Abstract
A model has been developed to measure the effects of dietary protein on daily fluctuations in the rate of endogenous amino acid oxidation in meal-fed and starved rats. In addition, N tau-methylhistidine and hydroxyproline were utilized to determine changes in the rate of degradation of myofibrillar and collagen proteins. In rats meal-fed a normal diet of 18% (w/w) casein, a diurnal response was observed in rate of oxidation of radioactive amino acids contained in endogenous labelled body protein, with a nadir 16--20 h and maximum 4--8 h after beginning the feeding. This observation in part may be related to alterations in flux of amino acids from non-hepatic tissues to site of oxidation in liver, as well as alterations in rates of amino acid oxidation after a protein meal. When meal-fed a 70% protein diet, the maximal rates of endogenous amino acid oxidation were significantly increased by 4--8 h after meal-feeding, with no change in fractional rates of degradation of myofibrillar- or collagen-protein breakdown. This could suggest increases in activities of enzymes involved in amino acid oxidation, in rats meal-fed 70% compared with 18% dietary protein. In contrast, meal-feeding of a protein-free diet muted the diurnal response in the rate of oxidation of endogenously labelled amino acids, which correlated with a decrease in the fractional rate of degradation of myofibrillar or collagen protein. Thus dietary protein is apparently responsible for the observed diurnal rhythm rhythms in the rate of amino acid oxidation, whereas carbohydrates tend to mute the response.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLISON J. B., WANNEMACHER R. W., Jr, BANKS W. L., Jr, WUNNER W. H. THE MAGNITUDE AND SIGNIFICANCE OF THE PROTEIN RESERVES IN RATS FED AT VARIOUS LEVELS OF NITROGEN. J Nutr. 1964 Dec;84:383–388. doi: 10.1093/jn/84.4.383. [DOI] [PubMed] [Google Scholar]
- FERRARI A. Nitrogen determination by a continuous digestion and analysis system. Ann N Y Acad Sci. 1960 Jul 22;87:792–800. doi: 10.1111/j.1749-6632.1960.tb23236.x. [DOI] [PubMed] [Google Scholar]
- Flemström G. Active alkalinization by amphibian gastric fundic mucosa in vitro. Am J Physiol. 1977 Jul;233(1):E1–12. doi: 10.1152/ajpendo.1977.233.1.E1. [DOI] [PubMed] [Google Scholar]
- Forbes G. B., Drenick E. J. Loss of body nitrogen on fasting. Am J Clin Nutr. 1979 Aug;32(8):1570–1574. doi: 10.1093/ajcn/32.8.1570. [DOI] [PubMed] [Google Scholar]
- Garlick P. J., Millward D. J., James W. P. The diurnal response of muscle and liver protein synthesis in vivo in meal-fed rats. Biochem J. 1973 Dec;136(4):935–945. doi: 10.1042/bj1360935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haverberg L. N., Deckelbaum L., Bilmazes C., Munro H. N., Young V. R. Myofibrillar protein turnover and urinary N-tau-methylhistidine output. Response to dietary supply of protein and energy. Biochem J. 1975 Dec;152(3):503–510. doi: 10.1042/bj1520503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haverberg L. N., Omstedt P. T., Munro H. N., Young V. R. Ntau-methylhistidine content of mixed proteins in various rat tissues. Biochim Biophys Acta. 1975 Sep 9;405(1):67–71. doi: 10.1016/0005-2795(75)90315-3. [DOI] [PubMed] [Google Scholar]
- Leighton F., Poole B., Beaufay H., Baudhuin P., Coffey J. W., Fowler S., De Duve C. The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339. Improved isolation procedures, automated analysis, biochemical and morphological properties of fractions. J Cell Biol. 1968 May;37(2):482–513. doi: 10.1083/jcb.37.2.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGarry J. D., Foster D. W. The regulation of ketogenesis from octanoic acid. The role of the tricarboxylic acid cycle and fatty acid synthesis. J Biol Chem. 1971 Feb 25;246(4):1149–1159. [PubMed] [Google Scholar]
- McGee M. M., Greengard O., Knox W. E. Liver phenylalanine hydroxylase activity in relation to blood concentrations of tyrosine and phenylalanine in the rat. Biochem J. 1972 May;127(4):675–680. doi: 10.1042/bj1270675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller E. J. Biochemical characteristics and biological significance of the genetically-distinct collagens. Mol Cell Biochem. 1976 Dec 10;13(3):165–192. doi: 10.1007/BF01731779. [DOI] [PubMed] [Google Scholar]
- Millward D. J. Protein turnover in skeletal muscle. I. The measurement of rates of synthesis and catabolism of skeletal muscle protein using (14C)Na2CO3 to label protein. Clin Sci. 1970 Nov;39(5):577–590. doi: 10.1042/cs0390577. [DOI] [PubMed] [Google Scholar]
- Millward D. J. Protein turnover in skeletal muscle. II. The effect of starvation and a protein-free diet on the synthesis and catabolism of skeletal muscle proteins in comparison to liver. Clin Sci. 1970 Nov;39(5):591–603. doi: 10.1042/cs0390591. [DOI] [PubMed] [Google Scholar]
- Neale R. J., Waterlow J. C. Critical evaluation of a method for estimating amino acid requirements for maintenance in the rat by measurement of the rats of 14C-labelled amino acid oxidation in vivo. Br J Nutr. 1974 Sep;32(2):257–272. doi: 10.1079/bjn19740079. [DOI] [PubMed] [Google Scholar]
- Neale R. J., Waterlow J. C. Endogenous loss of leucine and methionine in adult male rats. Br J Nutr. 1977 Mar;37(2):259–268. doi: 10.1079/bjn19770027. [DOI] [PubMed] [Google Scholar]
- Ohneda A., Parada E., Eisentraut A. M., Unger R. H. Characterization of response of circulating glucagon to intraduodenal and intravenous administration of amino acids. J Clin Invest. 1968 Oct;47(10):2305–2322. doi: 10.1172/JCI105916. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Potter V. R., Gebert R. A., Pitot H. C., Peraino C., Lamar C., Jr, Lesher S., Morris H. P. Systematic oscillations in metabolic activity in rat liver and in hepatomas. I. Morris hepatoma No. 7793. Cancer Res. 1966 Jul;26(7):1547–1560. [PubMed] [Google Scholar]
- Rocha D. M., Faloona G. R., Unger R. H. Glucagon-stimulating activity of 20 amino acids in dogs. J Clin Invest. 1972 Sep;51(9):2346–2351. doi: 10.1172/JCI107046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SKEGGS L. T., Jr An automatic method for colorimetric analysis. Am J Clin Pathol. 1957 Sep;28(3):311–322. doi: 10.1093/ajcp/28.3_ts.311. [DOI] [PubMed] [Google Scholar]
- Swick R. W., Song H. Turnover rates of various muscle proteins. J Anim Sci. 1974 May;38(5):1150–1157. doi: 10.2527/jas1974.3851150x. [DOI] [PubMed] [Google Scholar]
- Unger R. H., Ohneda A., Aguilar-Parada E., Eisentraut A. M. The role of aminogenic glucagon secretion in blood glucose homeostasis. J Clin Invest. 1969 May;48(5):810–822. doi: 10.1172/JCI106039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walser M., Coulter A. W., Dighe S., Crantz F. R. The effect of keto-analogues of essential amino acids in severe chronic uremia. J Clin Invest. 1973 Mar;52(3):678–690. doi: 10.1172/JCI107229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wannemacher R. W., Dinterman R. E., Rayfield E. J., Beisel W. R. Effect of glucose infusion on the concentration of individual serum free amino acids during sandfly fever in man. Am J Clin Nutr. 1977 Apr;30(4):573–578. doi: 10.1093/ajcn/30.4.573. [DOI] [PubMed] [Google Scholar]
- Wannemacher R. W., Jr, Dinterman R. E. Total body protein catabolism in starved and infected rats. Am J Clin Nutr. 1977 Sep;30(9):1510–1511. doi: 10.1093/ajcn/30.9.1510. [DOI] [PubMed] [Google Scholar]
- Wannemacher R. W., Jr, Klainer A. S., Dinterman R. E., Beisel W. R. The significance and mechanism of an increased serum phenylalanine-tyrosine ratio during infection. Am J Clin Nutr. 1976 Sep;29(9):997–1006. doi: 10.1093/ajcn/29.9.997. [DOI] [PubMed] [Google Scholar]
- Young V. R., Havenberg L. N., Bilmazes C., Munro H. N. Potential use of 3-methylhistidine excretion as an index of progressive reduction in muscle protein catabolism during starvation. Metabolism. 1973 Nov;23(2):1429–1436. doi: 10.1016/0026-0495(73)90257-6. [DOI] [PubMed] [Google Scholar]
