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Analysis of behavioral flow resolves  
latent phenotypes

Lukas M. von Ziegler    1,2,5, Fabienne K. Roessler    1,2,5, Oliver Sturman    1,2,3, 
Rebecca Waag    1,2, Mattia Privitera    1,2, Sian N. Duss    1,2, Eoin C. O’Connor    4 
& Johannes Bohacek    1,2,3 

The accurate detection and quantification of rodent behavior forms a 
cornerstone of basic biomedical research. Current data-driven approaches, 
which segment free exploratory behavior into clusters, suffer from low 
statistical power due to multiple testing, exhibit poor transferability across 
experiments and fail to exploit the rich behavioral profiles of individual 
animals. Here we introduce a pipeline to capture each animal’s behavioral 
flow, yielding a single metric based on all observed transitions between 
clusters. By stabilizing these clusters through machine learning, we ensure 
data transferability, while dimensionality reduction techniques facilitate 
detailed analysis of individual animals. We provide a large dataset of 771 
behavior recordings of freely moving mice—including stress exposures, 
pharmacological and brain circuit interventions—to identify hidden 
treatment effects, reveal subtle variations on the level of individual animals 
and detect brain processes underlying specific interventions. Our pipeline, 
compatible with popular clustering methods, substantially enhances 
statistical power and enables predictions of an animal’s future behavior.

The reliable detection of complex mouse behavior in biomedical 
research settings is critical to gain insights into disease conditions, 
genetic phenotypes and internal states (that is, emotion, motivation and 
so on). Pioneering work leveraged video-based body-center tracking 
and data mining in the open field test (OFT)—routinely used to capture 
unconstrained rodent behavior—to show that the behavioral repertoire 
in simple test setups contains rich information about an animal’s traits1,2. 
The advent of pose-estimation technology3–5 has renewed interest in 
analyzing animal behavior using data-driven methods that operate inde-
pendently of human intervention6–8. Based on raw or processed video 
data, these approaches segment behavior using clustering algorithms 
or more sophisticated state-space models and have revealed a remark-
able complexity underlying even the simplest of behavioral tests9–14.

Despite this rapid progress, such advancements have given rise to 
four major challenges, which we address in this work. (1) Data-driven  
analysis of animal behavior promises to better resolve differences 

between experimental groups, by analyzing large numbers of behav-
ioral variables6–8. However, this increases statistical demands from 
multiple testing corrections, thus decreasing the power to detect group 
differences. We solve this by introducing a ‘behavioral flow analysis’ 
(BFA), which uses a single metric to identify treatment effects based 
on the observed transitions between the different behavioral clusters.  
(2) Clusters that represent behaviors vary between experiments, 
making it difficult to compare clustering results between different 
experiments. We address this using a large dataset to train a super-
vised machine learning classifier to recognize established behavioral 
clusters in newly encountered datasets. (3) It remains challenging 
to compare behavioral results across large sets of experiments. We 
combine BFA and stabilized clusters with dimensionality reduction 
techniques to generate a single high-dimensional data point for each 
animal. This ‘behavioral flow fingerprinting’ (BFF) approach allows 
large-scale comparisons of animal behavior across a wide range of 
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which generates a behavioral profile that allows behavioral predictions 
in future test settings.

Using a series of stress paradigms, and stress-related pharmaco-
logical and circuit neuroscience interventions, we test and validate 
our approach across many behavioral datasets, across different types 

experimental manipulations. (4) It has not yet been demonstrated 
that behavioral personality profiling—akin to a detailed clinical assess-
ment in humans—is possible in mice. We introduce an approach that 
compares the similarity of each animal’s behavioral flow to the median 
group profiles, thus deriving a ‘behavioral flow likeness’ (BFL) score, 
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Fig. 1 | BFA increases power to detect phenotypes. a, A schematic showing the 
experimental design for CSI. b, Classical behavior readouts in the OFT show that 
CSI mice (n = 30) spend more time in the center (two-tailed t-test, t(53) = 2.96, 
adjusted P = 4.47 × 10−2) and travel greater distance (two-tailed t-test, t(52) = 4.55, 
adjusted P = 7.08 × 10−4) than controls (n = 29). c, Feature extraction based on 
pose-estimation tracking and sequential feature integration for subsequent 
clustering. d, The k-means cluster occurrence in CSI (n = 30, controls: n = 29; 
two-tailed t-tests with multiple testing correction). e, A schematic example of 
behavioral flow based on cluster transitions. f, The average behavioral flow over 
all animals between example clusters. The white arrows display the direction of 
transition. g, Schematic of computing Manhattan distance to compare behavioral 
transition matrices between groups. h, The permutation approach used for BFA 

to compare the transition distance based on the true group assignment versus 
the randomized group assignment. c, control; t, test. i, BFA reveals a treatment 
effect for CSI (one-tailed z-test, percentile 99.9, z = 5.72, P = 5.28 × 10−9, d = 0.97). 
j, Schematic of computing the BFL score to estimate effect sizes. k, Power 
analysis comparing classical readouts (‘distance moved’ and ‘time in center’) 
with analysis of cluster transitions. l, The number of clusters influences power to 
detect treatment effects. m, Power analysis comparing three different clustering 
algorithms. P values and adjusted P values are denoted as *<0.05, **<0.01 and 
***<0.001; n.s., not significant. For box plots, the center line denotes the median 
value, while the bounding box delineates the 25th to 75th percentiles. The 
whiskers represent 1.5 times the interquartile range from the lower and upper 
bounds of the box. The error bars in the bar plot denote mean ± s.e.m.
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of tests and in independent laboratories. An implementation of the 
analysis pipeline is freely available to others through the BehaviorFlow 
package (https://github.com/ETHZ-INS/BehaviorFlow). Our results are 
in line with the reduce-and-refine principles set forth by animal welfare 
regulations, as our approach increases statistical power, reduces the 
number of animals required for experiments and increases the infor-
mation extracted from each experimental animal.

Results
BFA reveals treatment effects
To test whether an unsupervised approach would reveal known phe-
notypes, we first turned to a published dataset15 in which mice were 
exposed to chronic social instability (CSI) stress or to control handling, 
before being tested on the OFT (Fig. 1a). Classical behavior analysis—as 
described previously15,16—showed that CSI mice spent more time in the 
center of the open field and traveled greater distances, while rearing 
behavior was not affected (Fig. 1b).

To test how well an unsupervised clustering approach performs 
at resolving group differences, we tracked 13 body points using the 
pose-estimation tool DeepLabCut3,17, transformed the tracking data 
into a set of 41 features and resolved them over a sliding time window 
(±15 frames) to describe short temporally resolved sequences (Fig. 1c). 
The resulting data contained 1,271 dimensions for each frame. We 
then used a computationally efficient k-means clustering algorithm 
to resolve different behaviors. To determine the best number of clus-
ters, we chose an approach previously used for similar datasets10,14 by 
first partitioning the recorded behavior into 100 clusters and then 
choosing the number of clusters that represented 95% of the imag-
ing frames. This mark indicated about 70 clusters (Extended Data 
Fig. 1a), so we subsequently reran the clustering approach using 70 
clusters. Although nominal P values revealed that CSI and control 
animals behaved differently on many of these clusters, only 4 out 
of 70 clusters survived the appropriate multiple testing correction 
(Benjamini–Yekutieli; Fig. 1d and Supplementary Fig. 1a). Visual inspec-
tion of these significant clusters (two-tailed t-tests, adjusted P < 0.05) 
reveals—in agreement with the classical analysis—that they capture 
the time that animals spend in the center of the open field. Specifi-
cally, these four clusters represent movement of the mouse from the 
periphery into the center (cluster 41; Supplementary Video 1), move-
ment in or through the center (cluster 23; Supplementary Video 2), 
orienting and turning in the center (cluster 69; Supplementary Video 3)  
and movement from the center back to the periphery (cluster 45; Fig. 1e 
and Supplementary Video 4).

Because behavior emerges as a dynamic property of moment-to- 
moment action, we took advantage of the frame-by-frame resolution 
of the clustering data to assess behavioral flow (that is, the tempo-
ral sequence in which one cluster transitions to another cluster) in 
each animal (Fig. 1e). Analyzing behavioral flows across all animals 
(independent of group assignment) demonstrated that many clusters 
had ingoing and outgoing transitions that were much more likely to 
occur (Extended Data Fig. 1b). An example is the clusters identified 
as significant (two-tailed t-tests, adjusted P < 0.05) between CSI and 
control mice, where behavioral flow indicates that, when mice move 
from the periphery to the center (cluster 41), this can be followed 
by center exploration (cluster 69) or movement through the center 
(cluster 23), which is most often followed by a movement back into the 
periphery (cluster 45; Fig. 1e,f). However, when we tested for group dif-
ferences using cluster transitions, none of them remained significant 
(two-tailed t-tests, adjusted P < 0.05) after multiple testing correc-
tion (1,753 observed transitions out of 4,830 possible transitions). To 
demonstrate that the information gain is punished by multiple testing 
correction, we designed a sensitivity assay (Extended Data Fig. 1c). 
When using unadjusted P values, both cluster usage and transition 
occurrences perform better than classical analyses (Extended Data 
Fig. 1d). However, when applying multiple testing corrections, both 

cluster and transition measures perform poorer than classical analyses 
in detecting phenotype differences (Extended Data Fig. 1e).

To address this multiple-testing-problem, we used a statistical 
approach to detect group differences based on the combined behav-
ioral flow data, which we term behavioral flow analysis (BFA). The BFA 
method first defines the difference between the two experimental 
groups based on the Manhattan distance between group means across 
all behavioral transitions (Fig. 1g). To assess if this distance is signifi-
cantly larger than expected, we used a permutation approach where 
randomized group assignments were generated using the original 
data to estimate a null distribution of the intergroup distance (Fig. 1h). 
Then, we calculated the percentile and tested the true distance against 
the null distribution using a right-tailed z-test, which revealed a strong 
group difference that is very unlikely to be due to chance (Fig. 1i). To 
rule out that BFA arbitrarily generates effects, we randomly divided 
only control animals and only CSI animals into two subgroups (n = 14–15 
per group) and showed that BFA does not detect differences between 
the two control groups, nor between the two CSI groups (Extended 
Data Fig. 1f).

Can analyzing the entire behavioral flow increase statistical 
power? Power analyses are traditionally calculated on the basis of a 
single behavioral measure. To estimate the effect size between the 
high-dimensional behavioral flow profiles of two groups, we devel-
oped a behavioral flow likeness (BFL) score, to compare each animal’s 
behavioral profile to the median of the two groups. Based on these BFL 
scores, we computed the effect size of the CSI treatment using Cohen’s 
d (Fig. 1j). For CSI, which strongly increases locomotion, traditional 
power calculation shows that ‘distance moved’ yields more power than 
‘time in center’ (Fig. 1k). Power analysis using the BFL-based approach 
yields more power than ‘time in center’, but less than ‘distance moved’ 
(Fig. 1k). However, picking the single transition with the lowest adjusted 
P value (termed ‘best predictor for BFA’) yielded a higher power com-
pared with ‘distance moved’ (Fig. 1k). Thus, the BFL approach offers 
an unbiased estimation of effect sizes and enables power calculations 
based on the entire behavioral profile of an animal. Systematically 
changing the temporal integration period (from ±5 frames to ±30 
frames) showed only minor differences in power, but our initial choice 
of ±15 frames performed best (Extended Data Fig. 1g). In contrast, a 
systematic comparison of cluster numbers (from 10 to 100) revealed 
that BFL based on 25 clusters yields the highest power (Fig. 1l). Similarly, 
25 clusters yielded by far the largest statistical power when using sen-
sitivity assays based on P values, where group sizes were successively 
reduced in silico (Extended Data Fig. 1h). Finally, we demonstrated that 
our BFA and effect size estimation also work with the output of other 
clustering algorithms used for analyzing rodent behavior, the software 
packages VAME14 and B-SOiD9 (Supplementary Note 1).

Cluster stabilization enables comparisons across experiments
To sample behavior from mice exposed to various stress-related chal-
lenges, we added two new behavioral datasets: (1) an experiment 
in which mice were tested 45 min and 24 h after a short swim stress 
exposure (Fig. 2a) and (2) a pharmacological stress model that allowed 
us to introduce a graded response by injecting mice with escalating 
doses of yohimbine (Fig. 2b). Yohimbine is an α2-adrenergic receptor 
antagonist that triggers noradrenaline release by disinhibiting the 
locus coeruleus18,19. To obtain comparable clustering results across 
these experiments, all the data would need to be used in one big clus-
tering experiment, which can become computationally expensive. 
Further, although k-means allows calculating which cluster center is 
closest to a new data point, other clustering algorithms (for instance, 
density-based clustering as applied by B-SOiD) would need access to 
the original clustering data to embed new behavioral recordings. To 
offer a computationally efficient solution for every choice of cluster-
ing algorithm, we stabilized clusters using a classifier-in-the-middle 
approach. To this end, we selected a random set of 60 animals from 
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Fig. 2 | Cluster stabilization enables comparisons across experiments.  
a,b, A schematic of the experimental design for OFT after acute swim stress  
(AS) (a) or after yohimbine injections (b). c, Clustering across large datasets.  
d, Classifier performance on 10-fold cross-validation for each cluster.  
e, Quantification of cluster occurrences in CSI (n = 30, controls: n = 29; 
two-tailed t-tests with multiple testing correction). f, Absolute differences in 
behavioral flow in control versus CSI. For each cluster, the absolute difference 
in the observed number of transitions between groups is plotted. g, BFA 
reveals a treatment effect for CSI (one-tailed z-test, percentile 99.9, z = 6.02, 
P = 8.63 × 10−10, d = 0.92). h, Power analysis in CSI. i, Cluster occurrences in 
AS (45 min) (n = 15, controls: n = 15; two-tailed t-tests with multiple testing 

correction). j, The absolute difference in behavioral flow in control versus AS 
(45 min). k, BFA reveals a treatment effect for AS at 45 min (one-tailed z-test, 
percentile 99.4, z = 3.09, P = 1.01 × 10−3, d = 0.53). l, Power analysis in AS. m, Cluster 
occurrences in yohimbine (n = 15, controls: n = 5; two-tailed t-tests with multiple 
testing correction). n, The absolute difference in behavioral flow in saline versus 
yohimbine. o, BFA reveals a treatment effect for yohimbine (one-tailed z-test, 
percentile 99.8, z = 5.56, P = 1.38 × 10−8, d = 2.91). p, Analysis of cluster transitions 
shows higher power in detecting treatment effects for yohimbine. P values and 
adjusted P values are denoted as *<0.05, **<0.01 and ***<0.001. The error bars in 
the bar plots denote mean ± s.e.m.
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all behavioral experiments (that is, 20 animals each from CSI, acute 
swim and yohimbine) for performing k-means clustering to generate 
25 clusters, as this number of clusters was sufficient to detect phe-
notypical differences as shown above (Fig. 1k). Afterward, we used 
these clustering results to train a neural network that can imitate the 
clustering on the random subset for the rest of the data (Fig. 2c). Using 
a 10-fold cross-validation, we found that this approach had good (>0.9) 
precision and recall values across all 25 clusters (Fig. 2d).

Using this cluster stabilization approach, we first reanalyzed the 
CSI experiment. As we now only used 25 clusters, multiple testing 
correction was less punishing and we identified 6 significant clusters 
(two-tailed t-tests, adjusted P < 0.05; Fig. 2e and Supplementary Fig. 1b) 
and two significant transitions (two-tailed t-tests, adjusted P < 0.05; 

Fig. 2f). Visual inspection revealed—consistent with the original analy-
sis—that all clusters that occurred more frequently in CSI mice captured 
behaviors related to active locomotion in the center: movement in 
the center of the open field (cluster 3; Supplementary Video 5), the 
initiation of movement from the periphery to the center (cluster 14; 
Supplementary Video 6), fast locomotion crossing the center or mov-
ing from center to periphery (cluster 21; Supplementary Video 7) and 
exploration/turning in the center or movement toward the periphery 
(cluster 25; Supplementary Video 8). In contrast, the only underrep-
resented cluster in CSI mice was movement or exploration along the 
periphery of the open field (cluster 10; Supplementary Video 9). For 
a full description of all clusters, see Supplementary Table 1. The BFA 
pipeline reproduced the strong phenotype (Fig. 2g), and the power was 
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drug dose delivered to each animal. e, A schematic of the experimental design of 
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increased (Fig. 2h). Taken together, our approach captures meaningful 
behavioral motifs and interpretable transitions, independent of the 
number of clusters, and also when the original dataset is reanalyzed 
using a set of clusters derived from training on subsets of videos from 
various experiments.

We next applied the same analysis pipeline using the clustering 
classifier to open field behavior assessed 45 min after an acute swim 
stress. None of the 25 clusters and none of the observed transitions 
revealed any group differences (Fig. 2i,j and Supplementary Fig. 1c), yet 
BFA readily identified a significant group difference (one-tailed z-test, 
P = 1.01 × 10−3; Fig. 2k). When we instead analyzed open field behav-
ior 24 h after swim stress, neither the 25 clusters or their transitions 
nor BFA revealed a discernible phenotype (Extended Data Fig. 2a–c), 
consistent with our previous observations that swim stress induces 
only transient changes in mouse behavior20. These results suggest 
that BFA can detect group differences when other methods fail, but 
it does not create arbitrary effects in a scenario when no differences 
would be expected.

Next, we applied the same analysis pipeline to mice injected 
with escalating doses of yohimbine. For this, we grouped all 
yohimbine-injected mice into one group (yohimbine, n = 15), and com-
pared them with the five saline-injected controls (Fig. 2b). Because of 
the small number of mice in the control group, nominally large effects 
on various individual clusters did not yield statistical significance after 
multiple testing correction (two-tailed t-tests, adjusted P < 0.05; Fig. 2m 
and Supplementary Fig. 1d), nor on the level of observed transitions 
(Fig. 2n). However, BFA was again able to reveal a significant group dif-
ference (one-tailed z-test, P = 1.38 × 10−8, Fig. 2o), showcasing the power 
of this analysis even when applied to experiments with intentionally 
high variability and small group sizes. In line with our previous findings 
that yohimbine reduces supported rearing19, yohimbine strongly sup-
presses clusters 1 and 11, which capture the initiation and termination of 
a supported rear, respectively (Supplementary Videos 10 and 11). Power 
analyses for both acute swim test (Fig. 2l) and yohimbine (Fig. 2p) reveal 
that the metric ‘best predictor for BFA’ yields similar or higher power 
for detecting group differences compared with standard OFT readouts.

2D embedding captures individual differences
Beyond identifying group differences, it is necessary to understand 
behavior at the level of individual animals. Unsupervised approaches 
can resolve differences between different drugs and drug doses11. We 
thus asked whether behavioral flow would be sensitive to drug dosage in 
the yohimbine experiment (Fig. 3a). Modeling occurrence of transitions 
as a function of dosage showed that the transition from a supported 
rear (cluster 11; Supplementary Video 11) to the subsequent turning 
motion and onset of movement (cluster 7; Supplementary Video 12) 
occurred less frequently at higher yohimbine doses (Fig. 3b). To further 
explore individual differences based on behavioral flow, we consid-
ered that the behavioral flow diagrams represent high-dimensional 
data for each animal (625 possible transitions between 25 clusters). 
We applied Uniform Manifold Approximation and Projection (UMAP) 
to project the high-dimensional behavioral transition matrix of each 
animal onto a single data point in two-dimensional (2D) space. This 
clearly separated saline from yohimbine groups (Fig. 3c), and resolved 
low versus high dosages, despite the small animal numbers used in this 
experiment (Fig. 3d). As this approach provides a unique description 
of each animal’s behavioral repertoire, we refer to it as behavioral flow 
fingerprinting (BFF).

Being able to stabilize the unsupervised clustering analyses across 
experiments, and to capture individual behavioral response profiles of 
each animal, we explored whether we could plot individual behavioral 
profiles across experiments. First, individual BFF embeddings revealed 
that stress groups shifted away from controls after CSI (Fig. 3e,g) and 
45 min (but not 24 h) after swim stress exposure (Fig. 3f,h). However, in 
line with the large behavioral variance observed in these experiments, 

the embeddings also show the large overlap between groups. Next, we 
normalized behavioral flow to the internal control group within each 
dataset and plotted the BFF embedding across all three experiments 
(Fig. 3i). This is in notable contrast to a previous attempt, where each 
group was compared not with an internal control, but with all other 
groups combined11, thus potentially overestimating the power to iden-
tify effects. The resulting 2D embedding shows that yohimbine—which 
triggers noradrenaline release—induces distinct changes that separate 
the yohimbine group strongly from control animals. Acute stress—dur-
ing which noradrenaline is released as well—shifts the animals toward 
the yohimbine group (45 min), an effect that disappears as stress effects 
subside (24 h). This shows that combining BFF with cluster stabiliza-
tion allows visualizing treatment effects and comparing the impact of 
various manipulations across experiments and individuals in ways that 
were previously not possible.

Cluster transfer to new datasets and data integration
Next, we tested how well the analysis pipeline can be transferred to 
two different experiments that were not used to perform clustering 
and train the clustering classifier. In the first experiment, mice were 
exposed to chronic restraint stress (CRS) for 90 min per day on 10 
consecutive days (Fig. 4a) and tested in the OFT 45 min after the last 
stress exposure. In the second experiment, we triggered noradrenaline 
release directly in the brain using chemogenetic (designer receptor 
exclusively activated by designer drugs, DREADD, hM3Dq) activation 
of the locus coeruleus21,22 (Fig. 4b). We recorded open field behavior 
directly after DREADD activation. Then, we performed clustering as 
described above using the cluster classifier trained on the CSI, swim 
stress and yohimbine data (Fig. 4c).

We found high consistency in behavioral flow between control 
animals in the original datasets when contrasted with control animals 
in the new datasets (Fig. 4d). Further, we observed that clusters 1 and 11 
(Supplementary Videos 13 and 14) mapped to onset and offset of sup-
ported rearing, respectively, consistent with the previous experiments 
(Supplementary Videos 10 and 11; for a description of all clusters, see 
Supplementary Table 1). This demonstrates a reproducible clustering 
transfer for new datasets. Further analysis revealed six significant clus-
ters (two-tailed t-tests, adjusted P < 0.05) in the CRS experiment (Fig. 4e 
and Supplementary Fig. 1e), and while no cluster transition survived 
multiple testing correction (Fig. 4f), BFA identified a significant group 
effect (one-tailed z-test, P = 3.18 × 10−8; Fig. 4g). In the DREADD experi-
ment, no significant clusters or transitions were detected (two-tailed 
t-tests, adjusted P < 0.05; Fig. 4i,j and Supplementary Fig. 1f), yet BFA 
was again able to reveal a significant group effect (one-tailed z-test, 
P = 1.81 × 10−3; Fig. 4k). In both the CRS and DREADD experiments, our 
pipeline increased power to detect group effects compared with clas-
sical behavioral readouts (Fig. 4h,l). Visually, BFF clearly separated 
phenotypes in the 2D embedding in both datasets (Fig. 4m,n).

We then plotted all experiments presented thus far in one 2D 
embedding (Fig. 4o). All manipulations that acutely trigger noradrena-
line release (acute swim, yohimbine and DREADD) were shifted away 
from the control groups in the same direction. In sharp contrast, the 
two chronic stressors (CSI and CRS) induced distinct phenotypes, with 
animals being shifted toward two different directions. This demon-
strates that our analysis pipeline can be employed on different datasets 
that were not used for training the clustering classifier and that, across 
experiments, this approach can describe behavioral response profiles 
in ways that are consistent with the underlying brain processes. Similar 
results could be obtained when our pipeline was applied to a different 
clustering approach (VAME; Supplementary Note 2).

Quantifying individual variability to predict behavior
In mice exposed to swim stress we noted—despite the clear treatment 
effect—that several animals embedded closer to controls (Fig. 4o), 
raising the possibility that they might have been less responsive to the 
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Fig. 4 | Clustering is transferable to new datasets with the same experimental 
setup. a,b, A schematic of the experimental design for OFT after CRS (a) or after 
DREADD activation of the locus coeruleus (b). c, Cluster transfer to new datasets 
that were not used for the initial clustering. d, Comparison of average behavioral 
flow in control animals reveals a similar pattern between original clustering (left; 
CSI, acute swim stress (AS) and yohimbine) and transferred clustering (right; CRS 
and DREADD). Only transitions with an average appearance >5 are shown.  
e, Quantification of cluster occurrences in CRS (n = 16, controls: n = 16; two-tailed 
t-tests with multiple testing correction). f, The absolute differences in behavioral 
flow in control versus CRS. g, BFA reveals a treatment effect for CRS (one-tailed  
z-test, percentile 99.9, z = 5.41, P = 3.18 × 10−8, d = 1.81). h, Power analysis for 
the CRS experiment. i, Quantification of cluster occurrences after DREADD 

activation of the locus coeruleus (DREADD: n = 8, controls: n = 8; two-tailed 
t-tests with multiple testing correction). j, Absolute differences in behavioral 
flow in saline versus clozapine. k, BFA reveals a treatment effect for the DREADD 
experiment (one-tailed z-test, percentile 99.2, z = 2.91, P = 1.81 × 10−3, d = 1.58). 
l, Power analysis for the DREADD experiment. m,n, BFF using dimensionality 
reduction for the CRS experiment (CRS: n = 16, controls: n = 16) (m) and for the 
DREADD experiment (DREADD: n = 8, controls: n = 8) (n). o, BFF embeddings 
across original (CSI: n = 30, AS: n = 15, yohimbine: n = 15) and new (CRS: n = 16, 
DREADD: n = 8, controls (combined): n = 73) experiments. P values and adjusted  
P values are denoted as *<0.05, **<0.01 and ***<0.001. The error bars in the bar 
plots denote mean ± s.e.m. For every UMAP embedding, the crossbars represent 
the average UMAP1 and UMAP2 values with s.e.m. for each group.
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effects of stress. Distinguishing responders from nonresponders is a 
great challenge. We thus turned to an experimental setup that allowed 
us to make predictions about the behavioral response of individual 
animals. We used an inescapable footshock (IFS) paradigm, which deliv-
ers a series of strong footshocks over 20 min and induces long-lasting 
behavioral changes in rats23,24 and mice25,26. Mice were tested in the 
OFT the day before stress exposure (OFT1), the day after stress expo-
sure (OFT2) and one week afterward (OFT3). Between OFT2 and OFT3, 
mice were exposed to one extinction session per day, during which 
fear memory was assessed (Fig. 5a). Cluster analysis revealed a strong 

stress-induced phenotype on OFT2, the day after footshock exposure 
(Fig. 5b and Supplementary Fig. 1g), and two behavioral transitions 
revealed a significant difference between groups (two-tailed t-tests, 
adjusted P < 0.05; Fig. 5c,d). These effects on cluster occurrences and 
transitions were not observable before footshock exposure (OFT1; 
Extended Data Fig. 3a,b) and disappeared again after extinction during 
OFT3 (Extended Data Fig. 3c,d). These effects were all confirmed with 
BFA (Fig. 5e). Plotting the behavioral transition dynamics in 2D together 
with all previous experiments revealed that IFS mice cluster with acute 
stress and noradrenaline manipulations (Fig. 5f).
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Fig. 5 | BFF captures individual variability and allows behavioral predictions. 
a, A schematic of the experimental design for IFS. b, Cluster occurrences 
in IFS (OFT2: n = 20, controls: n = 15; two-tailed t-tests with multiple testing 
correction). c, The absolute difference in behavioral flow in control versus IFS 
(OFT2). d, Significant transition occurrences in control (n = 15) versus IFS (OFT2, 
n = 20). e, BFA reveals a treatment effect of IFS only during OFT2 (one-tailed 
z-test, OFT1: percentile 3.9, z = −1.54, P = 9.39 × 10−1; OFT2: percentile 99.9, 
z = 7.77, P = 3.89 × 10−15, d = 1.63; OFT3: percentile 44.5, z = −0.18, P = 5.70 × 10−1). 
f, 2D embedding of behavioral flow across all datasets (CSI: n = 30, AS: n = 15, 
yohimbine: n = 15, CRS: n = 16, DREADD: n = 8, IFS: n = 20, controls (combined): 
n = 88). The crossbars represent the average UMAP1 and UMAP2 values with 
s.e.m. for each group. g, A schematic showing the stratification of nonresponding 
and responding groups based on BFL score. h, log(BFL) scores for control (n = 15), 
nonresponder (n = 10) and responder (n = 10) animals. i, Cluster occurrences in 

nonresponding (n = 10) versus responding (n = 10) mice (two-tailed t-tests with 
multiple testing correction). j, The absolute differences in behavioral flow in 
responding versus nonresponding mice. k, BFA reveals a group effect between 
responding and nonresponding mice (one-tailed z-test, percentile 99.9, z = 6.01, 
P = 9.23 × 10−10, d = 3.34). l, Freezing response before (PRE) IFS exposure and 
during subsequent extinction sessions (Ex1–6) for control (n = 15), nonresponder 
(n = 10) and responder (n = 10) mice (two-way ANOVA for general effect, followed 
by two-tailed t-tests between groups with multiple testing correction). P values 
and adjusted P values are denoted as *<0.05, **<0.01 and ***<0.001; n.s., not 
significant. The error bars in the bar plots denote mean ± s.e.m. For box plots, the 
center line denotes the median value, while the bounding box delineates the 25th 
to 75th percentiles. The whiskers represent 1.5 times the interquartile range from 
the lower and upper bounds of the box.

http://www.nature.com/naturemethods


Nature Methods | Volume 21 | December 2024 | 2376–2387 2384

Article https://doi.org/10.1038/s41592-024-02500-6

Distinguishing responders to stress from nonresponders is often 
done using a single behavioral measure27, which raises questions about 
bias, reliability and validity28. To address this, we used the BFL score 
that, beyond its usefulness for computing effect size (Fig. 1j), can be 
viewed as a continuous ‘treatment-responsivity measure’, which con-
tains information about the behavioral change for each individual 
mouse. Thus, IFS-exposed mice with a BFL score similar to the control 
group were classified as nonresponders, while animals outside the 
range of BFL scores of the control group were classified as respond-
ers (Fig. 5g,h). Using this new group assignment, we compared OFT2 
performance and found—as expected—different cluster representa-
tion and behavioral flow (Fig. 5i,j and Supplementary Fig. 1h) and a 
strong group difference using BFA (one-tailed z-test, P = 9.23 × 10−10; 
Fig. 5k). This group assignment (based on OFT2 performance) allowed 
a forward prediction, revealing that responders showed a stronger 
and more protracted freezing response during 6 consecutive days of 
extinction training (Fig. 5l).

Transferability across labs and behavioral tests
To expand beyond the OFT, we applied our analysis pipeline to existing 
video recordings from three different behavioral tests. We also asked if 
our approach was sufficiently robust to be applied to OFT data acquired 
from a different laboratory. Due to the change in recording and test 
setup, we performed a new k-means clustering for each experiment, fol-
lowed by the same analysis pipeline for BFA and BFF as described above.

To apply our pipeline to the marble burying test, mice were either 
injected (intraperitoneally) with yohimbine (3 mg kg−1) or vehicle 
(Fig. 6a), immediately before exposure to the test cage. We again used 
25 clusters as increasing the number of clusters did not increase power 
(Fig. 6b). Several clusters differed significantly between yohimbine and 
vehicle injections (two-tailed t-tests, adjusted P < 0.05; Fig. 6c and Sup-
plementary Fig. 1i), an effect that was confirmed by BFA (Fig. 6d). After 
visual inspection, we detected a single cluster (cluster M.3; Supple-
mentary Video 15) that represented digging behavior and was strongly 
reduced in yohimbine animals, in agreement with the total number of 
buried marbles after the test (Fig. 6e,f). Resolving the digging cluster 
over 6 min bins, we see a slow onset of the strong drug effect over time 
(Fig. 6g), consistent with drug uptake dynamics. A 2D embedding (BFF) 
of binned transition data identified similar temporal dynamics based 
on the analysis of the complete behavioral flow (Fig. 6h). This method 
was also able to resolve more subtle behavioral changes within the con-
trol animals, which evolve over the 30 min trial and probably capture 
habituation to the test environment.

Mice were assessed in the light–dark box test 2 days after exposure 
to CRS (Extended Data Fig. 4a). Power analysis showed that 50 clusters 
yielded the highest power in detecting group differences (Extended 
Data Fig. 4b). While no cluster difference survived the multiple testing 
correction (Extended Data Fig. 4c), BFA did reveal a clear group dif-
ference (Extended Data Fig. 4d), and a 2D embedding showed a subtle 
phenotype (Extended Data Fig. 4e).

To apply our pipeline to a fear conditioning setup, we tracked 
animals’ behavior during the 25 min IFS shock session (Extended Data 
Fig. 4f). Our analysis pipeline revealed a strong behavioral change in 
IFS animals using power analysis, cluster usage and BFA (Extended Data 
Fig. 4g–i). We also investigated behavioral changes over 5 min bins in 
the fear conditioning box using BFF (Extended Data Fig. 4j). The 2D 
embedding highlights the strong behavioral change induced in the 
IFS group after onset of the random shocks (bins 2–5).

Finally, two OFT experiments were conducted in another labora-
tory (Fig. 6i,j), where the setup differed in many aspects from that used 
to originally establish the analysis workflow. In the first OFT experi-
ment, mice received either vehicle, or 1, 2 or 3 mg kg−1 diazepam per os 
(Fig. 6i). In the second experiment, mice received either vehicle, or 1, 3 
or 6 mg kg−1 yohimbine intraperitoneally (Fig. 6j). We performed a new 
k-means clustering using 25 clusters (highest power over all dosages 

and experiments; Extended Data Fig. 4l,m) on animals within these two 
experiments. Classical readouts highlighted clear dose-dependent dif-
ferences between the two pharmacological compounds (Extended Data 
Fig. 4k). Cluster usage differed strongly for yohimbine and diazepam 
injected animals (Fig. 6k,l and Supplementary Fig. 1j). BFA highlighted 
differences between vehicle and all yohimbine dosage groups (Fig. 6n), 
whereas for diazepam a dosage-dependent effect was seen only for 
the two higher dosages (2 and 3 mg kg−1; Fig. 6m). The grading of the 
yohimbine effects was so pronounced that BFA was able to distinguish 
between all different dosage groups (Extended Data Fig. 4o), whereas 
diazepam effects could be detected only between 1 mg kg−1 versus 
2 mg kg−1 and 1 mg kg−1 versus 3 mg kg−1, but not between 2 mg kg−1 
versus 3 mg kg−1 (Extended Data Fig. 4n). Finally, BFF resolved the 
different dosage-dependent trajectories of the two compounds well 
(Fig. 6o). Together, these experiments underscore the stability of the 
method across setups, labs, behavioral test types and phenotypes.

Discussion
When big data approaches emerge, it often takes years to recognize 
the problem of false positive findings due to inflated alpha-error prob-
ability. This was the case with transcriptomics in biology29,30, with 
functional magnetic resonance imaging in neuroscience31, and with 
Genome-Wide-Association-Studies in medicine32. Currently, big data 
approaches are revolutionizing behavioral neuroscience7,8, enabling 
identification of relevant representations and motifs from behavioral 
recordings33–35, and quantification of group differences based on cluster 
occurrence or transitions9,11,14,36–39. However, behavior is notoriously 
variable40–43 and the high number of measurements make stringent 
multiple testing correction quintessential. As a result, large group num-
bers are required, which runs counter to animal welfare regulations. 
Our BFA addresses this issue by circumventing the multiple testing 
problem. Using a large number of independent behavioral datasets, we 
demonstrate that this approach efficiently assesses treatment effects 
across various behavioral test setups and is able to resolve subtle phe-
notypes when classic analyses fail.

A great challenge in biomedical research is to identify treatment 
responsiveness on the level of individual animals using behavior testing. 
In stress research, the most popular approaches distinguishing resilient 
animals (they maintain health) from susceptible animals (they develop 
disease)44,45 are based on only a single measure obtained in one single 
test. For example, social interaction time27, sucrose consumption46, the 
startle response47 or exploratory behavior during approach–avoidance 
tests48,49. More elaborate strategies use several behavioral tests fol-
lowing stress exposure and dissociate resilient from susceptible mice 
by assigning composite test scores50–52. While the former approach is 
problematic because it relies on a single measure, the latter is labor 
intensive and incompatible with some experimental designs. We lever-
age the ability of BFL to represent high-dimensional behavioral data 
collected from one behavioral test in a single ‘treatment responsiveness 
score’ per animal, which serves as a ‘stress-responsivity’ measure. This 
approach enables the integration of behavior analysis with big data 
approaches, such as molecular screening or high-throughput imaging.

Several notable limitations plague any data-driven attempt to seg-
ment behavior recordings. First, not all clusters yield behaviors that can 
be recognized by human observers. We chose to provide a computation-
ally efficient k-means clustering approach, based on features extracted 
from body point tracking with sensible temporal integration. Many of 
the resulting clusters yield recognizable and interpretable behavioral 
motifs, and the observed transitions reveal meaningful behavioral 
sequences of mouse behavior, but many clusters (and their transi-
tions) remain difficult to interpret. Second, confounding factors and 
biases can influence each step of the analysis pipeline. Pose estimation 
is affected by the amount of training data, lighting conditions, occlu-
sion and animal appearance. The subsequent clustering of tracking 
data depends on the choice of input features and their preprocessing, 
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Fig. 6 | BFA and BFF are transferable to other setups. a, A schematic showing 
the experimental design for the marble burying test (MBT) after yohimbine or 
vehicle injection. b, Power analysis comparing different numbers of k-means 
clusters with the number of ‘marbles buried’ for MBT. c, Cluster occurrences in 
MBT (yohimbine: n = 10, vehicle: n = 9; two-tailed t-tests with multiple testing 
correction). d, BFA reveals a treatment effect of yohimbine (one-tailed z-test, 
percentile 99.9, z = 7.1, P = 6.21 × 10−13, d = 6.57) in MBT. e, Examples of final frames 
showing marbles buried after yohimbine (top) versus vehicle injection (bottom). 
f, Marbles buried differ significantly (two-tailed t-test, t(16) = 16.2, P = 2.03 × 10−11) 
after vehicle (n = 9) versus yohimbine (n = 10) injection. g, Time spent in cluster 
M.3 (digging cluster) evolves differently over time for mice after vehicle (n = 9) or 
yohimbine (n = 10) injection. Each bin represents 6 min. h, BFF shows change  
in behavior profile over time for yohimbine (n = 10) and vehicle (n = 9).  
i, A schematic showing the experimental design for OFT after diazepam or 
vehicle administration. j, A schematic showing the experimental design for 
OFT after yohimbine or vehicle injection in another laboratory using a different 

OFT setup. k,l, Cluster occurrence in diazepam (n = 24, vehicle: n = 8) (k) or 
in yohimbine (n = 24, vehicle: n = 8; one-way ANOVA with multiple testing 
correction) (l). m, BFA shows treatment effects after higher doses of diazepam 
(one-tailed z-test, 1 mg kg−1: percentile 68.93, z = 0.5, P = 3.08 × 10−1; 2 mg kg−1: 
percentile 99.9, z = 4.14, P = 1.76 × 10−5, d = 2.72; 3 mg kg−1: percentile 99.9, z = 4.91, 
P = 4.64 × 10−7, d = 4.2). n, BFA reveals behavioral changes after different doses 
of yohimbine injections (one-tailed z-test, 1 mg kg−1: percentile 99.9, z = 4.44, 
P = 4.52 × 10−6, d = 4.32; 3 mg kg−1: percentile 99.9, z = 6.1, P = 5.27 × 10−10, d = 6.12; 
6 mg kg−1: percentile 99.9, z = 6.37, P = 9.60 × 10−11, d = 6.33). o, BFF separates the 
different doses of diazepam (n = 24) and yohimbine (n = 24) administrations 
from vehicle injections (combined: n = 16). P values and adjusted P values are 
denoted as *<0.05, **<0.01 and ***<0.001. The error bars in the bar plots denote 
mean ± s.e.m. For box plots, the center line denotes the median value, while the 
bounding box delineates the 25th to 75th percentiles. The whiskers represent 1.5 
times the interquartile range from the lower and upper bounds of the box.
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the choice of clustering algorithm and hyperparameters. The use of a 
supervised cluster classifier introduces additional degrees of freedom 
such as the choice of supervised model and its hyperparameters. The 
BFA itself may be influenced by the performance of all these previ-
ous steps. We do show that our analysis approach detects treatment 
effects in various behavioral experiments, regardless of clustering 
algorithm and their corresponding input features, number of clusters 
and integration period. However, when applying the pipeline to new 
setups (for example, different arenas, camera angles or frame rates), 
or when different behaviors emerge, a new clustering is necessary, and 
the optimal number of clusters needs to be determined. While these 
considerations challenge the idea of selecting a fixed set of clusters, we 
also demonstrate that stabilizing clusters can resolve behavioral pheno-
types and enable large-scale comparisons of individual animals across 
experimental conditions. Thus, there is a trade-off between identifying 
the optimal choice of parameters to boost statistical power for each 
given experiment and the decision to stabilize clusters to allow direct 
comparisons across large numbers of datasets collected within a given 
laboratory or potentially across larger research consortia.

Our work focused on tool development for an in-depth behavioral 
analysis of single animals; however, we did not measure interactions 
between multiple animals in this set of experiments. Two unsupervised 
approaches have recently emerged that provide a versatile platform 
for analyzing social interactions12,53. The tracking data from these 
tools are compatible with our analyses; thus, our pipeline adds to the 
rapidly expanding toolbox for nuanced behavioral analyses of single 
or multiple animals.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-024-02500-6.
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Methods
Animals
Mice were maintained in a temperature- and humidity-controlled facil-
ity on a 12 h reversed light–dark cycle (lights off at 08:15) with food and 
water ad libitum. Mice were housed in groups of five per cage and used 
for experiments when 2.5–4 months old unless stated otherwise. For 
each experiment, mice of the same age were used in all experimental 
groups to rule out confounding effects of age. All tests were conducted 
during the animals’ active (dark) phase from 10:00 to 18:00. Mice 
were habituated to the colony room for at least 2 weeks before experi-
mentation. Mice were single housed 24 h before behavioral testing to 
standardize their environment and avoid disturbing cagemates dur-
ing testing54,55. All procedures were carried out in accordance to Swiss 
cantonal regulations for animal experimentation and were approved 
under licenses ZH155/2015, ZH161/2017, ZH106/2020 and ZH067/2022. 
The behavior experiments conducted by Roche were carried out under 
license BS2448.

Detailed information about the behavioral tests and specifics of 
single experiments can be found in Supplementary Note 3.

Pose estimation and tracking-based analysis
DeepLabCut 2.0.7 (DLC)3 was used to track 13 body points of each 
animal. Tracked points included nose, head center, neck, right ear 
(earr), left ear (earl), body center, body center left (bcl), body center 
right (bcr), left hip (hipl), right hip (hipr), tailbase, tail center and tail 
tip. For the OFT, the marble burying test and the fear conditioning 
arena, the four corners were tracked additionally to automatically 
detect the arena boundaries in each recording. For the light–dark 
box test, six points were tracked corresponding to the corners of the 
light and dark box. The networks for different tests were trained using 
10–20 frames from multiple randomly selected videos for 250,000–
1,030,000 iterations. X and Y coordinates of DLC tracking data were 
imported into R Studio (v3.6.1) and processed with the DLCAnalyzer 
package16. Points relating to the arenas were used to define the arenas 
in silico by using their median XY coordinates. Values of points with 
low likelihood (<0.95) and points tracked outside an existence polygon 
(arena scaled by a factor 1.3 except for the light–dark box test) were 
removed and interpolated using the R package ‘imputeTS’ (v3.2). The 
speed and acceleration of each point was determined by integrating 
the animal’s position over time. The pixel-to-centimeter conversion 
ratio for each video was determined by comparing the volume of the 
arena in silico in pixels squared with the measured size of the arena in 
centimeters squared. Zones of interest were calculated from the arena 
using polygon-modification functions. Furthermore, we applied a 
previously trained supervised classifier16 to quantify supported and 
unsupported rears in the OFT on a per-frame basis.

Statistical analysis
To assess group differences based on tracking data before clustering, 
we used automated metrics from the DLCAnalyzer package16 such as 
distance moved, time spent in center, transitions, time in light box 
and number of supported and unsupported rears. Number of marbles 
buried was counted manually at the end of each recording. Significance 
was assessed with a standard parametric t-test.

To assess differences in freezing responses for different group 
assignments (between control, nonresponders and responders), we 
first performed a two-way repeated measures analysis of variance 
(ANOVA). If a significant two-way interaction between time point 
(extinction sessions 1–6) and group assignment emerged, we per-
formed pairwise comparisons using standard parametric t-tests.  
P values were adjusted using the Bonferroni method.

Generation of feature data for k-means clustering
We used the pose estimation data (N ≈ 15,000 frames) to generate a set 
of m = 41 features (Supplementary Table 2) resulting in a large numeric 

matrix Xi ∈ ℝN × m for each recording (here denoted with index i). Five 
different types of feature were used: acceleration of points, distance 
between point pairs, angle between two point pairs, distance of point 
to closest border, and area of a polygon spanned by multiple points 
(Supplementary Table 2). Feature data were then normalized on a 
per-recording level. z-Score normalization was used for distances and 
area features, angle data (in rad) were not normalized, and border 
proximities and accelerations were scaled linearly (with a factor of 0.1 
and 4, respectively). These feature data were furthermore expanded 
over sequences of ±15 frames (t = 31) centered on each frame to gener-
ate a larger feature set of mt = 1,271 values for each frame resulting in 
Xtemporal,i ∈ ℝN × mt.

Determining best number of clusters
For determining the best number of clusters, we applied an approach 
described previously by others10,14. We first ran the clustering for a 
total number of 100 clusters. For each cluster, we then computed 
the proportion of image frames assigned to it. To determine the best 
number of clusters, we added the cluster proportions (sorted from 
high to low proportion) and chose the number of clusters that contain 
95% image frames.

k-Means clustering
For k-means clustering of OFT data, we selected a random subset of 20 
samples per experiment from the CSI, the acute swim stress and the 
yohimbine injection experiments (s = 60). For the fear conditioning 
box, we selected a random subset of ten samples from the footshock 
session and each fear extinction day (s = 70). All feature data of each 
frame for these subsets were combined into one single large matrix 
Xclustering ∈ ℝNs × mt that was then z-score normalized across columns. The 
normalized feature matrix was k-means clustered using the function 
bigkmeans() of the R package ‘biganalytics’ (v1.1.21). For the light–dark 
box test and the marble burying test, k-means clustering was run on all 
available samples, respectively. Correlation plots between k-means 
clustering and other clustering algorithms (VAME and B-SOiD) were 
created using the R package ‘corrplots’ (v0.92).

B-SOiD
As a comparison with k-means clustering, we ran B-SOiD9 on the CSI 
dataset. We followed the steps described on the tutorial webpage 
(bsoid.org). In short, we trained B-SOiD on a random subsample of 20 
files containing the pose estimation computed by DLC. Due to compu-
tational issues, we used a reduced set of nine tracking points including 
nose, head center, neck, body center, bcl, bcr, hipl, hipr and tailbase as 
input for B-SOiD. We explored different ‘minimum cluster size ranges’ 
and ended up with a range between 0.10 and 0.95. The remaining 39 
files (not used for clustering) got their clusters assigned using a trained 
random forest classifier.

VAME
We ran VAME14(v1.1) using PyTorch (v1.7.0) and followed the workflow 
as described in the publication. For the initial comparison on the CSI 
experiment, we ran VAME on all 59 pose estimation files from DLC. For 
the later comparison, we ran VAME on the same subset of 20 samples 
per experiment as used for the k-means clustering. The 11 tracking 
points including nose, head center, neck, earr, earl, body center, bcl, 
bcr, hipl, hipr and tailbase used as input were egocentrically aligned 
to the two tracking points nose and tailbase. Before clustering, we 
changed the parameters ‘n_cluster’ to 80 (see above how we deter-
mined the best number of clusters) or 25, ‘pose confidence’ to 0.95 and 
‘n_features’ to 22 in the configuration file.

Clustering classifier
To transfer clustering to larger or new datasets, we trained a sequential 
neural network to imitate the clustering results obtained with k-means 
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or VAME. We used the framework designed in a previous publication16 
with the clusters obtained from k-means or VAME as ground truth 
labeling data and Xclustering as input data. We used R packages ‘reticulate’ 
(v1.24), ‘tensorflow’ (v2.9.0), and ‘keras’ (v2.8.0) to design and train the 
neural network. We used a neural network with a single hidden layer of 
1,024 units (using ‘relu’ activation) and an input shape of 1,271 followed 
by a dropout layer with a rate of 0.4 to prevent overfitting. We used an 
output layer with 25 output neurons using the ‘softmax’ activation func-
tion. Data were shuffled before training for 30 epochs with a batch size 
of 512. We used the ‘categorical crossentropy’ loss function, ‘rmsprop’ 
as optimizer and ‘accuracy’ as metric during training. Clustering classi-
fiers were then applied to Xtemporal of each individual recording to obtain 
the final clustering results.

Clustering classifier assessment
To assess the performance of the clustering classifiers, we performed 
a 10-fold cross-validation. All 60 recordings in the clustering (that is, 
training) set were randomly shuffled before sequentially a different 
set of six recordings was set aside for validation each time and the 
training was performed on the remaining 54 recordings only. Then, 
for each cross-validation pass, we calculated precision, recall and F1 
score on a per-cluster basis.

Label data processing
We used the newly written BehaviorFlow package to process all label 
data (that is, cluster assigned to each frame) from the k-means classifier, 
VAME and B-SOiD. To remove noise and single frame misclassifications, 
we processed this data by first smoothing all labels using a sliding win-
dow of ±5 frames and selecting the most abundant categorical value 
across the window using the SmoothLabels_US() function. Next, we 
calculated metrics such as number of clusters, behavior onset/offsets 
and time spent in each cluster on a per-recording basis using the Calcu-
lateMetrics() function. We then calculated the transition matrix across 
all label groups for each recording independently using the AddTransi-
tionMatrixData(). This function first removes any repeating labels from 
each label vector to create an occurrence vector. Then, this occurrence 
vector and the same vector shifted by one element are used to calculate 
the contingency table using the table() function of the base package 
of R resulting in a transition matrix Ti ∈ WNC × NC where i denotes the ith 
recording and NC denotes the number of clusters. To calculate stabilized 
transition matrices Tstabilized,i ∈ ℝNC × NC, we used the function CalculateSta-
bilizedTransitions() for defined subsets and control recordings. The 
stabilized transition matrix is defined as the difference to the mean of 
the control recordings (equation (1)). Next, we calculated the confusion 
matrix across all label groups using the AddConfusionMatrix() function. 
This function calculates a contingency table for a source–target pair 
using the table() function of the base package of R with the full label 
vector of the source and the full label vector of the target label group.

Tstabilized,i = Ti −∑
NC

C
TC
NC

, (1)

where Ti is the transition matrix of recording i, NC is the number of 
control group recordings and TC is the transition matrix of control 
group recording C.

Transitions between clusters are visualized using the R package 
‘circlize’ (v0.4.15).

Statistical analysis of labeling data (BFA)
We used the TwoGroupAnalysis() function of the BehaviorFlow package 
for the statistical analysis of label data. This function runs a number of 
statistical tests to test for group differences on the cluster usage level 
and the transition level on each label group. For number of cluster 
occurrences and time spent with clusters, a simple parametric t-test 
followed by a Benjamini–Yekutieli multiple testing correction (using 

the function t.test() and p.adjust() of R) was used. The same test was also 
applied to individual transitions. To test for overall differences across 
all transitions (referred to as BFA), we first calculated the group-wise 
mean transition matrix and then the absolute Manhattan distance 
between the two groups based on these mean matrices (equation (2)). 
We then used a permutation approach to estimate a null distribution 
of the intergroup distance from random groupings. We randomly 
shuffled the group assignment vector 1,000 times and calculated the 
intergroup distance for each sampling. We then used this to calculate 
the percentile for nonparametric statistics (equation (3)). Next, we 
calculated mean and standard deviation from the null distribution 
and z (equation (4)) for parametric tests. We used the error function 
to calculate the parametric right-tailed P value from z using the func-
tion erf() from the R package ‘pracma’ (v2.3.8) for the hypothesis true 
distance > null distribution distances (equation (5)).

Manhattandistance =
Nclust

∑
j= 1

Nclust

∑
k= 1

||||

NC

∑
C

x j,k,C

NC
−

NT

∑
T

x j,k,T

NT

||||
, (2)

where Nclust is the number of clusters, NC is the number of control group 
recordings, NT is the number of test group recordings and xi,j,r is the 
number of transitions from cluster i to cluster j in recording i.

Percentile =
∑Nbootstraps

b= 1 (distancebootstraps,b < distance)
Nbootstraps + 1 , (3)

where Nbootstraps is the number of bootstraps, distancebootstraps,b is the 
Manhattan distance from bth bootstrapping and distance is the true 
group Manhattan distance from equation (2).

z =
distance −mean(distancebootstraps)

sd(distancebootstraps)
, (4)

where distance is the true group Manhattan distance from equation (2), 
distancebootstraps is the Manhattan distances obtained from bootstrap-
ping, mean() is the arithmetic mean and sd() is the standard deviation.

Right-tailedP value = 1 − erf(z/√2)
2 , (5)

with z  from equation (4), where erf() is the error function.

BFL
To assess similarity of behavioral flow between samples from two 
experimental groups (A and B), we used the following method. To 
calculate the BFL of the ith sample, its transition matrix Ti ∈ WNC × NC was 
selected as reference. Next, the transition matrices of the remaining 
samples were split into two sets based on their true grouping {TA1, TA2, 
…TAN}, {TB1, TB2, …TBN}. For each of these sets, the element-wise median 
transition matrices MA and MB are calculated using equation (6)

Mij = median{T 1ij,T2ij,… ,TNij} (6)

for 1 < i < NC and 1 < j < NC.
Next, the Manhattan distance of Ti to MA and MB is calculated, 

resulting in dA and dB. The BFL score is calculated using equation (7), 
where a score >0 indicates closeness to group A and a score <0 indicates 
closeness to group B,

BFL score = log(dA / dB). (7)

Grouping of responder and nonresponder animals
To group IFS animals into responders and nonresponders, we used the 
BFL scores (see equation (7)) computed on the transition matrices from 
the OFT performed 24 h after the IFSs. All animals with a BFL score in 
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the full range of control BFL scores were classified as nonresponders, 
while the remainder was classified as responders.

Effect size calculation and power analysis
To calculate effect size we used Cohen’s d. For two-group comparisons 
on classical readouts, individual transitions and individual cluster 
usage, Cohen’s d was calculated for each variable independently. To 
estimate effect size across the entire behavioral flow, the absolute 
Cohen’s d was calculated on the basis of the BFL scores (see equation (7))  
of individual samples in a two-group comparison.

Power curves from Cohen’s d values were generated using the ‘pwr’ 
R package (v1.3.0). The target significance was set to 0.05, and power 
values were calculated for a variable N (from 3 to 7, 12, 20, 30, 50 or 60).

In silico sensitivity assay
To create the sensitivity curves, we designed an in silico assay that step-
wise reduces group sizes and randomly selects a subset of both groups 
(ensuring that they are equally sized) before running a two-group 
comparison. We used group sizes 25, 20,15, 10 and 5. To better estimate 
the P value at each step, we performed 50 random samplings followed 
by a two-group comparison each time. Last, we −log10 transformed all 
P values before calculating the mean and standard deviation of the  
P values for each dataset.

log-linear modeling
To test for an association between yohimbine dosage and the occur-
rence of transitions between clusters, we used a log-linear model. 
We first transformed both the yohimbine dosages and the transition 
occurrences using the natural logarithm. We then fitted a linear model 
to these two variables using the lm() method from R.

2D embedding
For 2D embedding, we used the function Plot2DEmbedding() of the 
BehaviorFlow Package. As input data, the stabilized transition matrix 
(Tstabilized,i) was used for each recording. We then used an UMAP embed-
ding with the function umap() from the R package ‘M3C’ (v1.16.0). 
Points were colored by relevant groups, and ± standard error of the 
mean (s.e.m.) ranges (based on UMAP1 and UMAP2 coordinates) were 
added to the plot for visual aid.

Time bin analysis
To split clustering results into time bins (5 × 6 min for marble bury-
ing test and 5 × 5 min for fear conditioning), we used the function 
CreateBinnedData() from the BehaviorFlow Package. The functions 
CalculateMetrics() and AddTransitionMatrixData() from the same 
package were then used to compute the cluster usage and transition 
matrix for each time bin in each recording.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All video data produced in our lab (707 separate recordings), correspond-
ing pose estimation data and metadata has been deposited online and can  
be accessed via Zenodo at https://doi.org/10.5281/zenodo.8186065  
(ref. 56) and https://doi.org/10.5281/zenodo.11235068 (ref. 57). All video 
data and pose estimation data produced by Roche (64 separate recordings) 
can be accessed via Zenodo at https://doi.org/10.5281/zenodo.8188683 
(ref. 58) and https://doi.org/10.5281/zenodo.11235915 (ref. 59).

Code availability
The BehaviorFlow package and any script used to analyze our data 
and generate the manuscript figures can be accessed freely (GPL-3.0 
license) via GitHub at https://github.com/ETHZ-INS/BehaviorFlow.
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Extended Data Fig. 1 | BFA increases power to detect phenotypes.  
(a) Determining the optimal number of clusters for k-means. Vertical, red-
dashed line marks the number of clusters (=71) which represent 95% of all frames 
(horizontal red-dashed line), and the blue dashed line marks the number of 
clusters (=70) we used for the CSI analysis. (b) Average behavioral flow for all  
70 clusters over all animals. (c) Schematic of in silico approach to generate 
random subsets of each group of mice to run multiple two-group comparisons 
while gradually reducing group sizes. (d) Phenotype detection sensitivity in CSI 
with unadjusted p-values (two-tailed t-test). Cluster usage and cluster transitions 
were compared against the best statistical value between distance, time in 

center, supported rearing and unsupported rearing, termed "best behavior". 
(e) Sensitivity in CSI with adjusted p-values (two-tailed t-test) after appropriate 
multiple testing correction. (f) BFA shows no differences for only control (one-
tailed z-test, percentile=60.3, z=0.2, p=4.19*10−1) or only CSI animals (one-tailed 
z-test, percentile=45.0, z=−0.2, p=5.78*10−1). (g) Power analysis comparing 
different integration periods. (h) BFA (one-tailed z-test) enhances sensitivity 
using various numbers of k-means clusters. (i) Phenotype detection sensitivity 
in CSI using B-SOiD or VAME clustering with BFA (one-tailed z-test). The bands in 
each sensitivity plot display ± SEM.
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Extended Data Fig. 2 | Clustering results in AS after 24 hours. (a) Cluster occurrences in AS (24 h: n=15, controls: n=15; two-tailed t-tests with multiple testing 
correction). (b) Absolute difference of behavioral flow in control vs. AS (24 h). (c) BFA does not show treatment effects at 24 h (one-tailed z-test, percentile=80.9, 
z=0.85, p=0.198). Error bars in the bar plot denote mean ± SEM.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-024-02500-6

Extended Data Fig. 3 | Clustering results in IFS (for OFT1 and OFT3). (a) Cluster 
occurrences in IFS (OFT1: n=20, controls: n=15; two-tailed t-tests with multiple 
testing correction). (b) Absolute difference in behavioral flow in control vs. IFS 

(OFT1). (c) Cluster occurrences in IFS (OFT3: n=20, controls: n=15; two-tailed  
t-tests with multiple testing correction). (d) Absolute difference in behavioral 
flow in control vs. IFS (OFT3). Error bars in the bar plots denote mean ± SEM.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | BFA and BFF applied to other behavioral tests and 
setups. (a) Schematic showing experimental design for the light-dark box (LDB) 
test after chronic restraint stress (CRS). (b) Power analysis comparing different 
numbers of k-means clusters with classical readouts ("transitions" and "time in 
light") for the LDB test. (c) Cluster occurrences in LDB after CRS (n=16, controls: 
n=16; two-tailed t-tests with multiple testing correction). (d) BFA reveals a 
treatment effect of CRS (one-tailed z-test, percentile=99.5, z=3.06, p=1.09*10−3, 
d=0.91) in LDB. (e) BFF applied to LDB data after CRS (n=16, controls: n=16).  
(f) Schematic showing experimental design for exposure to fear conditioning 
box. (g) Power analysis comparing different numbers of k-means clusters for  
fear conditioning box. (h) Cluster occurrences in fear conditioning box  
(IFS: n=20, controls: n=15; two-tailed t-tests with multiple testing correction). 
(i) BFA shows a treatment effect of the fear conditioning box (one-tailed z-test, 
percentile=99.9, z=10.6, p=0, d=5.44). (j) BFF applied to fear conditioning box 
data (IFS: n=20, controls: n=15). Each bin represents 5 minutes. (k) Comparison  
of classical behavior readouts for different doses of diazepam (n=24, vehicle: 
n=8) or yohimbine (n=24, vehicle: n=8) (one-way ANOVA, time in center for 
diazepam: F(3,28)=0.78, adj. p=5.14*10−1; for yohimbine: F(3,28)=3.2, adj. 
p=3.84*10−2; distance moved for diazepam: F(3,28)=4.09, adj. p=2.62*10−2; for  

yohimbine; F(3,28)=46.27, adj. p=2.81*10−10; supported rears for diazepam: 
F(3,28)=4.68, adj. p=2.26*10−2, for yohimbine: F(3,28)=29.18, adj. p=1.53*10−8; 
unsupported rears for diazepam: F(3,28)=8.85, adj. p=1.38*10−3; for yohimbine: 
F(3,28)=4.02, adj. p=2.11*10−2). (l) Power analysis comparing different numbers 
of k-means clusters with classical OFT readouts after treatment with diazepam or 
(m) yohimbine. (n) BFA reveals differences between higher doses of diazepam  
(2 or 3 mg/kg) compared to lower doses (1 mg/kg) (one-tailed z-test, 1 vs. 2 mg/kg:  
percentile=96.4, z=2.04, p=2.06*10−2, d=0.19; 1 vs. 3 mg/kg: percentile=99.7, 
z=3.34, p=4.15*10−4, d=1.15; 2 vs. 3 mg/kg: percentile=49.45, z=−0.1, p=5.41*10−1). 
(o) BFA shows treatment differences between different doses of yohimbine  
(one-tailed z-test, 1 vs. 3 mg/kg: percentile=99.7, z=3.71, p=1.05*10−4, d=2.45; 
1 vs. 6 mg/kg: percentile=99.8, z=5.68, p=6.82*10−9, d=5.36; 3 vs. 6 mg/kg: 
percentile=99.2, z=3.43, p=3.00*10−4, d=1.49). p-values and adj. p-values are 
denoted as: *<0.05, **<0.01, ***<0.001. Error bars in the bar plots denote mean ± SEM. 
For every UMAP embedding, the crossbars represent the average UMAP1 and 
UMAP2 values with SEM for each group. For box plots, the center line denotes 
the median value, while the bounding box delineates the 25th to 75th percentiles. 
Whiskers represent 1.5 times the interquartile range from the lower and upper 
bounds of the box.
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