Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Oct 1;191(1):45–51. doi: 10.1042/bj1910045

Ecto-enzymes of mammary gland and its tumours. Ca2+- or Mg2+-stimulated adenosine triphosphatase and its perturbation by concanavalin A.

C A Carraway, F J Corrado 4th, D D Fogle, K L Carraway
PMCID: PMC1162180  PMID: 6258585

Abstract

Intact viable 13762 mammary-adenocarcinoma ascites cells hydrolyse added ATP. The localization of hydrolysis product and inactivation by the slowly penetrating chemical reagent diazotized sulphanilic acid indicate that this ATPase is at the external surface of the cell. A number of features differentiate this enzyme from mitochondrial, myosin and cation-transport ATPases. It is stimulated by either Ca2+ or Mg2+ and has little or no activity in their absence. It is insensitive to ouabain, oligomycin and azide. It is the major ATPase activity found in homogenates of gently disrupted 13762 cels. The ATPase activity is inhibited at high substrate concentrations and shows an apparent stimulation by concanavalin A in isolated membranes, but not in intact cells. The stimulation by concanavalin A results predominantly from a release from substrate inhibition.

Full text

PDF
48

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carraway C. A., Jett G., Carraway K. L. Cooperative effects in the perturbation of membrane enzymes by concanavalin A. Biochem Biophys Res Commun. 1975 Dec 15;67(4):1301–1306. doi: 10.1016/0006-291x(75)90168-0. [DOI] [PubMed] [Google Scholar]
  2. Carraway K. L., Doss R. C., Huggins J. W., Chesnut R. W., Carraway C. A. Effects of cytoskeletal perturbant drugs on ecto 5'-nucleotidase, a concanavalin A receptor. J Cell Biol. 1979 Dec;83(3):529–543. doi: 10.1083/jcb.83.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carraway K. L., Fogle D. D., Chestnut R. W., Huggins J. W., Carraway C. A. Ecto-enzymes of mammary gland and its tumors. Lectin inhibition of 5'-nucleotidase of the 13762 rat mammary ascites carcinoma. J Biol Chem. 1976 Oct 25;251(20):6173–6178. [PubMed] [Google Scholar]
  4. Chang K. J., Cuatrecasas P. Adenosine triphosphate-dependent inhibition of insulin-stimulated glucose transport in fat cells. Possible role of membrane phosphorylation. J Biol Chem. 1974 May 25;249(10):3170–3180. [PubMed] [Google Scholar]
  5. DePierre J. W., Karnovsky M. L. Ecto-enzymes of the guinea pig polymorphonuclear leukocyte. I. Evidence for an ecto-adenosine monophosphatase, adenosine triphosphatase, and -p-nitrophenyl phosphates. J Biol Chem. 1974 Nov 25;249(22):7111–7120. [PubMed] [Google Scholar]
  6. DePierre J. W., Karnovsky M. L. Ecto-enzymes of the guinea pig polymorphonuclear leukocyte. II. Properties and suitability as markers for the plasma membrane. J Biol Chem. 1974 Nov 25;249(22):7121–7129. [PubMed] [Google Scholar]
  7. Doss R. C., Carraway C. A., Carraway K. L. Multiple forms of 5'-nucleotidase from lactating rat mammary gland resulting from the association of the enzyme with different membrane fractions. Biochim Biophys Acta. 1979 Sep 12;570(1):96–106. doi: 10.1016/0005-2744(79)90204-3. [DOI] [PubMed] [Google Scholar]
  8. Drickamer L. K. The red cell membrane contains three different adenosine triphophatases. J Biol Chem. 1975 Mar 10;250(5):1952–1954. [PubMed] [Google Scholar]
  9. Jarett L., Smith R. M. The stimulation of adipocyte plasma membrane magnesium ion-stimulated adenosine triphosphatase by insulin and concanavalin A. J Biol Chem. 1974 Aug 25;249(16):5195–5199. [PubMed] [Google Scholar]
  10. Jones B. M. A unifying hypothesis of cell adhesion. Nature. 1966 Oct 22;212(5060):362–365. doi: 10.1038/212362a0. [DOI] [PubMed] [Google Scholar]
  11. Knight V. A., Jones B. M., Jones P. C. Inhibition of the aggregation of dissociated embryo-chick fibroblast cells by adenosine triphosphate. Nature. 1966 Jun 4;210(5040):1008–1010. doi: 10.1038/2101008a0. [DOI] [PubMed] [Google Scholar]
  12. Krüger P. G., Diamant B., Dahlquist R. Morphological changes induced by ATP on rat mast cells and their relationship to histamine release. Int Arch Allergy Appl Immunol. 1974;46(5):676–688. doi: 10.1159/000231168. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Luly P., Emmelot P. Studies on plasma membranes. XXIII. Hormone-like action of concanavalin A on liver plasma membranes: inhibition of (Na+-K+)ATPase. Chem Biol Interact. 1975 Nov;11(5):377–385. doi: 10.1016/0009-2797(75)90006-x. [DOI] [PubMed] [Google Scholar]
  15. Mastro A. M., Rozengurt E. Endgoenous protein kinase in outer plasma membrane of cultured 3T3 cells. Nature of the membrane-bound substrate and effect of cell density, serum addition, and oncogenic transformation. J Biol Chem. 1976 Dec 25;251(24):7899–7906. [PubMed] [Google Scholar]
  16. Novogrodsky A. Concanavalin A stimulation of rat lymphocyte ATPase. Biochim Biophys Acta. 1972 May 9;266(2):343–349. doi: 10.1016/0005-2736(72)90092-2. [DOI] [PubMed] [Google Scholar]
  17. Parkinson D. K., Radde I. C. Properties of a Ca 2+ -and Mg 2+ -activated ATP-hydrolyzing enzyme in rat kidney cortex. Biochim Biophys Acta. 1971 Jul 21;242(1):238–246. doi: 10.1016/0005-2744(71)90104-5. [DOI] [PubMed] [Google Scholar]
  18. Pommier G., Ripert G., Azoulay E., Depieds R. Effect of concanavalin A on membrane-bound enzymes from mouse lymphocytes. Biochim Biophys Acta. 1975 May 21;389(3):483–494. doi: 10.1016/0005-2736(75)90159-5. [DOI] [PubMed] [Google Scholar]
  19. Riordan J. R., Slavik M., Kartner N. Nature of the lectin-induced activation of plasma membrane Mg2+ATPase. J Biol Chem. 1977 Aug 10;252(15):5449–5455. [PubMed] [Google Scholar]
  20. Ronquist G., Agren G. K. A Mg2+- and Ca2+-stimulated adenosine triphosphatase at the outer surface of Ehrlich ascites tumor cells. Cancer Res. 1975 Jun;35(6):1402–1406. [PubMed] [Google Scholar]
  21. Rorive G., Kleinzeller A. The effect of ATP and Ca 2+ on the cell volume in isolated kidney tubules. Biochim Biophys Acta. 1972 Jul 3;274(1):226–239. doi: 10.1016/0005-2736(72)90296-9. [DOI] [PubMed] [Google Scholar]
  22. Rozengurt E., Heppel L. A. A Specific effect of external ATP on the permeability of transformed 3T3 cells. Biochem Biophys Res Commun. 1975 Dec 15;67(4):1581–1588. doi: 10.1016/0006-291x(75)90207-7. [DOI] [PubMed] [Google Scholar]
  23. Shin B. C., Carraway K. L. Cell surface constituents of Sarcoma 180 ascites tumor cells. Biochim Biophys Acta. 1973 Dec 22;330(3):254–268. doi: 10.1016/0005-2736(73)90231-9. [DOI] [PubMed] [Google Scholar]
  24. Stefanovic V., Ciesielski-Treska J., Ebel A., Mandel P. Neuroblasts-glia interaction. The effect of co-cultivation upon ecto-ATPase activity of neuroblastoma and glioma cells. Exp Cell Res. 1976 Mar 1;98(1):191–203. doi: 10.1016/0014-4827(76)90479-1. [DOI] [PubMed] [Google Scholar]
  25. Trams E. G. Evidence for ATP action on the cell surface. Nature. 1974 Dec 6;252(5483):480–482. doi: 10.1038/252480a0. [DOI] [PubMed] [Google Scholar]
  26. Trams E. G., Lauter C. J. On the sidedness of plasma membrane enzymes. Biochim Biophys Acta. 1974 Apr 29;345(2):180–197. doi: 10.1016/0005-2736(74)90257-0. [DOI] [PubMed] [Google Scholar]
  27. Willingham M. C., Ostlund R. E., Pastan I. Myosin is a component of the cell surface of cultured cells. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4144–4148. doi: 10.1073/pnas.71.10.4144. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES