentrations of 

hs-CRP were measured by ELISA (DiaMed). Plasma glucose levels were measured using 

the Roche GLUC3 (hexokinase method). Plasma insulin levels were quantified with an 

enzyme immunometric assay (Immulite automated analyzer, Diagnostic Products). All the 

assays were performed at the University of Leipzig, Germany.

HCHS/SOL.—Participants fasted for at least 8 hours and refrained from smoking before 

the blood sample collection in the morning. The Central Laboratory of HCHS/SOL at the 

University of Minnesota Advanced Research and Diagnostic Laboratory in Minneapolis, 

MN, performed the assays on the blood specimens. Fasting insulin was measured using 

two commercial immunoassays (ELISA, Mercodia AB, Uppsala, Sweden; and sandwich 

immunoassay on a Roche Elecsys 2010 Analyzer, Roche Diagnostics, Indianapolis, IN). 

Hs-CRP was measured by using an immunoturbidimetric method (Roche Diagnostics). 

Serum TC was measured using a cholesterol oxidase enzymatic method, and HDL-c was 

measured using a direct magnesium/dextran sulfate method. Plasma glucose was measured 

using a hexokinase enzymatic method (Roche Diagnostics). LDL-c was calculated using the 

Friedewald equation. HbA1c was measured using a Tosoh G7 Automated HPLC Analyzer 

(Tosoh Bioscience). After the initial venipuncture, those without self-reported diabetes 

and/or not taking antihyperglycemic medications and/or fasting plasma glucose (FPG) ≤ 

8.4 mmol/L underwent a standard 75 g two-hour oral glucose tolerance test (OGTT) and 

2-hour-post oral load plasma glucose was measured.

Fromentin 2022.—Blood was collected in the morning after an overnight fast. Plasma and 

serum samples were stored at the clinical centers at −80°C until assays. Standard enzymatic 

methods were employed to measure fasting plasma glucose, TC, HDL-c, TG, and HbA1c. 

LDL-c was measured enzymatically for German participants or by the Friedwald equation 

for French and Danish participants. Hs-CRP was measured using an Image Automatic 

Immunoassay System (Beckman Coulter).

Karlsson 2013.—The participants were asked to fast overnight, avoid heavy physical 

activity during the previous day, and avoid smoking during the morning before the test. 

Serum and plasma were frozen in aliquots at −70 °C within four hours after blood sample 

collection. Fasting capillary blood glucose was measured immediately using the modified 

glucose dehydrogenase reaction (Hemocue AB, Ängelholm, Sweden). TC, HDL-c, and 

TG were determined by established methods. LDL-c was calculated using the Friedewald 
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equation. HbA1c was determined with high-pressure liquid chromatography on a Mono S 

HR 5/5 column (Amersham Biosciences, Piscataway, NJ, USA, and Pharmacia, Uppsala, 

Sweden). Plasma insulin was assayed using a 1235 AutoDELFIA automatic immunoassay 

system with a two-step time-resolved fluorometric assay (Kit No. B080-101).

Qin 2012.—This study collected fasting blood samples following the protocol 

recommended by WHO in a hospital in Shenzhen, China. Fasting blood glucose, serum 

insulin, HbA1c, TG, TC, HDL-c, and LDL-c were determined using standard methods.

Wu 2020.—Participants went through a screening examination that included a fasting blood 

collection and a 2-hour 75-g OGTT. The participants were asked to fast overnight, avoid 

heavy physical activity during the previous day and in the morning, and avoid smoking 

in the morning. Blood glucose was measured with the glucose dehydrogenase technique 

(Hemocue, Glucose 201 DM, Hemocue AB, Ängelholm, Sweden). Fasting plasma insulin 

level was measured using Human Insulin ELISA Kit (Mercodia AB). HbA1c, TG, TC, 

HDL-c, and LDL-c were determined using standard methods.

Zhong 2019.—The participants fasted overnight before the blood sample collection. 

Plasma and serum samples were stored at −80°C before assays. This study also performed 

a 2-hour 75-g OGTT. FPG, plasma insulin, C-peptide, HbA1c, leptin, adiponectin, TG, 

TC, HDL-c, and LDL-c were measured using standard methods at a clinical laboratory in 

Nanjing, China.

Harmonization of the diagnosis of type 2 diabetes, biomarkers, and covariables

Based on the recommendations by the American Diabetes Association2, we harmonized the 

diagnosis of T2D using the following criteria:

• T2D diagnosis self-reported by participants, confirmed by physician review of 

medical records or documented in medical records

Or

• Use of antidiabetic medications (metformin not included) self-reported by 

participants or documented in medical records

Or

• FPG ≥126 mg/dL (7.0 mmol/L)

Or

• 2-hour plasma glucose ≥200 mg/dL (11.1 mmol/L) during 75-g OGTT

Or

• HbA1c ≥6.5% (48 mmol/mol)

We harmonized the diagnosis of prediabetes using the following criteria:

• FPG from 100 mg/dL (5.6 mmol/L) to 125 mg/dL (6.9 mmol/L)

Or
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• 2-hour plasma glucose during 75-g OGTT from 140 mg/dL (7.8 mmol/L) to 199 

mg/dL (11.0 mmol/L)

Or

• HbA1c from 5.7 to 6.4% (39 to 47 mmol/mol)

We included all normoglycemic participants with microbiome measurements from our 

de novo datasets. We calculated indices for insulin sensitivity, the homeostasis model 

assessment of insulin resistance (HOMA-IR), and β-cell function, the homeostasis model 

assessment of β-cell function (HOMA-B) based on fasting insulin and glucose levels 

using the formulas from Matthews et al.63. Body mass index was calculated as weight in 

kilograms divided by the square of the height in meters. Metformin and insulin were either 

self-reported by the participants or documented in medical records. For studies that did not 

report medication uses, we obtained the data from the authors.

Sequence processing and taxonomic and functional profiling

We processed the sequence data from every participating cohort and generated 

taxonomic and functional profiles by applying the bioBakery 3 meta’omics workflow17. 

In brief, sequence reads were passed through the KneadData v0.7.0 quality control 

pipeline (http://huttenhower.sph.harvard.edu/kneaddata) with default parameters to filter 

out low-quality read bases and reads of human origin. Taxonomic profiling was 

performed using MetaPhlAn 3.0 (http://huttenhower.sph.harvard.edu/metaphlan3). The 

species-specific database of markers was built using 99,237 reference genomes representing 

16,797 species. We performed functional profiling by applying HUMAnN 3.0.0 (http://

huttenhower.sph.harvard.edu/humann3). Briefly, for each sample, taxonomic profiling is 

used to identify detectable organisms. Reads are recruited to sample-specific pangenomes, 

including all gene families in detected microbes, using Bowtie264. Unmapped reads are 

aligned against UniRef9065 using DIAMOND translated search66. Hits are counted per gene 

family and normalized for length and alignment quality. For calculating abundances from 

reads that map to more than one reference sequence, search hits are weighted by significance 

(alignment quality, gene length, and gene coverage). UniRef90 abundances from both 

the nucleotide and protein levels were then i) mapped to level 4 Enzyme Commission 

(EC) nomenclature and ii) combined into structured pathways from MetaCyc67. We used 

the MinPath68 and gap-filling options in HUMAnN 3. Our taxonomic and functional 

profiling resulted in 944 microbial species, 549 MetaCyc pathways, 2,873 ECs, and 775,402 

UniRef90 gene families before quality control in the combined dataset.

To profile Prevotella copri subclades, we built the pangenome of subclades of P. copri 
from Tett et al.37 and used them to identify subclade-specific marker genes for MetaPhlAn 

profiling. The pangenomes were built by categorizing the coding sequences into UniRef90 

clusters when a 90% amino acid identity match was found within the UniRef dataset 

or by de novo clustering all remaining sequences at 90% amino acid identity following 

the Uniclust90 criteria69. From the resulting UniRef90 and Uniclust90 gene families, we 

subsequently identified core gene families and then unique marker genes for each subclade. 

MetaPhlAn taxonomic profiling used these markers to detect the presence of a subclade in 

metagenomes based on the detection via read mapping of a sufficient fraction of marker 
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genes (default 20%) and quantifies their relative abundance based on the within-sample-

normalized average coverage estimations.

Batch effect correction

We corrected batch and study effects in the metagenomic data using a method from 

the MMUPHin workflow18 specifically designed for zero-inflated microbiome sequencing 

profiles (MMUPHin_Correct). In addition, the method can differentiate between technical 

effects (batch, study) vs. covariates of biological interest. This method extended the 

batch correction method based on linear models for gene expression data70 by adding 

a binary zero-count indicator. Metagenomic data as the read count was modeled with 

respect to both batch and study variables and biologically relevant covariates, including 

T2D status. The batch-specific location and scale parameters were modeled with normal 

and inverse-gamma priors, respectively. Hyperparameters were estimated with empirical 

Bayes estimators. Per-sample feature counts were then re-normalized to keep sample read 

depth unchanged post-correction. We quantified the percentages of the total variation in 

the gut microbiome community explained by batch and study effects before and after the 

correction using the permutational multivariate analysis of variance (PERMANOVA; n=999 

permutations), as implemented by the ‘adonis’ function in the R package vegan. In addition, 

we performed principal coordinates analyses (PCoA) to visualize the study effect on the 

microbial community structure based on Bray-Curtis dissimilarity metrics calculated from 

species-level microbiome data using the vegdist package.

Statistical Analyses

To determine variability in the relative abundance of taxonomy and functional features, 

we calculated the Bray-Curtis (BC) dissimilarity metric for each sample. We applied 

PERMANOVA to quantify the percentage of variance in each data type of microbial 

communities explained by T2D, plasma biomarkers, and covariables based on the BC 

dissimilarity metric using the adonis function in the R package vegan. Notably, this study 

included two cohorts with repeated measurements of the gut microbiome from fecal samples 

longitudinally collected at different times, NHSII and HPFS.

In the microbial feature association analysis, we first performed quality controls for 

taxonomic and functional features before including them in the subsequent analyses. For 

a microbial species or a MetaCyc pathway to qualify for downstream analyses, it needed 

to be present in at least 10% of samples with that feature detectable at a minimum 

relative abundance of 0.0002. The criterion for ECs was that at least 10% of samples 

with that feature were detectable at a minimum relative abundance of 0.00002. In addition, 

we removed functional features with high correlations with others by taking the most 

abundant feature from each cluster as its representative. Because we were more interested 

in community-level shifts in microbial features, we applied “dominance filtering,” i.e., to 

remove functional features primarily encoded by a single species (details of the filtering 

are in Supplementary Text). Furthermore, we removed taxonomic and functional features 

present in only one participating cohort. This analysis included a total of 187 species, 199 

MetaCyc pathways, and 1092 enzymes that passed quality control criteria and were present 
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in at least two (for species) or three (for MetaCyc pathways and enzymes) participating 

cohorts.

To identify microbial features significantly associated with T2D across the ten cohorts 

after batch effect correction, we built a differential abundance model while controlling 

for covariates using the ‘lm_meta’ function in the MMUPHin package. To account for 

the repeated measurement design, we employed linear mixed models in the analyses to 

identify taxonomic and functional features of T2D. Specifically, MMUPHin lm_meta first 

employs the linear mixed effects modeling with the R package MaAsLin2 to perform 

per-feature tests within individual cohorts19. The models adjusted for covariables as fixed 

effects and included participants’ identifiers as random effects if a cohort repeatedly assayed 

the microbiome. The rationale of a meta-analysis approach is described in Supplementary 

Text. In the models, we treated T2D status as an ordinal variable (normoglycemic controls, 

prediabetes, or T2D); the P-values and beta coefficients generated from this model indicate 

the significance and effect estimates of examining whether the abundance of a species 

changes across different T2D statuses in a dose-response manner. In addition, we modeled 

T2D status as a binary variable (normoglycemic controls or T2D) within a subset of the 

study population that excluded individuals with prediabetes. MMUPHin then performed a 

meta-analysis, i.e., to synthesize beta coefficients and standard errors from each individual 

cohort, that accounts for potential study differences and identifies consistent signals. 

Subsequently, the results were corrected for multiple hypothesis testing by controlling the 

false discovery rate (FDR) using the Benjamini-Hochberg method with a target rate of 0.10.

To examine whether the inclusion of gut microbial features improved the classification 

between T2D and controls, we employed the MetAML package71, utilizing the random 

forest algorithm implemented in Scikit-Learn v.0.19.0. To mitigate potential biases from 

metformin use, we separately assessed classification performance for metformin-treated and 

-naïve T2D cases. The evaluation of classification performance involved two models: a basic 

model incorporating age, sex, and BMI, and a second model that additionally integrated 

species-level taxonomic relative abundance profiles. The quantification of classification 

performance was calculated using the area under the receiver operating characteristic curve 

(AUC). We performed a leave-one-data-set-out analysis28 in which each dataset, in turn, 

was set aside for cross-study validation. The random forest classifiers were trained on nine 

datasets combined and validated on the left-out dataset for each dataset in turn. More details 

of the random forest model are in Supplementary Text.

We applied the pathway random effects model to identify pathways that differed 

substantially in abundance between groups of a phenotype within a species while accounting 

for the correlation between pathway and species abundance. The model formula is:

log10 pathway abundance ∼ log10 species abundance + 1 pathway + 0 + group pathway + intercept

We log-transformed and discarded zero values of the abundance of a pathway before 

modeling. The relationship between species abundance and pathway abundance is measured 

globally using data from all pathways in the species. We set pathway-specific intercepts and 

slopes by including them as random effects and partially pooled the intercepts and slopes 

Mei et al. Page 20

Nat Med. Author manuscript; available in PMC 2024 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



across pathways. The model was fit with Stan and used standard random effects model 

syntax in R package lme4. We used three criteria to define the “hit” pathways: 1) the 98% 

posterior intervals on the pathway: group effect excludes zero, 2) the absolute posterior 

mean exceeds 0.20 (i.e., a 1.58-fold increase or decrease), and 3) the estimated relationship 

between species abundance and pathway abundance is positive.

We used Anpan (ANalysis of microbial Phylognies And geNes, https://

huttenhower.sph.harvard.edu/anpan) to conduct the subspecies (strain) level analyses. All 

the analyses were based on the abundance of UniRef90 gene families within a species in all 

the included samples profiled by the HUMAnN3 v3.0.0. We performed adaptive filtering to 

remove metagenomes where the species of interest was absent or insufficiently covered by 

sequencing before statistical analysis. The filtering strategy utilized the overall gene profile 

of each species in each sample to classify the species as “well covered” or “poorly covered” 

in that sample. The classification applied the k-means algorithm based on the distributions of 

two statistics for each species-sample combination: the number of non-zero observations and 

the median log abundance of the non-zero measurements.

We fit phylogenetic generalized linear mixed models (PGLMMs) in Anpan to quantify the 

effect of within-species heterogeneity in the association between subclades or strains and 

T2D using the probabilistic programming language in Stan72. First, Anpan calculates the 

Euclidean distance between samples based on the gene presence/absence matrices in each 

species after dimension reduction by principal components analysis. Second, phylogenetic 

trees were generated using the neighbor-joining function in the R packages ape73 and ggtree 

(v3.4.4). Third, using the phylogenetic trees as inputs, we fit PGLMMs with the T2D status 

as the dependent variable and the phylogeny as the independent variable, with age, sex, 

BMI, study, and metformin use as covariates. The empirical prior values for the covariate 

coefficients were set as follows: 0.1 for age, 0.2 for sex, 0.167 for BMI, 0.2 for study, and 

0.3 for metformin use.

PGLMMs include a phylogenetic term as a sample-specific random effect. The values in the 

phylogenetic term follow a pre-specified correlation structure derived from the phylogenetic 

tree. The spread of the phylogenetic terms is characterized by a noise parameter that 

quantifies the contribution of the tree to the model fit. We built two models, one with 

and the other without incorporating within-species phylogeny and used Stan to estimate the 

parameter values and leave-one-out expected log pointwise predictive density (ELPD74), a 

model comparison criterion akin to the Akaike Information Criterion) to determine if adding 

the phylogenetic information improves model fit. Phylogenies of species linked to the T2D 

were identified based on the criterion of the difference in ELPD (ΔELPD) ≥ 4 and ΔELPD - 

2×standard error (SE) of ΔELPD > 0.

To assess the relationship between the presence of a uniref90 gene family and T2D, we fit 

generalized linear models with T2D as the dependent variable and the gene presence and 

covariables as the independent variables in Anpan:

Logit outcome ∼ age + sex + BMI + study + gene presence
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In the analysis and visualization of E. coli strain-specific gene carriage, we calculated the 

effect estimate (β coefficient) for the term of gene presence and included a uniref90 gene 

family with an absolute value of its effect estimate ≥1.2. We clustered the samples, stratified 

by their case-control status, using the complete linkage method by the hclust function in the 

R package stats.

To further characterize strain-specific biological processes, we performed a gene ontology 

(GO) term enrichment analysis using the gene set enrichment analysis methods based on 

the gene association model results. We adopted the definition of “informative GO terms” 

in the previous studies75 to curate a list of GO terms as input in the enrichment analysis. 

A GO term was defined as an “informative” term if it contains more than 20 genes and 

all its child terms contain less than 20 genes. The enrichment analysis utilized the ranking 

of UniRef90 gene families, which was based on the t-statistics from the gene association 

models. Enrichment scores were calculated using the fgsea R package against curated GO 

terms using 1,000 permutations. We identified significant GO terms within each species 

based on the criterion that the GO term had significantly enriched genes (q <0.10). The 

visualization of the results was generated using fgsea (v1.22.0) and ggplot2 (v3.3.6). More 

details of this analysis are in Supplementary Text.
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Extended Data

Extended Data Fig. 1: Workflow.
We adjusted for the study effect by adopting a conservative meta-analysis approach in the 

downstream analyses. Our analyses examined the overall microbial community structure, 

specific microbial taxonomic and functional features, strain-specific biochemical pathways, 

and within-species phylogeny and gene families in a cross-cohort meta-analysis framework. 

This figure was created with BioRender.com.
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Extended Data Fig. 2: Principal coordinate analysis of all samples using species-level Bray-
Curtis dissimilarity colored by cohorts before and after correcting batch and study effects.
R2 values are calculated from permutational multivariate analysis of variance 

(PERMANOVA, n = 999 permutations) and indicate the variance attributable to study and 

batch effects.
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Extended Data Fig. 3: Comparisons in associations between microbial species and type 2 
diabetes (T2D) across different statistical models.
Meta-analyzed associations of individual microbial species with T2D phenotype from the 

ordinal (a) and binary (b) models. The ordinal model modeled the disease status as an 

ordinal variable (T2D, prediabetes, or controls) and used data from all the participants. 

The binary model modeled the disease status as a binary variable (T2D or controls) and 

used data from T2D patients and normoglycemic controls. The blue-to-red and purple-to-

orange gradients represent the magnitude and direction of the associations as quantified by 

meta-analyzed beta coefficients from linear mixed models adjusted for age, sex, and body 
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mass index (BMI) and further adjusted for metformin use in MaAsLin2. All the results 

were corrected for multiple hypothesis testing by controlling the false discovery rate (FDR) 

using the Benjamini-Hochberg method with a target rate of 0.10. All models included 

each participant’s identifier as random effects and simultaneously adjusted for covariables. 

(c) Comparisons in associations between microbial species and T2D between multivariate 

MaAsLin2 models with and without further adjustment for BMI and metformin use from the 

ordinal model. (d) Comparisons in associations between microbial species and T2D between 

multivariate MaAsLin2 models with and without further adjustment for BMI and metformin 

use from the binary model. Dots in the scatter plots in (c) and (d) represent meta-analyzed 

beta coefficients from linear mixed models adjusted for covariables in MaAsLin2. All the 

statistical tests were two-sided. A total of 8,117 metagenomes from 1,851 T2D patients, 

2,770 individuals with prediabetes, and 2,277 normoglycemic controls were included in the 

analyses in (a), (b), and (c). Abbreviations: BMI, body mass index; Con, control; metf, 

metformin use; insul, insulin use; T2D, type 2 diabetes.
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Extended Data Fig. 4: Metformin has a direct impact on the gut microbiome composition and 
confounds the associations between microbial species and type 2 diabetes.
(a) Distance-based redundancy analysis (dbRDA) based on species-level Bray-Curtis 

dissimilarity colored by type 2 diabetes (T2D) and metformin use. The centers of the 

boxplot show medians with boxes indicating their inter-quartile ranges (IQRs) and upper and 

lower whiskers indicating 1.5 times the IQR from above the upper quartile and below the 

lower quartile, respectively. (b) Meta-analyzed and cohort-specific associations of microbial 

species with metformin use among T2D patients. We defined microbial signatures of 

metformin as those significantly associated with metformin use in T2D cases only but 
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not associated with T2D after further adjusting for metformin use in all participants. We 

also identified 7 species associated with both metformin use and T2D. The centers of 

the error bars represent the β coefficients of the associations, and the error bars represent 

their standard errors. (c) Our modeling approach effectively accounted for the potential 

confounding effect of metformin use, as evidenced by the high correlation between the 

beta coefficients of species-T2D associations obtained in the primary analysis and those 

calculated in a sensitivity analysis excluding T2D patients treated with metformin. The 

beta coefficients in (b) and (c) represent the associations quantified by linear mixed 

models, adjusting for age, sex, body mass index, and metformin use where appropriate, 

in MaAsLin2. All the results were corrected for multiple hypothesis testing by controlling 

the false discovery rate (FDR) using the Benjamini-Hochberg method with a target rate of 

0.10. All the analyses in (a), (b), and (c) were based on 5,114 metagenomes from 1,851 

T2D patients and 2,277 normoglycemic controls. The statistical tests in (a) and (b) were 

two-sided. Abbreviations: Con, control; metf, metformin use; T2D, type 2 diabetes.

Extended Data Fig. 5: Sensitivity analyses demonstrate that identified microbial features of type 
2 diabetes are unlikely to reflect the duration or comorbidities of this disease.
(a) Comparisons in associations between microbial species and T2D in one analysis that 

includes all study participants and the other that excludes individuals with prevalent T2D 

in the Hispanic Community Health Study/Study of Latinos. (b) Comparisons in associations 

between microbial species and T2D in one analysis that includes all study participants 

and the other analysis that excludes insulin-treated T2D patients. The dots represent the 

associations quantified by linear mixed models, adjusting for age, sex, body mass index, and 

metformin use in MaAsLin2. Abbreviation: T2D, type 2 diabetes.
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Extended Data Fig. 6: Associations of microbial features with circulating metabolic and 
inflammation biomarkers.
(a) Meta-analyzed associations of individual MetaCyc pathways with circulating biomarkers 

of metabolic risk. (b) Meta-analyzed associations of individual microbial enzymes with 

circulating biomarkers of metabolic risk. Only pathways and enzymes listed in Figure 

3 were analyzed and presented in this figure. The blue-to-red gradients represent the 

magnitude and direction of the associations as quantified by meta-analyzed beta coefficients 

from linear mixed models adjusted for age, sex, body mass index, and metformin use in 

MaAsLin2. All the results were corrected for multiple hypothesis testing by controlling the 
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false discovery rate (FDR) using the Benjamini-Hochberg method with a target rate of 0.10. 

Abbreviations: BMI, body mass index; HbA1c, hemoglobin A1c; HDL-C, high-density 

lipoprotein cholesterol; hs-CRP, high-sensitivity C-reactive protein; HOMA-B, homeostasis 

model assessment of β-cell function; HOMA-IR, homeostasis model assessment of insulin 

resistance; LDL-C, low-density lipoprotein cholesterol; TG, triglyceride.

Extended Data Fig. 7: Prevotella copri’s differential carriage of branched-chain amino acid 
biosynthesis function is explained by its discrete subclade structure.
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(a) Distribution of different P. copri subclades across geographic regions and studies. We 

applied MetaPhlAn taxonomic profiling based on P. copri subclade-specific marker genes to 

detect the presence of a subclade in metagenomes. (b) Comparisons in adjusted relative 

abundance of branched-chain amino acid (BCAA) biosynthesis pathways and enzyme 

encoded by P. copri subclades dominated by Clade A vs. other clades. The adjusted 

relative abundance of pathways and enzymes is estimated by Anpan (ANalysis of microbial 

Phylogenies And geNes)’s pathway random effects models (Methods) with simultaneous 

adjustment for age, sex, study, body mass index, metformin use, and the abundance of P. 
copri subclades. The centers of the boxplot show medians of adjusted relative abundance 

with boxes indicating their inter-quartile ranges (IQRs) and upper and lower whiskers 

indicating 1.5 times the IQR from above the upper quartile and below the lower quartile, 

respectively. P-values were generated from two-sided t-tests based on the adjusted relative 

abundance. (c) Clade A-dominant P. copri strains in T2D patients were more likely to 

retain pathways and enzymes of branched-chain amino acid biosynthesis compared to 

Clade A-dominant non-T2D controls. The blue and red lines, fitted by linear regression in 

participants with T2D and control participants separately, represent the associations between 

the log-transformed relative abundance of P. copri subclade and the log-transformed relative 

abundance of a given pathway or enzyme encoded by P. copri. The numeric values in 

the top left corner are posterior differences and 98% posterior intervals of differences in 

log-transformed pathway abundance between case-control status, as determined by mixed 

effects models Anpan (Methods). This model allows us to identify microbial functions 

encoded by a P. copri subclade that are differentially abundant between T2D cases vs. 

controls while controlling for its subclade-level abundance and covariables. All the analyses 

in (a), (b), and (c) were based on 5,114 metagenomes from 1,851 T2D patients and 2,277 

normoglycemic controls.
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Extended Data Fig. 8: Phylogenetic trees of select species show divergent associations between 
subclades and T2D within each species.
The annotation bars represent metformin use, study, BMI, sex, age, and T2D status, 

respectively. The boxplots in the bottom represent the posterior mean of the phylogenetic 

effect of each phylogenetic tree leaf (metagenome) estimated by the phylogenetic 

generalized linear mixed models (PGLMMs) in Anpan (ANalysis of microbial Phylogenies 

And geNes, see Methods) with whiskers representing the 95% credible intervals of the 

posterior means. By applying PGLMMs, we compared two generalized linear mixed models 

with and without incorporating within-species phylogeny as a random effect (Methods). 
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Both models were adjusted for age, sex, body mass index, metformin use, and study 

membership as fixed effects. We generated within-species phylogenetic trees by randomly 

splitting the edges based on the Euclidean similarity matrix derived from clustered sets 

of protein sequences (UniRef90 gene families) after dimension reduction by principal 

components analysis.

Extended Data Fig. 9: Gene set enrichment analysis of gene ontology terms for biological 
process.
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The line plots show the running enrichment score for the gene ontology (GO) term as the 

analysis “walks down” the ranked list. The vertical black lines on the X-axis show where 

members of the GO term appear in the ranked list of UniRef90 gene families.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

The individual-level raw shotgun sequencing data and metadata have been deposited 

in the European Nucleotide Archive with accession codes PRJEB37249, PRJEB38742, 

PRJEB41311, and PRJEB46098 for the Fromentin_2022 (MetaCardis); the Sequence Read 

Archive (SRA) under accession code ERP002469 for Karlsson_2013; the NCBI Sequence 

Read Archive under accession numbers SRA045646 and SRA050230 for Qin_2012 

(Shenzhen Cohort); the China NGDC Genome Sequence Archive: HRA000020 or EGA: 

EGAS00001004480 for Wu_2020; and the China Nucleotide Sequence Archive (CNSA) 

with the dataset identifier CNP0000175 for Zhong_2019 (Suzhou Cohort).

The shotgun metagenomic sequencing data from the Nurses’ Health Study II (NHSII) 

and Health Professionals Follow-Up Study (HPFS) are publicly available at BIOM-

Mass Data Portal (https://biom-mass.org/; project names: HPFS and MBS). Due to 

the informed consent of the participants, all the individual-level phenotype data from 

NHSII and HPFS are available through a request for external collaboration and upon 

approval of a letter of intent and a research proposal. Details on how to request 

external collaborations with NHSII and HPFS can be found at https://nurseshealthstudy.org/

researchers (Contact PI: Dr. A. Heather Eliassen, Email: nhahe@channing.harvard.edu) and 

https://sites.sph.harvard.edu/hpfs/for-collaborators/. (Contact PI: Dr. Lorelei Mucci, Email: 

lmucci@hsph.harvard.edu). The individual-level metadata in the Hispanic Community 

Health Study /Study of Latinos (HCHS/SOL) are archived at the National Institutes of 

Health repositories dbGap (study accession: phs000810.v2.p2) and BIOLINCC (accession 

number: HLB01141423a). Shotgun metagenomic sequencing data from the HCHS/SOL 

samples described in this study are deposited in QIITA (study ID: 11666). HCHS/SOL 

has established a process for the scientific community to apply for access to participant 

data and materials, with such requests reviewed by the project’s Steering Committee. 

These policies are described at https://sites.cscc.unc.edu/hchs/ (Contact HCHS/SOL through 

Email: HCHSAdministration@unc.edu). The DIRECT-PLUS Study recruited participants in 

Israel and was designed as a clinical trial. This study used only baseline, pre-randomization 

data from the DIRECT-PLUS Study for an observational analysis. Due to the informed 

consent of the participants, the individual-level deidentified metadata and metagenomic 

sequencing data in the DIRECT-PLUS Study will be available for general research purposes 

through a request to Dr. Iris Shai (Email: irish@bgu.ac.il) and Dr. Dong D. Wang (Email: 

dow471@mail.harvard.edu) after the manuscript publication.

All the source data for creating figures and extended data figures are available as 

supplementary information.
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Fig 1: Overview of microbial community structure as associated with type 2 diabetes.
(a) To study the gut microbiome in type 2 diabetes (T2D), we assembled a shotgun 

metagenomic dataset from ten cohorts spanning eight countries. The dataset comprised 

8,117 metagenomes from 1,851 T2D patients, 2,770 individuals with prediabetes, and 

2,277 normoglycemic controls from our newly established Microbiome and Cardiometabolic 

Disease Consortium (MicroCardio). The study population included females and males 

(females: 54.4%) spanning a wide range of ages (mean =57.9 years) and body mass index 

(mean =28.6 kg/m2), and diverse racial/ethnic subgroups such as Asians, Whites, and Latin 
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American-born US Hispanic immigrants. We applied the bioBakery 3.0 workflows17 to 

process sequencing data for uniform taxonomic and functional profiling and the MMUPHin 

framework18 to correct batch effects. This panel was created with BioRender.com. (b) 

Mean relative abundance for top 25 universal (present in all ten cohorts), overlapping 

(present in at least two cohorts), and singular (found in only one cohort) species by cohort. 

The centers of the boxplot show medians with boxes indicating their interquartile ranges 

(IQRs) and upper and lower whiskers indicating 1.5 times the IQR from above the upper 

quartile and below the lower quartile, respectively. (c) Principal coordinate analysis (PCoA) 

revealed a significant association between the configuration of the microbiome and T2D 

and an expected trade-off between Bacteroidetes and Firmicutes phyla. PCoA was based on 

species-level Bray-Curtis dissimilarity. (d) Proportions of variation in taxonomy explained 

by the study effects, T2D status, covariables, and circulating biomarkers as quantified by 

permutational multivariate analysis of variance (PERMANOVA with 999 permutations) 

based on species-level Bray-Curtis dissimilarity. Data on metformin use were unavailable 

in the three studies (Wu_2020a, Wu_2020b, and Zhong_2019) because they only enrolled 

newly-diagnosed, treatment-naïve participants with T2D and prediabetes. All the statistical 

tests were two-sided. An asterisk sign indicates P <0.05, and two asterisk signs indicate 

P <0.01. Abbreviations: BMI, body mass index; Con, control; HbA1c, hemoglobin A1c; 

HDL-C, high-density lipoprotein cholesterol; hs-CRP, high-sensitivity C-reactive protein; 

HOMA-B, homeostasis model assessment of β-cell function; HOMA-IR, homeostasis 

model assessment of insulin resistance; LDL-C, low-density lipoprotein cholesterol; Pre, 

prediabetes; T2D, type 2 diabetes.
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Fig. 2: Cross-cohort microbial signatures of type 2 diabetes.
(a) Meta-analyzed associations of microbial species with type 2 diabetes (T2D) based on 

8,117 metagenomes from 1,851 T2D patients, 2,770 individuals with prediabetes, and 2,277 

normoglycemic controls. The blue-to-red gradient represents the magnitude and direction 

of the associations quantified by linear mixed models that include disease status as an 

ordinal variable (normoglycemic controls, prediabetes, or T2D) and adjust for age, sex, 

body mass index (BMI), and metformin use (metf). For multiple comparison correction, we 

controlled the false discovery rate (FDR) with a target rate of 0.10. Asterisk signs indicate 

0.05 ≤ FDR <0.10, and octothorpe signs indicate FDR <0.05. (b) Phylogenetically diverse 
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microbial species significantly associated with T2D. The blue-to-red gradient represents the 

associations between microbial species and T2D phenotype. The colors of the innermost 

ring and phylogenetic trees differentiate major phyla. The heights of the outermost bars 

are in proportion to the mean relative abundance of microbial species. We presented 

significant results from both the ordinal and binary models adjusting for the aforementioned 

covariables (FDR <0.10, Methods). (c) Select dose-response associations between microbial 

species and T2D status. The centers of the boxplots show medians of cohort-specific mean 

relative abundance with boxes indicating their inter-quartile ranges (IQRs) and upper and 

lower whiskers indicating 1.5 times the IQR from above the upper quartile and below the 

lower quartile, respectively. The statistical models, the approach for multiple comparison 

correction, and the sample size were the same as those in (a). All the statistical tests 

in (a), (b), and (c) were two-sided. (d) The inclusion of microbial species improved the 

performance of random forest models in classifying metformin-treated or -naïve T2D vs. 

controls. The values are the area under the receiver operating characteristic curve (AUC) 

obtained by applying the model trained on all but the cohort of the corresponding row and 

validated in the cohort of that row. The basic model included age, sex, and BMI, while the 

other further included microbial species. The AUC values in metformin users are unavailable 

in Wu_2020a, Wu_2020b, and Zhong_2019 because they only enrolled treatment-naïve 

participants.
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Fig. 3: Diverse microbial processes involved in the pathogenesis of type 2 diabetes.
Meta-analyzed associations comparing diabetes versus normoglycemic controls of (a) 

microbial functions (as MetaCyc pathways) and (b) enzymes (as Enzyme Commission 

numbers) involved in glucose homeostasis, sulfur metabolism, and the biosynthesis of 

bacterial structural components, B vitamins, and essential amino acids with type 2 diabetes 

(T2D). A total of 8,117 metagenomes from 1,851 T2D patients, 2,770 individuals with 

prediabetes, and 2,277 normoglycemic controls were included in the analyses. Beta 

coefficients were derived from multivariable-adjusted linear mixed models (Methods) that 
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included the T2D status as the independent variable and the microbial pathway or enzyme 

abundance as the dependent variable. Missing circles indicate features not measured in 

that cohort. All the results were corrected for multiple hypothesis testing by controlling 

the false discovery rate (FDR) using the Benjamini-Hochberg method with a target rate 

of 0.10. Asterisk signs indicate 0.05 ≤ FDR <0.10, and octothorpe signs indicate FDR 

<0.05. (c) A network of microbial features depicts intertwined relationships among insulin 

resistance, glycolysis, and glucose uptake in T2D. The network included curated MetaCyc 

pathways and enzymes significantly associated with T2D (FDR <0.10) and the species that 

encoded these microbial functions. (d) Prevotella copri strains in T2D patients are more 

likely to carry pathways and enzymes for branched-chain amino acid biosynthesis. The blue 

and red lines, fitted by linear regression in participants with T2D and control participants 

separately, represent the associations between the relative abundance of P. copri and the 

relative abundance of a given pathway or enzyme encoded by P. copri. The numeric values 

in the top left corner are posterior differences and 98% posterior intervals of differences in 

log-transformed pathway abundance between case-control status, as determined by mixed 

effects models in Anpan (ANalysis of microbial Phylogenies And geNes, see Methods). This 

model allows us to identify microbial functions encoded by P. copri that are differentially 

abundant between T2D cases vs. controls while controlling for its species-level abundance 

and covariables.
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Fig. 4: Within-species phylogenetic divergence explains subpopulation-specific and 
individualized associations between microbial species and type 2 diabetes risk.
(a) Within each of the 27 species, the phylogenetic generalized linear mixed model 

(PGLMM) in Anpan (ANalysis of microbial Phylogenies And geNes, see Methods) 

identifies subclades with varying associations with type 2 diabetes (T2D). The left-hand side 

summarizes the associations between within-species phylogeny and T2D. The centers of the 

error bars represent the differences in expected log point-wise predictive density (ΔELPD) 

between two generalized linear mixed models with and without incorporating within-species 

phylogeny as a random effect (Methods), and the error bars represent the standard errors of 
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ΔEPLD. Species included in this figure are those with a ΔEPLD greater than 2. Both models 

are adjusted for age, sex, body mass index, metformin use, and cohort membership as fixed 

effects. Anpan generates within-species phylogenetic trees by randomly splitting the edges 

based on the Euclidean similarity matrix derived from clustered sets of protein sequences 

(UniRef90 gene families). The right-hand side presents the sample sizes of T2D patients and 

normoglycemic controls after adaptive filtering to remove metagenomes where the species 

of interest was absent or insufficiently covered by sequencing (Supplementary Table 8 and 

Methods). (b) Phylogenetic trees of two select species show divergent associations between 

subclades and T2D within each species. The inner rings denote the cohort membership of 

each metagenome. The outer rings present the posterior mean of the phylogenetic effect 

of each phylogenetic tree leaf (metagenome) estimated by PGLMMs, with darker colors 

indicating a higher likelihood of subclade effects on the risk of T2D (Methods). We annotate 

different subclades using sectors with different colors and letters. The sample sizes in this 

analysis vary across species after the adaptive filtering in Anpan (Methods) and are available 

in Supplementary Table 8.
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Fig. 5: Strain-specific gene carriage and biochemistry contribute to the pathogenesis of type 2 
diabetes.
(a) Many differentially distributed UniRef90 gene families (clustered sets of protein 

sequences) provide functional explanations for the varying associations of subspecies 

with type 2 diabetes (T2D). The bar plots show the number of UniRef90 gene families 

significantly associated with T2D post-adaptive filtering. The boxplot presents the 

distributions of effect sizes (t-statistics) of UniRef90 gene families positively (red) and 

inversely (blue) associated with T2D within each species. The centers of boxes show 

medians of t-statistics with boxes indicating their inter-quartile ranges (IQRs), and upper 
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and lower whiskers The right panel shows the results of gene-set enrichment analyses 

based on gene ontology (GO) terms and t-statistics from the gene association model in 

Anpan using 1,000 permutations. The bubble plot presents the enrichment scores and size 

of GO terms. GO terms with a positive normalized enrichment score (NES) contained 

UniRef90 gene families upregulated in T2D patients. GO terms with a negative NES 

contained UniRef90 gene families downregulated in T2D patients. All the results were 

corrected for multiple hypothesis testing by controlling the false discovery rate (FDR) 

using the Benjamini-Hochberg method with a target rate of 0.10. Asterisk signs indicate 

0.05 ≤ FDR <0.10, and octothorpe signs indicate FDR <0.05. (b) UniRef90 gene family 

profiles indicate metagenomically detected strains for E. coli. The heatmap shows the genes 

significantly associated with T2D, with each column representing a metagenome and each 

row representing a UniRef90 gene family. The colors indicate the presence (green) or 

absence (blue) of a UniRef90 gene family in a metagenome. The heatmap on the right-hand 

side presents the t-statistics of an association between a UniRef90 gene family and T2D 

derived from the gene association model in Anpan. The red color signifies gene families 

enriched in T2D, while the blue color indicates gene families that are depleted in T2D. The 

sample sizes in the gene association model vary across species after the adaptive filtering in 

Anpan (Methods) and are available in Supplementary Table 8.
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