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Abstract

Background: The incidence of alcohol‐associated cancers is higher within

Asian populations having an increased prevalence of an inactivating mutation

in aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme required for

the clearance of acetaldehyde, a cytotoxic metabolite of ethanol. The role of

alcohol consumption in promoting lung cancer is controversial, and little

attention has been paid to the association between alcohol drinking and

pulmonary ALDH2 expression.

Methods: We performed a comprehensive bioinformatic analysis of multi‐
omics data available in public databases to elucidate the role of ALDH2 in lung

adenocarcinoma (LUAD).

Results: Transcriptional and proteomic data indicate a substantial pulmonary

expression of ALDH2, which is functional for the metabolism of alcohol diffused

from the bronchial circulation. ALDH2 expression is higher in healthy lung tissue

than in LUAD and inhibits cell cycle, apoptosis, and epithelial–mesenchymal

transition pathways. Moreover, low ALDH2 mRNA levels predict poor prognosis

and low overall survival in LUAD patients. Interestingly, ALDH2 expression

correlates with immune infiltration in LUAD.

Conclusions: A better understanding of the role of ALDH2 in lung tumor

progression and immune infiltration might support its potential use as a prog-

nostic marker and therapeutic target for improving immunotherapeutic response.
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1 | INTRODUCTION

Alcohol consumption increases the risk of several forms
of cancer and accounts for more than 4% of new cancer
cases worldwide [1]. Several mechanisms may sustain
alcohol‐associated carcinogenesis, including the induc-
tion of oxidative and endoplasmic reticulum stress [2],
depletion of folate [3], induction of stem cell damage [4],
interference with retinoids and estrogen levels [5],
alteration of the cell proliferation rate [6], and epigenetic
changes [7]. However, increasing evidence points to
acetaldehyde, a metabolite of ethanol, as one of the major
determinants of alcohol's carcinogenic effect, mainly
through the production of acetaldehyde‐derived DNA
adducts [8, 9]. Sources of acetaldehyde may be natural,
such as plants and fermented foods, as well as anthro-
pogenic, including incomplete combustion of organic
biomass and fuels, building products, furniture, cleaners,
cosmetics, and glues [10]. The major lifestyle‐related
risk factors increasing lung exposure to acetaldehyde
are smoking and drinking alcoholic beverages [11].
Ingested ethanol is metabolized in the body by alcohol
dehydrogenase (ADH), catalase, or cytochrome P450 2E1
(CYP2E1) to acetaldehyde, which is then further oxidized
by aldehyde dehydrogenase 2 (ALDH2) to acetate. This
process generates reactive oxygen species (ROS) that may
induce DNA damage [12]. Moreover, acetaldehyde leads
to the formation of DNA adducts, thus inhibiting DNA
repair systems and interfering with DNA replication.
Therefore, to prevent harmful effects, it is critical to
detoxify aldehydes that may accumulate through en-
dogenous metabolism and environmental exposure.

The family of aldehyde dehydrogenase enzymes is
critical in the detoxification of endogenous and exogenous
aldehyde substrates, in the biosynthesis of vital biomole-
cules, such as retinoic acid and folate, and in redox balance.
Consequently, altered ALDH activity has been associated
with increased vulnerability to different pathologies,
including cancer [13]. Nineteen isoforms of ALDHs have
been characterized in humans, showing different tissue and
subcellular distributions and substrate specificity [14]. The
mitochondrial enzyme ALDH2 is the most efficient isoform
for converting toxic acetaldehyde to harmless acetate.
In addition, ALDH2 detoxifies other aldehydes, such as
4‐hydroxynonenal, an endogenous product of lipid peroxi-
dation, and methylglyoxal, a glycolysis metabolite, acting as

a protector against oxidative stress [15] and advanced gly-
cation end products formation [16].

Lung cancer is one of the most frequent tumors and
the most common cause of cancer death, accounting for
approximately one‐quarter of all cancer mortality
worldwide [17]. Non‐small cell lung cancers (NSCLCs)
have been traditionally classified as lung adenocarci-
noma (LUAD), which is the prevalent form comprising
40% of lung cancers, and lung squamous cell carcinoma
(LUSC). Nonetheless, increasing evidence suggests that
LUAD and LUSC should be considered as distinct
diseases at the molecular, pathological, and clinical
levels [18]. Current therapeutic approaches mainly rely
on surgical resection, chemotherapy, radiotherapy, and,
more recently, immunotherapy. Progressive improve-
ments in the molecular characterization of lung cancer
have led to the development of novel diagnostic ap-
proaches and targeted therapies. Nonetheless, patients'
5‐year survival rates remain below 20%. Immune
checkpoint inhibitor (ICI) therapy is an innovative
therapeutic option for lung cancer, but only a fraction of
the patients experience a favorable response to the treat-
ment, possibly due to factors inherent to the tumor immune
microenvironment (TIME). Consequently, the identification
of suitable theranostic markers is of paramount importance
for the accurate selection of patients who will benefit from
ICI therapy [19]. Tobacco smoke is the major cause of lung
cancer; specifically, acetaldehyde is one of the prominent
carcinogens present in both tobacco smoke and electronic
cigarette aerosols [20], which acts inducing DNA damage
and inhibiting DNA repair [21]. Concurrent alcohol drink-
ing synergistically further increases the risk for cancers in
the upper digestive intestinal tract associated with tobacco
smoke [22]. Although the sole role of alcohol consumption
in lung cancer is controversial, alcoholic beverages are a
well‐established source of carcinogens [23]. The lung epi-
thelium is directly exposed to alcohol and its metabolites in
the condensation of vapors derived from the bronchial cir-
culation [24], oral cavity, and inhaled air, contributing to
the pathophysiology of pulmonary diseases [25]. As a matter
of fact, the determination of alcohol in the exhaled breath
is implemented in law enforcement; endogenously pro-
duced acetaldehyde can also be determined in the breath
after alcohol ingestion [26]; moreover, the assessment
of aldehydes in breath has been considered as a convenient
test for lung cancer [27]. The microbiota is an additional
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endogenous source of acetaldehyde. Human lungs are
continuously exposed to the microbiome from inhaled air
and the upper respiratory tract. Lungs approximately host a
dynamic population of 2.2 × 103 bacterial genomes per cm2,
participating in shaping immune tolerance. The presence
of colonizing bacteria with ADH activity in the lungs
and oral cavity increases the risk of cancer development
via the local production of acetaldehyde, which might
be significantly elevated in the presence of reduced
ALDH2 activity [28]. Moreover, even in the absence of
ethanol consumption, exhaled breath may contain
acetaldehyde produced through the fermentation of
dietary fibers by gut Faecalibacteria [29].

ALDH2 is a hot topic of clinical research because the
reduced activity of this mitochondrial homo‐tetrameric
enzyme affects approximately 10% of the global population.
ALDH2 dysfunction has been associated with various
human disorders, including cardiovascular, neuro-
degenerative, and liver diseases, diabetes, Fanconi anemia,
osteopenia, aging, and different types of cancers [30–32].
Accordingly, ALDH2may be a promising therapeutic target
in numerous diseases [33, 34]. However, relatively little
attention has been paid so far to the association between
alcohol consumption, pulmonary ALDH2 expression, and
lung cancer. In the current study, we explore the potential
role of ALDH2 as a theranostic marker for NSCLC.

2 | MATERIALS AND METHODS

2.1 | Expression analysis in healthy
tissues

Tissue‐specific mRNA and protein expression levels of
human ALDH2 were assessed using the European Molec-
ular Biology Laboratory‐European Bioinformatics Institute
(EMBL‐EBI) Expression Atlas platform (https://www.ebi.
ac.uk/gxa/home). ALDH2 RNA expression was assessed in
the RNA‐Seq mRNA baseline data set from the Genotype‐
Tissue Expression (GTEx) Project [35]; ALDH2 protein
expression was evaluated by querying the human proteome
The PRoteomics IDEntifications (PRIDE) archive [36] and
the EMBL‐EBI Expression Atlas platform.

2.2 | Expression analysis in tumor
tissues

The expression levels of ALDH2 in LUAD in comparison
with normal samples were analyzed by the Gene Expres-
sion Profiling Interactive Analysis (GEPIA) platform
(http://gepia.cancer-pku.cn/) [37] on gene expression data
from The Cancer Genome Atlas (TCGA). ALDH2 protein

expression in lung tumors with different tumor histology
was determined by querying the Clinical Proteomic Tumor
Analysis Consortium (CPTAC) database by the University
of Alabama at Birmingham Cancer Data Analysis Portal
(UALCAN) (https://ualcan.path.uab.edu/) [38]. ALDH2
expression analysis at different stages of LUAD was
assessed using the GEPIA2 portal (http://gepia2.cancer-
pku.cn/) and Gene Set Cancer Analysis (GSCA) platform
(http://bioinfo.life.hust.edu.cn/GSCA/#/) [39].

2.3 | Analysis of ALDH2 expression on
cancer‐related pathways

The impact of ALDH2 mRNA expression on different
well‐defined cancer‐related pathways was determined by the
GSCA portal, which calculates the activation or inhibition of
gene expression in pathway activity groups. The correlation
between ALDH2 expression and onco‐suppressor genes
expression in the TCGA LUAD cohort was investigated by
evaluating the Spearman correlation using the GEPIA2
[37] and cBioPortal for Cancer Genomics (https://www.
cbioportal.org/) [40], including mRNA data from 510 pa-
tients. Furthermore, the Correlation AnalyzeR web tool
(https://gccri.bishop-lab.uthscsa.edu/shiny/correlation-
analyzer/) [41] was employed to analyze the correlation
between ALDH2 and selected biological pathways by
correlation‐based Gene Set Enrichment Analysis (corGSEA).

2.4 | Association of gene expression
with TP53 mutation status

The association of ALDH2 expression with TP53 muta-
tion status in LUAD was investigated using the
UALCAN portal, which uses TP53 mutational status
obtained from the TCGA whole‐exome sequencing data
from the Genomic Data Commons portal. The samples
with or without TP53 mutations were matched with
TCGA RNA‐seq expression data.

2.5 | Analysis of DNA methylation

Promoter methylation levels of ALDH2 were assessed
using the UALCAN platform on DNA methylation and
gene expression data from TCGA.

2.6 | Survival analysis

Univariate survival analyses were performed to estimate
the hazard ratios (HRs) with 95% confidence intervals
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(CIs) and Kaplan–Meier survival plots were generated
using the Tumor online Prognostic analyses Platform
(ToPP) (http://www.biostatistics.online/topp/index.php)
[42], which collects multi‐omics and clinical data from
TCGA, International Cancer Genome Consortium and
the CPTAC project.

2.7 | Analysis of ALDH2 expression at
the single‐cell level

Expression of ALDH2 at the single‐cell level in normal
pulmonary tissue was analyzed using the Human
Protein Atlas (HPA) (https://www.proteinatlas.org/
humanproteome/single+cell+type) [43] and the GTEx Por-
tal (https://gtexportal.org/home/); analysis in the LUAD
TIME was performed using the Tumor Immune Single‐cell
Hub 2 (TISCH2) (http://tisch.comp-genomics.org/home/) on
the publicly available scRNA‐seq data set from single‐cell
transcriptomic analyses of cells isolated from NSCLC
(NSCLC_GSE131907).

2.8 | Analysis of ALDH2 expression and
tumor–immune system interactions

The relations between tumor and immune system in-
teractions were analyzed using the TISIDB (http://cis.
hku.hk/TISIDB/index.php) [44] web portal. In particular,
the relative abundance of tumor‐infiltrating lymphocytes
(TILs), according to previously described immune‐
related signatures of 28 TIL types [45], and ALDH2
expression in LUAD, was inferred by using gene set
variation analysis based on gene expression profile.

3 | RESULTS

3.1 | ALDH2 is expressed in the healthy
lungs

To investigate the potential role of ALDH2 as a therapeutic
target in lung cancer, we explored the basal protein and
mRNA expression levels in healthy lung tissue by employing
the European Molecular Biology Laboratory‐European Bio-
informatics Institute (EMBL‐EBI) Expression Atlas and the
GTEx Project repository, respectively. Both proteomic and
transcriptomic data in selected healthy human tissues indi-
cate that ALDH2 is highly expressed in the liver and other
tissues with prominent mitochondrial function, including
the heart, kidney, and lungs (Figure 1a,b). Most of the
ingested alcohol is normally metabolized in the liver, but
also other tissues, including the gastrointestinal

mucosa, spleen, and lungs, can metabolize ethanol [46].
Furthermore, ALDH2 is one of the most expressed
ALDH isoforms in the lungs, where it detoxifies acet-
aldehyde absorbed from the bronchial circulation and
inhaled from exogenous sources [47]. Expression of
other members of the ALDH enzyme superfamily,
including ALDH1A1 and ALDH3A1, is altered in lung
cancer [48], but ALDH isozymes exhibit distinct sub-
strate specificity and pathophysiology [14].

3.2 | ALDH2 expression is reduced in
lung cancer

There is no consensus on the association between alcohol
drinking and lung cancer [49]; nonetheless, the incidence of
lung and alcohol‐associated cancers is higher in approxi-
mately 40% of the East Asian population, characterized by
the prevalence of the ALDH2 inactivating polymorphism
rs671 (ALDH2*2) [50, 51] that leads to acetaldehyde accu-
mulation. Acetaldehyde, however, is not only a metabolite of
ethanol but is also present in tobacco and e‐cigarette smoke;
accordingly, smokers with the ALDH2*2 polymorphism
have an increased risk of lung cancer [52, 53].

Transcriptional analysis of TCGA data and proteomic
analysis of the CPTAC data indicate that ALDH2 expression
in LUAD is lower than in normal lung tissue (Figure 2a,b)
[54–56], regardless of tumor stage (Figure 3). Nevertheless, as
shown in Figure 3, a significant albeit slight reduction in
ALDH2 expression can be observed between Stages I and IV
patients, suggesting that a lower level of the enzyme is

FIGURE 1 Tissue‐specific expression of ALDH2. ALDH2
expression levels analyzed by using the European Molecular
Biology Laboratory‐European Bioinformatics Institute Expression
Atlas platform. (a) Protein expression levels from the human
proteome data set; (b) RNA expression levels from the Genotype‐
Tissue Expression project data set. ALDH2, aldehyde
dehydrogenase 2; PPB, parts per billion; TPM, transcripts per
million.
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indicative of a worse prognosis. Interestingly, ALDH2mRNA
expression is higher in LUAD non‐smoker patients than in
smokers, who are subjected to increased acetaldehyde ex-
posure (Figure S1).

Using the Expression and Pathway Activity section in the
GSCA platform, we assessed the possible effects of altered
ALDH2mRNA expression on cancer‐related pathways in the
TCGA LUAD data sets including 517 tumor and 59 normal
samples. The analysis indicates that higher ALDH2 expres-
sion exerts potential inhibitory effects on cancer‐related
activity associated with apoptosis, cell cycle, and epithe-
lial–mesenchymal transition (EMT) pathways (Figure 4).

Collectively, these data suggest that the ALDH2 isoform
might impact tumor‐suppressive pathways in LUAD.

3.3 | ALDH2 expression is reduced in
TP53‐mutant lung cancer compared to
non‐mutant

Tumor suppressor protein TP53 dysregulation has been
associated with many cancers, including lung cancer.
Mutations in the TP53 gene generally give rise to
increased stability and accumulation of the genetic prod-
uct and occur in up to 46% of LUAD and 82% of LUSC
patients; patients with TP53‐mutated NSCLC generally
have worse prognoses and are resistant to current thera-
pies [57]. Both alcohol drinking and cigarette smoking are
associated with TP53 mutations in NSCLC [58]. To
investigate a potential correlation between ALDH2 and
TP53 status in lung cancer patients, we examined the level
of expression of ALDH2 in the cohort of TP53‐mutated
NSCLC. TP53 mutation status was obtained from the
TCGA whole‐exome sequencing data and mutation
annotation from VarScan2 was obtained from the
National Cancer Institute Genomic Data Commons
(CRDC) portal. Analysis of the relative expression of
ALDH2 in normal healthy tissue or LUAD with different
TP53 mutation statuses by the UALCAN platform indi-
cates that ALDH2 expression in TP53‐mutant LUAD is
lower than that in non‐TP53‐mutant tumors (Figure 5).
Recently, several studies indicated that TP53 mutations
are associated with improved survival in patients treated
with immune checkpoint blockade therapy [59]. There-
fore, it could be suggested that lower ALDH2 expression
associated with TP53 mutations could be a useful predic-
tive factor to identify LUAD patients who might benefit
from ICI treatment.

(a) (b)

FIGURE 2 Gene expression profiling of ALDH2 in lung adenocarcinoma (LUAD). (a) The expression levels of ALDH2 in tumor tissues (red)
and normal samples (blue) in gene expression data from The Cancer Genome Atlas. (b) Protein expression of ALDH2 in LUAD querying the Clinical
Proteomic Tumor Analysis Consortium database. Analyses were performed by the University of Alabama at Birmingham Cancer Data Analysis
Portal. The asterisk (*) indicates a statistically significant difference between the indicated groups (p ≤ 0.05). ALDH2, aldehyde dehydrogenase 2.

FIGURE 3 ALDH2 expression in different stages of lung adeno-
carcinoma (LUAD). The pathological stage plot created by using the
Gene Set Cancer Analysis platform on TCGA data to compare ALDH2
expression in various stages of LUAD. TCGA, The Cancer Genome
Atlas. The asterisk (*) indicates a statistically significant difference
between the indicated groups (p ≤ 0.05). NS. indicates not significant.
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3.4 | ALDH2 promoter methylation is
reduced in lung cancer

Global and gene‐specific promoter aberrant DNA methyla-
tion have been extensively described in lung cancer [60], and

the transcriptional response may be context‐specific [61].
Recently, altered methylation pattern of ALDH2 has been
described in different types of cancer [31, 56], including
LUAD [54], where epigenetic silencing induced by methyl-
ation may facilitate bone metastasis [62]; reduced levels of
ALDH2 DNA methylation have been observed in gastric
tumors, but the impact on gene expression in the context of
extremely low levels of DNA methylation has not been
clearly determined [63]. On these bases, we verified the DNA
methylation status in the ALDH2 promoter in LUAD in data
sets from TCGA using the UALCAN platform (Figure 6).
Differential ALDH2 DNA methylation patterns were
detected in LUAD patients in comparison to healthy con-
trols; even though the analysis of the beta value does not
reflect a transition from hyper‐methylation to hypo‐
methylation, a significant reduction in the methylation levels
in the promoter of the ALDH2 gene was assessed in LUAD
data sets.

3.5 | ALDH2 expression positively
correlates with the onco‐suppressor genes
selenium‐binding protein 1, folate receptor
alpha, and lactate dehydrogenase D

Using the cBioPortal, we investigated the genes whose
expression is correlated to ALDH2 in the TCGA

FIGURE 4 Differences of pathway activity between high and low ALDH2 mRNA expression. GSCA analysis of the effects of ALDH2

expression on the activity of (a) apoptosis, (b) cell cycle, and (c) epithelial–mesenchymal transition (EMT) pathways in LUAD. GSCA,
Gene Set Cancer Analysis.

FIGURE 5 ALDH2 expression analysis in lung adenocarcinoma
based on TP53 mutation status. The UALCAN platform was used to
analyze the relative expression of ALDH2 in normal healthy tissue or
lung cancers with different TP53 mutation statuses. The samples with/
without TP53 mutation were matched with RNA‐seq TCGA data.
TCGA, The Cancer Genome Atlas; UALCAN, University of Alabama at
Birmingham Cancer Data Analysis Portal. *p ≤ 0.05.
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Firehose Legacy LUAD cohort including mRNA data
from 230 patients. Spearman correlation was utilized
to evaluate the statistical significance. Interestingly,
dysfunctional expression of the genes with higher
correlation coefficients with ALDH2 expression has
been previously associated with NSCLC. In particular,
the genes with the highest positive correlation coef-
ficients were: selenium‐binding protein 1 (SE-
LENBP1) (Spearman's Rank correlation coefficient—
ρ: 0.65) [64]; folate receptor alpha (FOLR1) (ρ: 0.57)
[65]; lactate dehydrogenase D (LDHD) (ρ: 0.54) [66],
while top 3 genes with higher negative correlation
coefficients were: discs large homolog associated
protein 5 (DLGAP5) (ρ: −0.56) [67]; anillin (ANLN) (ρ:
−0.56) [68]; and cytoskeleton‐associated protein 2 like
(CKAP2L) (ρ: −0.55) [69], as illustrated in Figure 7.
Additional genes correlated with ALDH2 expression
in LUAD are reported in Table S1.

Moreover, we used the Correlation AnalyzeR
web tool (https://gccri.bishop-lab.uthscsa.edu/shiny/
correlation-analyzer/) [41] to obtain co‐expression
correlation for ALDH2 and selected biological pathways
by corGSEA. Interestingly, top‐ranking pathways

FIGURE 6 ALDH2 methylation analysis in lung

adenocarcinoma. Promoter methylation levels of ALDH2

assessed using the UALCAN platform on TCGA samples; the

beta value indicates the level of DNA methylation ranging from

0 (unmethylated) to 1 (fully methylated). Different beta value

cutoffs have been considered to indicate hyper‐methylation

[beta value: 0.70–0.50] or hypo‐methylation [Beta value: 0.30–
0.25]. TCGA, The Cancer Genome Atlas; UALCAN, University

of Alabama at Birmingham Cancer Data Analysis

Portal. *p ≤ 0.05.

FIGURE 7 ALDH2 versus selected gene expression correlation analysis in LUAD. Analysis was performed using the cBioPortal
for Cancer Genomics, TCGA Firehose Legacy LUAD data set. (a) SELENBP1: selenium‐binding protein 1; (b) FOLR1: folate receptor
alpha; (c) LDHD: lactate dehydrogenase D; (d) DLGAP5: discs large homolog‐associated protein 5; (e) ANLN anillin; and (f) CKAP2L:
cytoskeleton‐associated protein 2 like. LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas; TPM, transcripts per
million reads.
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correlating with ALDH2 expression in lung cancer
include the gene ontology (GO) terms antigen binding,
humoral immune response mediated by circulating
immunoglobulin, and regulation of humoral immune
response (Figure S2) suggesting that ALDH2 might be
involved in the modulation of immune response.

3.6 | ALDH2 expression has a prognostic
value in LUAD

We examined the significance of the survival difference
in LUAD patients defined subgroups with different levels
of ALDH2 expression. To assess patient prognosis,
Kaplan–Meier survival plots were generated using ToPP.
According to this analysis, higher ALDH2 expression is
predictive of improved overall survival (OS) in LUAD pa-
tients; moreover, an increase in the proportion of patients
diagnosed with stage I LUAD can be observed in the cohort
of subjects with higher ALDH2 expression (Figure 8). Sim-
ilar results were obtained assessing progression‐free interval
(PFI), disease‐specific survival (DSS), disease‐free interval
(DFI), and relapse‐free survival (RFS) (Figure S3).

3.7 | ALDH2 expression and immune
cell infiltration in LUAD tumor
microenvironment

Analysis of the single‐cell expression data sets accessible
through the HPA (Figure 9a) and the GTEx (not shown)
portals indicate that in healthy lung tissue mainly alve-
olar epithelial cells and macrophages express ALDH2.

Accordingly, ALDH2 is part of the “Monocytes—
Inflammatory response cluster” identified by the HPA
portal on the basis of RNA expression data across dif-
ferent tissues. We also analyzed ALDH2 expression in the
TIME using the TISCH2 platform in the single‐cell
transcriptomic NSCLC_GSE131907 data set. Within the
LUAD TIME, the strongest ALDH2 expression is associ-
ated with the monocyte/macrophage compartment and
to a lesser extent to cancer‐associated cells, alveolar, and
endothelial cells (Figures 9b,c). These data are in
accordance with single‐cell RNA‐Seq analysis performed
in different cancer types, indicating that within the
tumor microenvironment, ALDH2 expression is mostly
enriched in macrophages, monocytes, and cancer‐
associated fibroblasts [70, 71].

To further explore the potential role of ALDH2
in modulating immune cell compartment, we
assessed the correlation coefficient between ALDH2
expression and immune cell infiltration in the LUAD
tumor microenvironment using the GSCA platform
(Figure 10a). In particular, ALDH2 expression was
positively correlated with mucosal‐associated invariant
T (MAIT) (ρ: 0.48) and T helper 17 (Th17) (ρ: 0.25) cell
scores; conversely, a negative correlation was deter-
mined with exhausted T cell (ρ: −0.32) and natur-
ally occurring regulatory T cells (nTreg) (ρ: −0.50)
(Figure 10a). Scatter plots in panels (b–e) in Figure 10
indicate the Spearman correlation between ALDH2
expression and MAIT, Th17, exhausted T cell, and
nTreg, respectively.

A recent study deeply investigated the role
of ALDH2 in cancer [56], revealing a significant
association between ALDH2 and several immune

FIGURE 8 Prognostic value of ALDH2 in lung adenocarcinoma (LUAD). Higher ALDH2 expression is related to (a) increased overall
survival and (b) increased number of patients at Stage I. Analysis was performed using ToPP on TCGA LUAD data. TCGA, The Cancer
Genome Atlas; ToPP, Tumor online Prognostic analyses Platform.

8 of 18 | CANCER INNOVATION



FIGURE 9 ALDH2 expression of at the single‐cell level in the tumor microenvironment. (a) Uniform manifold approximation and projection
(UMAP) plot showing single‐cell RNA‐seq analysis in healthy lung tissue according to the HPA platform. Expression levels indicated in normalized
transcripts per million (range 0–1550). (b) UMAP and (c) violin plots showing the distribution of ALDH2 expression in different cell types in the
single‐cell transcriptomic non‐small cell lung cancer data set NSCLC_GSE131907. Analysis was performed with the TISCH2 platform.

populations, including CD4+ T cells, CD8+ T cells, B
cells, neutrophils, and macrophages, in different
tumor types. This evidence strongly corroborates
the prognostic role of ALDH2 in cancer, with a
consistent correlation with the tumor immune
microenvironment.

3.8 | ALDH2 expression levels correlate
with the expression of immune inhibitors
and immune stimulators

Using the TISIDB platform, we assessed the correlation
between ALDH2 expression in LUAD and the level of
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FIGURE 10 Correlation analysis between ALDH2 and immune infiltrate in lung adenocarcinoma. (a) Correlation between ALDH2

expression and immune cell infiltration in the tumor microenvironment of LUAD. The color indicated Spearman's correlation coefficient
and the circle size represented the false discovery rate (FDR) value; the smaller the value, the larger the circle. Graphs showing the
Spearman correlation between ALDH2 expression and infiltration scores of (b) mucosal‐associated invariant T (MAIT) cells, (c) T helper 17
(Th17) cells, (d) exhausted T cell, and (e) naturally occurring regulatory T (nTreg) cells. Analysis was performed using the GSCA platform.
GSCA, Gene Set Cancer Analysis; LUAD, lung adenocarcinoma.

immune inhibitors by calculating the Spearman's corre-
lation coefficients (Figure 11). The analysis revealed a
significant inverse correlation between ALDH2 expres-
sion and the levels of major immune inhibitors such as

cytotoxic T‐lymphocyte antigen 4 (CTLA‐4) (ρ: −0.11),
indoleamine 2,3‐dioxygenase 1 (IDO1) (ρ: −0.13),
lymphocyte‐activation gene 3 (LAG3) (ρ: −0.16), micro
(PD‐1, PDCD1) (ρ: −0.15), programmed cell death ligand
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FIGURE 11 (See caption on next page).
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1 (PD‐L1, CD274) (ρ: −0.29), and T cell immunoreceptor
with Ig and ITIM domains (TIGIT) (ρ:−0.10) (Figures
11a,b) suggesting that LUAD patients with high ALDH2
expression might not be considered as appropriate can-
didates to receive ICI therapy. Moreover, using the TI-
SIDB platform, we investigated the potential correlation
between ALDH2 expression in LUAD and the levels of
immune stimulators, major histocompatibility complex
(MHC) molecules, chemokines, and chemokine recep-
tors. Results are shown as representative heatmaps in
Figure 11c–g, respectively.

Collectively, these data suggest that ALDH2 might be
involved in the modulation of immune response and the
recruitment of immune‐infiltrating cells in LUAD.

4 | DISCUSSION

ALDH2 plays a pivotal role in detoxification of aldehydes
and redox homeostasis. The potential involvement of
ALDH2 in several types of cancers, including digestive
system, breast, liver, and lung cancers, and head‐neck
squamous cell carcinoma, has been extensively described
[31, 34, 56]. In particular, reduction of ALDH2 activity
linked to the ADLH2*2 genotype has been associated
with upper aerodigestive and digestive and cancers
[51, 72–77]. Depending on the type of cancer, ALDH2
can act as pro‐oncogenic, promoting cell survival of
cancer cells, or anti‐oncogenic, reducing the toxic effect
of aldehydes [72, 73]. ALDH2 overexpression can, in fact,
promote cancer progression and resistance to chemo-
therapy in clear‐cell renal cell carcinomas and bladder
cancer [74, 75], whereas ALDH2 inhibition suppresses
tumor growth, increasing the infiltration of CD3+ and
CD8+ T lymphocytes in a mouse model of colorectal
cancer [76]. Recently, it has been demonstrated that
ALDH2 is downregulated in HNSC [55], gastric cancer
[77], and melanoma [78] compared with healthy tissues
and that, in affected subjects, higher ALDH2 expression
is associated with a better prognosis. Notably, reduction
of ALDH2 expression observed in tumor tissue results in
an increase of acetaldehyde that promotes collagen pro-
duction in human fibroblasts [79], a hallmark of solid
tumors [80], remodeling tumor ECM and affecting
immune surveillance. In addition to acetaldehyde,

ALDH2 detoxifies other reactive aldehydes, including
methylglyoxal, a glucose‐derived precursor of advanced
glycation end‐products (AGEs). Methylglyoxal is a potent
immunosuppressor and inhibitor of T cell function;
therefore, enhancing its detoxification may improve the
efficacy of ICI therapy [81]. Since ALDH2 plays an
important role in the development of specific cancers,
targeting ALDH2 may provide a new putative strategy for
cancer therapy [34].

In the present study, we focused our attention on the
specific association between ALDH2 expression and
LUAD, and, by using publicly available data sets, we
observed that ALDH2 expression in LUAD is lower than
in normal lung tissue, in line with data recently
described for HNSC and LUSC [55]. Based on the dem-
onstration that low ALDH2 expression levels, associated
with high XRCC1 expression, are predictive of poor
prognosis and low OS in patients with lung and liver
cancers [82], we specifically evaluated the association
between ALDH2 expression and survival in LUAD pa-
tients. In particular, using ToPP, we generated
Kaplan–Meier survival plots showing that higher ALDH2
expression was predictive of improved OS, with a higher
expression in stage I‐LUAD patients. Searching for spe-
cific cancer‐related pathways that could be differently
modulated according to ALDH2 expression, we used the
GSCA platform, evidencing the inhibitory effect of
ALDH2 expression on cancer‐related activity, in partic-
ular with those associated with cell cycle, apoptosis, and
EMT pathways, thus mainly impacting tumor suppres-
sive pathways in LUAD. We further assessed the role of
ALDH2 in LUAD in dependence of the TP53 mutation
status, taking advantage of the UALCAN platform. The
analysis evidenced that ALDH2 expression was reduced
in TP53‐mutant lung cancer compared with nonmutant.
As recent studies indicated that TP53 mutations could be
associated with improved survival in patients treated
with ICI therapy [59], we speculated the potential use of
the associated lower ALDH2 expression as a predictive
factor to identify LUAD patients who might benefit from
ICI treatment. Furthermore, correlation analysis revealed
that top genes positively correlated with ALDH2 expres-
sion in LUAD act as onco‐suppressor genes, whereas
negatively correlating genes are mainly oncogenes. In
particular, selenium‐binding protein 1 (SELENBP1),

FIGURE 11 Correlation between ALDH2 expression and immune infiltrates. (a) Correlation analysis between ALDH2 expression and
CTLA‐4, IDO1, LAG3, PD‐1, PD‐L1 (CD274), and TIGIT levels. Heatmaps showing relationship between ALDH2 expression and
(b) immunoinhibitors, (c) abundance of 28 tumor‐infiltrating lymphocytes (TILs) signature, (d) immunostimulators, (e) MHC molecules,
(f) chemokine, and (g) chemokine receptors in LUAD. Analysis was performed using the TISIDB platform. LUAD, lung adenocarcinoma;
MHC, major histocompatibility complex.
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which is a tumor suppressor in NSCLC [64], is the most
strongly correlated gene with ALDH2 expression in
LUAD. Similarly, high expression of folate receptor
alpha (FOLR1) [65] and lactate dehydrogenase D (LDHD)
[83] exert a protective effect in LUAD. Conversely,
cytoskeleton associated protein 2 like (CKAP2L), the top
inversely correlated gene with ALDH2 expression, acts as
an oncogene in LUAD [69]; anillin is also overexpressed
in LUAD [68] and associates with metastasis [84]. Like-
wise, the high expression of the discs large homolog
associated protein 5 (DLGAP5) indicates poor prognosis
and response to immunotherapy in LUAD [67].

Interestingly, single‐cell RNA‐Seq analysis performed
for different cancer types highlighted that, within the tumor
microenvironment, ALDH2 expression is mostly enriched
in macrophages, monocytes, and cancer‐associated fibro-
blasts [70, 71]. Accordingly, using the HPA, we observed
that in healthy lung tissue mainly macrophages express
ALDH2, while the TISCH2 platform (in the single‐cell
transcriptomic NSCLC_GSE131907 data set) showed that,
in LUAD, ALDH2 is strongly expressed in the monocyte/
macrophage compartment and to a lesser extent to cancer‐
associated cells, alveolar, and endothelial cells. The ex-
istence of a direct association between immune infiltration
and ALDH2 has been demonstrated in a recent study in
HNSC [55], showing that ALDH2 expression correlates
with immune marker genes and T cell infiltration. In par-
ticular, ALDH2‐mediated aldehyde metabolism promotes
tumor immune evasion by activating the NOD/NF‐κB/
VISTA axis [85]. On these bases, we interrogated the GSCA
platform to assess a possible correlation between ALDH2
and immune cell infiltration in LUAD and observed that
ALDH2 expression correlates with mucosal‐associated
invariant T cell (MAIT) infiltration. The increased fre-
quency of MAIT cells has recently been implicated in
dysfunctional immune response in lung cancer [86] and
has been suggested as a predictor of anti‐PD‐1 immuno-
therapy response [87]. Moreover, ALDH2 expression is
correlated with infiltration of Th17 cells, which are an
important constituent of the inflammatory milieu of the
lung tumor immune microenvironment (TIME) [88].
Conversely, we determined a negative correlation between
ALDH2 expression and exhausted T cells and naturally
occurring regulatory T cells (nTreg) that play a role in re-
modeling the immune‐suppressive pulmonary TIME. In
particular, in lung cancer, T‐cell exhaustion is associated
with decreased cytokine production and cytolytic activity,
and increased expression of ICI receptors, leading to the
failure of cancer eradication by ICI therapy [89]. Also,
infiltration of nTregs, an immunosuppressive subset of
CD4+ T cells, has a negative prognostic value for patients
with NSCLC and impacts the efficacy of ICI therapy
[90, 91].

ICI therapy is an innovative therapeutic option for
lung cancer, but only a fraction of patients experience a
favorable response to the treatment; therefore, an accu-
rate patient selection is of paramount importance to
predict patients who might benefit from ICI therapy.
However, patients initially responsive to ICI therapy may
develop resistance. ALDHs may represent a target to
potentially overcome anticancer therapy resistance
[92, 93]. Therefore, unveiling the role of ALDH2 in lung
tumor progression and immune infiltration could prove
the potential use of ALDH2 as a predicting marker for
immunotherapeutic response in lung cancer. A correla-
tion between ALDH2 and immune inhibitors has
recently emerged [56], thus suggesting a role for ALDH2
as a prognostic and diagnostic biomarker to predict the
sensitivity of HNSC patients to ICI therapy [94], as well
as in hepatocellular carcinoma [95], and glioma [71].
Based on multi‐omics data analysis in different cancers,
ALDH2 has also been suggested as an accurate bio-
marker with the best prediction efficacy in evaluating
immunotherapeutic response in skin cutaneous mela-
noma, compared with the most commonly used bio-
markers (PD‐1, PD‐L1, CTLA4, CD8, and TMB) [31].
These findings shed new light on the potential role of
ALDH2 in more precisely tailoring cancer immuno-
therapy, predicting patients who might benefit from ICI
therapy. Interestingly, in hepatocellular carcinoma, high
ALDH2 expression correlates with poor dendritic cells
and macrophages immune infiltration and with low PD‐1
and CTLA4 expression [95]. Clinical results also indicate
that ALDH2 is among the mitochondrial metabolic pro-
teins significantly reduced in the group of nonresponder
melanoma patients undergoing anti‐PD1 immuno-
therapy [96] and correlates to immune cell infiltration
[78]. Accordingly, ALDH2 polymorphism rs671, which
reduces the ALDH2 enzymatic activity, has been pro-
posed as an easily detectable predictor of the efficacy of
PD‐1/PD‐L1 inhibitor treatment in patients with lung
cancer [97]. To examine whether ALDH2 might affect
NSCLC immunotherapy, we performed a comprehensive
analysis based on publicly available multi‐omic data. We
revealed a significant inverse correlation between
ALDH2 expression and the levels of some immune
inhibitors such as cytotoxic T‐lymphocyte antigen
4 (CTLA‐4), indoleamine 2,3‐dioxygenase 1 (IDO1),
lymphocyte‐activation gene 3 (LAG‐3), programmed cell
death protein 1 (PD‐1), programmed cell death ligand 1
(PD‐L1), and T cell immunoreceptor with Ig and ITIM
domains (TIGIT). Conversely, ALDH2 expression is pos-
itively correlated with some immune stimulators such as
IL6R (ρ: 0.27), whose low expression predicts poor LUAD
prognosis [98], and negatively correlated with CD276
(ρ: −0.25) that is highly expressed and impacts the
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survival of NSCLC patients [99]. In addition, ALDH2
correlates with the MHC Class II, DM Alpha (HLA‐
DMA) (ρ: 0.35), which is a favorable prognostic marker,
and inversely correlates with TAP1 (ρ: −0.24), whose
expression negatively impacts survival in LUAD patients
[100]. Finally, we determined that ALDH2 expression
correlates with the CXC chemokine family members
CXCL16 (ρ: 0.45) and CXCL17 (ρ: 0.39), which exert anti‐
tumors effects [101], and with the C‐C motif chemokine
receptor 6 (CCR6) (ρ: 0.20), which is a marker of favor-
able LUAD prognosis [102].

5 | CONCLUSION

Our study, based on the bioinformatics analysis of data
available in public databases, supports the use of ALDH2
a potential molecular biomarker for the prognosis and
treatment of LUAD. In particular, ALDH2 impacts the
immune cell compartment, potentially influencing the
efficacy of ICI therapy for pulmonary adenocarcinoma.
However, experimental and clinical analyses are needed
to verify these results and to identify the molecular
mechanisms by which ALDH2 might be instrumental in
the selection of the patients who might benefit from
immunotherapy.
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