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Recombinant adeno-associate virus (rAAV)
gene therapy is approved for the clinical
treatment of a growing number of diverse ge-
netic diseases, including ocular, neuronal,
and hematological disorders.1 Most of the
rAAV capsids used in current gene therapy
trials have a strong tropism for the liver after
systemic delivery, which curtails the ability
to effectively target non-hepatic tissues. The
success of rAAV gene therapy has resulted
in the isolation and engineering of many
new rAAV capsid serotypes to create rAAVs
that target the liver and a variety of non-he-
patic tissue types.2,3 In a study published in
this issue of Molecular Therapy Methods
and Clinical Development, Wang et al.
describe a dual capsid radiolabeling method
(Figure 1) in combination with quantitative
PCR (qPCR) and a reporter cassette to deter-
mine the biodistribution and pharmacoki-
netics of both the rAAV capsid and vector
genome. This approach could be used to bet-
ter characterize new and existing rAAV cap-
sids.4 Radiolabeling of the rAAV capsid with
a single isotope has been used to determine
biodistribution, but this method cannot
differentiate whether the vectors are intra-
or extracellular.5 The dual capsid labeling
this study describes was adapted from a
dual labeling approach used successfully to
track antibody internalization.6 The dual ra-
diolabeling strategy utilizes the co-delivery of
125I (non-residualizing) and 111In (residual-
izing) radionuclide conjugated rAAVs
to allow for the quantification, by single-
photon emission computed tomography
(SPECT), of both rAAV capsids that are cell-
ularly internalized (degraded, 111In-125I) and
those that reside in the extracellular matrix
(intact,125I).
This is an open access ar
In this study, the authors first demonstrated
that their radioactive labeling method pro-
duces rAAV vectors with a high radioactive
specificity without adversely affecting capsid
integrity. Next, they demonstrated that
cellular uptake and transgene expression
were unaltered by labeling using an in vitro
assay with two different cell lines and seven
different rAAV serotypes relative to unla-
beled rAAV. Lastly, the method was applied
in vitro by systemically injecting mice with
either dual-labeled AAV9 or AAV-PHP.eB
thatwere radiolabeled todetermine the capsid
and vector biodistribution in multiple har-
vested organs over time. The biodistribution
results observed in mice following systemic
delivery indicate that rAAVs, with rapid up-
take from systemic circulation, were mostly
located in the extracellular matrix of the liver
and spleen at early time points, which resulted
in differences in the quantifications of the
capsid and the vector genome. Importantly,
the characterization determined by the dual
labeling method agreed with historical data
from these well-characterized rAAV vectors,
AAV9, a naturally occurring capsid, and
AAV-PHP.eB, an engineer capsid, confirm-
ing the validity of this approach.7,8

Having accurate biodistribution and trans-
duction information for rAAV vectors is crit-
ical for the appropriate selection of the best
rAAV capsid capable of targeting the affected
tissue and/or cell type(s) for a specific dise-
ase. Currently, most rAAV biodistribution
studies rely on the extraction of DNA and to-
tal RNA from a tissue type, followed by qPCR
or digital droplet PCR of the rAAV genome
and transgene mRNA to characterize an
AAV vector. This approach only allows for
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the quantification of the total amount of
rAAV genomes and mRNA transcripts in a
particular tissue; it does not determine
whether the rAAVvector in the tissue is intra-
cellular or extracellular. Several other ap-
proaches have been used to characterize
rAAV biodistribution and transduction,
such as reporter rAAV vectors, tdTomato
fluorescence/Cre-mediated recombination
reporter mice, in situ hybridization with
probes to detect the rAAVgenomes and tran-
scripts, and fluorescence labeling of rAAV
capsids.9 To have a therapeutic effect, an
rAAV needs to hone to the target tissue(s),
cross the cell membrane, traffic to the nu-
cleus, and undergo complementary strand
synthesis, transcription, and translation.
Then, the translated protein needs to be traf-
ficked to the location where it is functional.10

Therefore, to accurately and thoroughly char-
acterize the pharmacokinetics and pharma-
codynamics of an rAAV gene therapy, multi-
ple methods of characterization will be
required to determine the fate of the rAAV
capsid, genome, transcript, and protein prod-
uct. In diseases that are cell-autonomous or
cell-type-specific, rAAV characterization
methodswhichdetermine the number of cells
transduced and/or the cell type transduced
will be vital to the selection of a suitable
AAV capsid. One drawback to the dual label-
ing approach is it cannot determine the rAAV
location at the cellular scale due to insufficient
resolution and, therefore, would not be
appropriate for determining cell type trans-
duced or intracellular trafficking studies.

While the current study only applied this
approach in mice, translation to large animal
models, such as non-human primates, which
more accurately model rAAV distribution in
humans, could be a fruitful application for
the dual rAAV capsid radioisotope labeling
approach. In addition, this labeling strategy
could allow for integration with SPECT/CT
imaging, providing a noninvasive in vivo im-
aging method for preclinical pharmacokinetic
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Figure 1. rAAV capsid is labeled with either 111In or 125I tracer isotope and mixed at equal proportions

prior to systemic injection into mice

The isotopes on the rAAV capsid that gain nuclear entry are degraded and the isotopes are released. The rAAV-

labeled capsid that is cellularly internalized is degraded to 111In or 125I. The 111In released after degradation cannot

escape the cell membrane; however, 125I can cross the cell membrane to extracellular matrix and is excreted.
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studies. Dual rAAV capsid radioisotope label-
ing allows for the characterization of the rAAV
capsid biodistribution of the rAAVcapsid, and
in combination with other approaches, it
could provide more comprehensive data to
determine the pharmacokinetics and pharma-
codynamics of an rAAV gene therapy vector,
allowing for more precise capsid selection
prior to advancement to clinical trials.
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