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Abstract

Introduction/Aims: Needle impedance-electromyography (iEMG) assesses the active and 

passive electrical properties of muscles concurrently by using a novel needle with six electrodes, 

two for EMG and four for electrical impedance myography (EIM). Here, we assessed an approach 

for combining multifrequency EMG and EIM data via machine learning (ML) to discriminate 

D2-mdx muscular dystrophy and wild-type (WT) mouse skeletal muscle.

Methods: iEMG data were obtained from quadriceps of D2-mdx mice, a muscular dystrophy 

model, and WT animals. EIM data were collected with the animals under deep anesthesia and 

EMG data collected under light anesthesia, allowing for limited spontaneous movement. Fourier 

transformation was performed on the EMG data to provide power spectra that were sampled 
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across the frequency range using three different approaches. Random forest-based, nested ML 

was applied to the EIM and EMG data sets separately and then together to assess healthy versus 

disease category classification using a nested cross-validation procedure.

Results: Data from 20 D2-mdx and 20 WT limbs were analyzed. EIM data fared better than 

EMG data in differentiating healthy from disease mice with 93.1% versus 75.6% accuracy, 

respectively. Combining EIM and EMG data sets yielded similar performance as EIM data alone 

with 92.2% accuracy.

Discussion: We have demonstrated an ML-based approach for combining EIM and EMG data 

obtained with an iEMG needle. While EIM-EMG in combination fared no better than EIM alone 

with this data set, the approach used here demonstrates a novel method of combining the two 

techniques to characterize the full electrical properties of skeletal muscle.

Keywords

disease classification; electrical impedance myography; electromyography; machine learning, 
muscle; muscular dystrophy

1 | INTRODUCTION

Distinguishing subtle myopathic abnormalities from healthy muscle has remained one of the 

more challenging problems of standard qualitative needle electromyography (EMG), with 

one recent study showing only a 70% accuracy.1 One reason for this is that mild myopathic 

states may cause only subtle alterations to motor unit potentials (MUPs), making them only 

of slightly shorter duration and lower amplitude with minimal polyphasia. Similarly, subtle 

alterations in recruitment patterns can be especially difficult to identify as the ratio of MUPs 

to firing rate remains preserved in myopathy.2 The most useful electrodiagnostic measure 

is what has been termed “early recruitment”—namely an increase in the number of MUPs 

recruited for generated force. More challenging still, chronic myopathies may be associated 

with changes more typically considered neurogenic in nature, such as some enlarged MUPs 

with decreased MUP recruitment.3 The presence of fibrillation potentials, positive sharp 

waves, myotonic potentials, or complex repetitive discharges may, of course, assist with 

disease diagnosis, but also are not specific for myopathy, as they can occur in neurogenic 

disorders as well.

To improve upon this, a large number of quantitative approaches to EMG analysis have 

been taken, including manual and automated MUP analysis,3,4 macro-EMG analysis,5–7 and 

power spectrum analysis, among others.3,8,9 The last has typically used tools to quantify 

the electromyographic signal such as through Fourier transformation8 on the acquired 

EMG signal or using principal component analysis.10,11 Myopathic disorders typically 

demonstrate fewer lower frequency components, as the MUPs are of shorter duration and 

polyphasic. More recently, machine learning (ML) approaches have also been applied to the 

assessment of the EMG signal and studies have suggested that ML can improve our ability 

to identify subtle myopathic alterations over standard approaches.12–14

Electrical impedance myography (EIM) is a newer quantitative approach to neuromuscular 

disease assessment.15,16 EIM is a bioimpedance-based technique in which a weak, high-
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frequency electrical current is applied to a discrete area of muscle and the consequent 

voltages are measured. Alterations in the composition and structure of the tissue change 

the resistive and reactive components of the tissue, impacting the measured voltages. As 

there are no devices approved by the US Food and Drug Administration for performing 

EIM, its development and testing remain confined to the research realm currently. Whereas 

much of the earlier focus and application of EIM has been in tracking disease progression 

or response to therapy,17 its potential as an improved diagnostic technique also remains 

of interest. Indeed, like EMG, EIM offers a rich array of measures including multiple 

primary parameters and a complex frequency dependence. And like EMG, ML has been 

employed in EIM as another approach to data interpretation, improving its capability in 

disease discrimination in mouse models beyond that obtainable with just single frequency 

measurements.18 Recently, EIM technology has been combined into a concentric needle 

EMG to create a single “impedance-EMG” or “iEMG” device to allow concurrent collection 

of both signals and improve diagnostic outcomes.19,20

In this study, we sought to assess the potential of ML-based iEMG for discriminating 

healthy muscle from dystrophic muscle by studying a mouse model of Duchenne muscular 

dystrophy, the D2-mdx mouse. Our goal was to present an approach for doing so to 

establish proof-of-principle for use in future more challenging classification problems. We 

hypothesized that iEMG would provide more accurate classification than either technique 

alone as it would provide a holistic electrophysiologic representation of the muscle, with 

EMG assessing the active properties and EIM the passive. The intent of this work was to set 

the stage for future investigations of this combination technology in both animal and clinical 

work.

2 | METHODS

2.1 | Animal procedures

Experimental procedures were approved by the Institutional Animal Care and Use 

Committee at Beth Israel Deaconess Medical Center. A total of 12 male wild-type (WT) 

animals were available for study (11 DBA/2J, strain #000671 and 1 B6SJLF1/J, Strain 

#100012) aged 16–35 wk. Thirteen D2-mdx mice (D2.B10-Dmdmdx/J; strain #013141) 

aged to 35 wk, an age at which major dystrophic features are present,21 were also available 

for study. All animals were obtained from Jackson Laboratories (Bar Harbor, ME), and fed 

standard chow ad libitum up until the time of study. During data collection, the animals were 

anesthetized with isoflurane (0.5%–3%) delivered by a nosecone. Blinding of the individual 

collecting the data (S.B.R.) to animal category (healthy vs. diseased) was not possible given 

the considerably smaller size of the D2-mdx mice.

With the animal under deep anesthesia, the fur overlying the quadriceps was removed 

bilaterally with a standard rechargeable clipper. We studied quadriceps as it shows 

considerable pathology in this disease.22 To facilitate the iEMG needle insertion, a small 

hole was then placed in the skin using a 21-gauge angiocath needle just proximal to the 

left knee. A prototype iEMG needle20 (Haystack Diagnostics, Inc, Boston, MA, USA) 

was then passed through the hole in the skin and into the center of quadriceps with an 

effort to keep the needle parallel to the long axis of the muscle so that all six electrodes 
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remained within the muscle group itself. Impedance measurements were then made with the 

mView impedance system (Myolex, Inc, Boston, MA, USA) interfaced to an iEMG needle 

connector. The impedance device was configured to measure resistance R and reactance X 
values at 41 logarithmically spaced frequencies from 1 kHz to 10 MHz.

Once the impedance data were collected, the mView device was disconnected and the Natus 

Ultrapro S100 EMG system with Synergy Software (Natus. Middleton, WI, USA) was 

connected to the EMG leads on the connector and an adhesive ground electrode was placed 

on the tail. Filter settings were set at standard levels 10 Hz and 10 kHz (high-pass and low-

pass, respectively) at a sampling frequency of 50 kHz. The anesthesia was then lightened to 

the point that voluntary movements of the animal could be observed. After a few minutes, 

stereotypical flexion/extension of the entire hindlimbs occurred. Approximately 10–20 s of 

EMG activity was collected.

Impedance data were directly exported from the mView system for analysis. Similarly, the 

EMG data from the evaluation of the voluntary activity were exported as a text file. These 

were then reconstructed into a single trace. In order to increase sample size, we considered 

the measurements of the limbs of same animals as independent of each other.

2.2 | Data analysis

EIM data were obtained at 41 frequencies of applied current and included the 3 standard 

measures: resistance, reactance, and phase values at each of the measured frequencies; all 

of these values were included in our analysis. In terms of analyzing the EMG signal, we 

performed a standard Fourier transformation using R 4.1.023 including frequencies from 

1 Hz to 25 kHz. To reduce computational time while promoting robustness in the model, 

and to balance the number of samples measured between EIM and EMG used in our 

ML model, we downsampled the EMG power spectrum at selected frequencies aiming for 

approximately the same number of frequencies as EIM. We explored various approaches 

to downsampling the EMG data including principal component analysis and the least 

absolute shrinkage and selection operator (LASSO). However, these approaches showed 

worse discrimination than the following somewhat simpler sampling approaches, including:

1. Equal spacing. We chose frequencies that were evenly spaced beginning at 

approximately 1 Hz through 25 kHz. Using these equally distant sets of points, 

we included 44 frequencies in our final ML model from this procedure.

2. Fibonacci’s sequence. Fibonacci’s sequence is a naturally progressing series of 

values and has been used by others in analyzing EMG data.24 We chose to use 

this series to include a more extensive set of lower frequency values, which are 

likely to be reduced in power in a myopathic model. From this procedure, the 

final model contained 48 frequencies.

3. Geometric sequence. A geometric sequence is a series of sequences that comes 

from a power of a given number. We chose two as the base number with linear 

power that increases by one. Through this procedure, we included 44 frequencies 

in our final model.
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ML-based diagnostic outcomes were conducted using three frequency data sets: (1) EIM 

data alone, (2) EMG data alone, and (3) both EIM and EMG data sets together. We chose 

these three separate strategies with the final goal of our analysis to evaluate the comparative 

performance of each of these three models.

To conduct our statistical analysis, we used R 4.1.0 where we applied the “caret” package to 

build our learning algorithm and “eegkit” package for the Fourier transformation. Our data 

set was then tested and evaluated with numerous sets of supervised algorithms, including 

support vector machines, K-nearest neighbor, an individual decision trees. Based on their 

comparative performance, we found that the random forest algorithm appeared to offer the 

best performance for our data sets. The random forest algorithm is based on a mixture of 

decision trees.25 A decision tree is one approach that helps model the data visually using 

“if and else” conditions. Such visualization helps in identifying explicit patterns that can 

be used to classifya given group. Random forest constitutes a collection of a multitude of 

decision trees that are created to predict probable class outputs. The class output that is 

chosen in most of these decision trees will be the outcome result of the entire random forest.

We used a nested cross-validation procedure to conduct our analysis, as previously 

described.26,27 Here we split the data into two parts where 80% of it was assigned to the 

training data and 20% to the test set. Then we used a nested 10-fold cross-validation method 

for classifying the condition of each mouse with random forest. The nested procedure works 

in two loops: (1) an inner loop that was allocated to determine the individual training data 

estimates and their performance within the training data and (2) an outer loop assigned 

for checking the performance of these estimates on the test set. The final evaluation of the 

model was based on combining the classifier’s performance in each test set from all outer 

loops.

The learning algorithm’s performance was based on the average receiver operator 

characteristic (ROC) curves generated by these outer loops. The AUC values in these curves 

gave the probability of the learning model’s ability to classify the condition (i.e., healthy or 

diseased) of each mouse correctly. To compare the ROC curves from different data sets, we 

used Delong’s ROC comparison that has been extended for unpaired ROC curves.28,29

3 | RESULTS

From the entire group of animals described in the methods section, we were able to achieve 

successful data collection on a set of 20 D2-mdx limbs and 20 WT limbs. The specific 

breakdown of how this was accomplished, and which animals were used in the analysis 

below, is diagrammed in Figure 1. We note that whereas obtaining the EIM data from the 

animals at rest was relatively straightforward, obtaining sufficient active EMG data was 

usually the most challenging aspect of the data collection and simply could not be achieved 

successfully in a number of animals on both quadriceps.

1. EIM and Fourier transformed EMG data.

Figure 2 shows the averaged EMG power spectra from the Fourier transformed EMG 

signals from all WT and diseased animals. In addition, the power spectra were smoothed 
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using an average sequence of 500 frequencies. Figure 3 shows the raw multifrequency 

EIM data (i.e., phase, resistance, and reactance) averaged across all WT versus diseased 

animals. As expected, the EMG power spectra show greater power at higher frequency in 

the animals with muscular dystrophy and fewer low frequency components, consistent with 

short-duration, polyphasic motor units, characteristic of myopathy. Similarly, the EIM data 

reveal, as expected, generally higher reactance and resistance values in the healthy animals 

with an overall greater frequency dependence. Although it is difficult to compare these data 

sets directly, it is worth noting here the separation between the EIM data for the healthy 

versus the diseased mice, as compared to the considerable overlap between healthy and 

diseased EMG spectra. This provides some indication of the anticipated performance of our 

ML-based analyses, shown next.

2. ROC analysis for EIM and equally spaced EMG frequencies.

Figure 4 provides the ROC-AUC values for sampled power of EMG frequencies (44 

frequencies) that are equally spaced and the multifrequency EIM (using values from all 

41 frequencies). The EMG frequencies were 589 Hz apart, evenly spaced beginning at a 

frequency of 1 Hz and ending at a frequency of 24,754 Hz. This number was chosen through 

a series of tests with various gap sizes that yielded the data sets’ highest AUC value for 

EMG alone. The results show that EIM-only data had the greater power of discrimination 

with EMG performing considerably less well. The combined EIM-EMG data set, rather 

than providing discrimination even more robustly than either one alone, performed slightly 

worse than the EIM data set alone. This is confirmed by ROC test comparisons, which 

demonstrated that EMG performed worse than EIM and the EIM-EMG. EIM alone was also 

better than combined EIM-EMG.

3. ROC-AUC curves for EIM and Fibonacci sequenced EMG frequencies.

Figure S1 gives the ROC-AUC values for EMG frequencies that are spaced by Fibonacci’s 

sequence with identical assessment of the multifrequency EIM data as in Figure 4. The 

results are similar to that presented in Figure 4 with EIM-only data and EIM-EMG data 

outperforming EMG-only data in this analysis. The combined EIM-EMG analysis had a 

non-significant difference compared to EIM data alone.

4. ROC analysis for EIM and geometrically sequenced EMG frequencies.

Figure S2 shows the analogous figure for geometric sequence sampling. The results here 

are quite like that obtained using the Fibonacci series, with EIM alone outperforming EMG 

alone with the combined data set analysis performing similarly to EIM alone.

4 | DISCUSSION

Here we sought to integrate EIM and EMG data collected with needle iEMG to provide 

a “complete” picture of muscle’s passive (EIM) and active (EMG) electrical properties in 

the context of a common electrodiagnostic classification problem: differentiating healthy 

from myopathic muscle. Whereas we had hypothesized that the combined data set would 

perform better than either the EIM or the EMG data alone, the ultimate combined classifier 

performed similarly to that of EIM alone. This occurred despite our utilizing several 
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different approaches for sampling the EMG power spectra. Regardless of this somewhat 

unexpected result, we believe further investigation into the concept of EIM-EMG data 

integration using ML would be worthwhile pursuing, especially in human disease, as 

discussed below. We briefly review several of the issues that may have influenced our results 

here and that may not hold true when this approach is applied to human data.

Studying mice limited our ability to obtain active, voluntary EMG data since all EMG 

signals had to be acquired in brief time periods while the animals were under light 

anesthesia. This resulted in having considerably less data available for analysis than might 

be anticipated in human research. The animals demonstrated stereotypical movements in this 

state, allowing us to successfully perform interference pattern analysis, a standard approach 

which has been described in the literature since the 1980s.9 Performing single MUP analysis 

would also have been valuable, but virtually impossible given our inability to control the 

level of voluntary contraction.

In terms of transforming the EMG data for analyses, we also experimented using several 

approaches, including principal component analysis, but the results were ultimately weaker 

in terms of EMG classification data than using the Fourier transform approach described 

here. Accordingly, we have excluded the details of these preliminary investigations here. 

Regardless of the approach chosen, in reviewing Figure 2, there is a clear loss of the 

lowest frequencies in the D2-mdx mice as compared to the WT animals, consistent with 

expectations. In short, while study of a rodent model with this new needle is a necessary 

first step to its wider application, we anticipate that human application of this technique 

will be more straightforward simply because we will be able to obtain much better-quality 

active EMG data for analysis. It is also possible that the mouse MUPs, which are smaller 

than those of a human muscle,30 may be difficult for our equipment to differentiate as it was 

designed from human diagnostics.

Another important point is technical. While this iEMG needle has E1 at the tip and E2 is 

the barrel around it, it is not a typical concentric needle in which the entire barrel serves 

as a reference electrode. As we described previously,20 in this device, only the distal most 

rim of the needle along the tip serves as the E2 electrode here. This much smaller recording 

area near the concentric inner electrode may impact the EMG data itself. Thus, it would have 

been ideal to also perform a second study comparing the needle EIM data alone with EMG 

data obtained with a standard concentric needle in these animals. The study we completed 

here is decidedly unique to this needle design and should be interpreted as such.

We had more constrained sampling choices with the EIM data set than the EMG since 

measurements occur in the frequency domain and not in time-domain as is the case with 

EMG. Nevertheless, the findings are consistent with what we have described previously for 

ML using EIM data in distinguishing healthy and myopathic muscle ex vivo, with AUCs of 

over 0.90,18 supporting outstanding disease discrimination.

How is it possible that the combined impedance-EMG data set does not surpass the EIM 

data alone? The expectation is that any predictive model that is developed will be only 

as good as the predictors included in it. The final AUCs we report here are based on the 
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average of the repeated test sets only, implying that the training sets, when using both EIM 

and EMG together, may be overfitting the training data. As the AUCs that are provided 

represent an average of the test data and not the original model, if there is more noise in the 

original training set as might be the case with the EMG signal, the combined data set could 

have a slightly worse performance than a model using the EIM data alone. Alternatively, 

our EMG frequency selection in the model may be falsely underestimating the diagnostic 

power of EMG. While this is certainly possible, as we have noted, we are including only 

the most successful outcomes here. Moreover, simply visually inspecting and comparing 

Figures 2 and 3 reveals the substantial overlap between the healthy and myopathic EMG 

spectra (Figure 2) versus the clear separation for resistance and reactance data in the EIM 

spectra (Figure 3). This supports that our findings of poorer performance of the EMG data 

alone versus the EIM data alone are not simply due to undersampling of the EMG power 

spectrum. Finally, our AUCs for EMG data alone are fairly similar to those in a recently 

published human study looking at the accuracy of qualitative needle EMG in the diagnosis 

of myopathy.1

As with all ML approaches, there is an uncomfortable “black box” aspect to the modeling 

adopted here. ML does not offer any insights into why EIM fared so much better than 

EMG. However, one possibility is that EIM is simply far more sensitive to the major 

histological and compositional abnormalities that occur in severely dystrophic muscle,31,32 

which are considerable in this disease model, as compared to the relatively modest 

motor unit and recruitment abnormalities observed on EMG. Performing a similar study 

in ALS animals, for example, may have produced a far different outcomes, with EMG 

potentially outperforming EIM, given the stark EMG abnormalities observed in any 

advanced neurogenic disorder.

While the focus here was classification, iEMG could also be used as a biomarker to assess 

disease progression over time or therapy effect. Surface EIM techniques have already shown 

value in this,33,34 but an iEMG approach could also be advantageous. For example, it 

could be useful in obese patients or where a specific deep muscle needs to be evaluated. 

The addition of a quantified EMG signal over EIM alone could offer potential improved 

sensitivity to disease alteration over EIM alone.

There are several additional limitations to this work beyond the simple choice of using 

a mouse. First, the total number of animals, both D2-mdx and WT, was relatively low. 

Although we took approaches for mitigating this by using a nested ML model, there is 

always the risk of overfitting when the data set is very limited. We assessed reducing the 

data set by reducing the number of values by 3/4 and observed the anticipated reduction 

in the AUC, especially for the EMG signal (e.g., Fibonacci sequence AUC decreasing 

from 0.73 to 0.70). However, given the preliminary nature of these analyses, we put this 

forward as a proof-of-principle analysis and are willing to accept the potential of overfitting. 

Second, given the relatively small number of animals, we considered each hind limb as 

a separate and independent data set; ideally it would have been better to have data from 

more individual animals; this may have resulted in stronger models with better overall 

classification. Third, spontaneous activity was not evaluated. If this assessment were also 

included, then the presence of fibrillation potentials and positive sharp waves likely would 
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have improved our ability to detect differences between the sets of animals on EMG. Fourth, 

the iEMG needle remains in a prototype state, and thus our ability to obtain good data was 

limited and the size of the muscle relative to the size of the needle is quite small meaning 

that we could not easily reposition the needle to view MUPs most advantageously. Fifth, 

the EMG data obtained were limited as it was obtained while awakening from anesthesia. 

Presumably more extended EMG signals, as would be possible in humans, would add EMG 

discriminatory capability. Finally, we do note that all the D2-mdx mice were approximately 

35 wk of age whereas some of the WT were younger. We do not believe that this introduced 

any significant confounding since they are all adult animals, and age-related muscle changes 

in mice do not become apparent until 1.5–2 y.

We briefly reflect on potential challenges and applications moving forward. First, mouse 

studies represent a model that is not entirely reflective of human disease, with these D2-

mdx animals often showing findings not typical of human DMD, including minimal fat 

deposition and heterotopic calcification.22 Moreover, the muscle pathology is severe, being 

typical of dystrophic disease; a milder, non-dystrophic myopathy may have yielded different 

results with EIM perhaps not showing such dramatic differences compared to WT animals. 

Third, it remains uncertain how well this approach compares to standard qualitative EMG. 

Fourth, at this point, it is not clear how this technology would be employed in a clinical 

setting. Would an individual undergo standard qualitative EMG and then EIM assessments 

only if the EMG were unrevealing? And then would ML be used immediately in some 

fashion, or would it be possible to still use qualitative EMG along with the quantified 

analyses of EIM? At this point, all possibilities remain valid, and we must stay agnostic as 

to the best future approach. Finally, we have not assessed neurogenic disorders here. Clearly, 

that would be another important direction to explore.

This work represents only an initial foray into a new field of muscle electrophysiology, 

where we seek to quantitatively evaluate the passive and active properties of the tissue 

simultaneously and then meld them into improved diagnostic assays. Only by dedicated 

study in a range of neuromuscular conditions in both animal models and diseased and 

healthy humans can the potential of this new technology in clinical diagnosis and disease 

characterization be fully realized.
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AUC area under the curve
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FIGURE 1. 
Flow chart showing animal and limb selection used in the analysis from the original set of 

animals.
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FIGURE 2. 
Comparison of EMG power spectrum averaged across all WT and D2-mdx mice. Every 

segment of 500 frequency sequence were averaged for smoothing. Note shift to right (higher 

frequencies) apparent in the D2-mdx mice, consistent with myopathic motor units. The inner 

dashed/solid lines represent the mean activity with the outer limits representing the 95% 

confidence intervals of the data across the 20 limbs studied.
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FIGURE 3. 
Comparison of EIM reactance spectra between the two WT and D2-mdx mice. Data show 

mean across the animals and standard error. Note the good separation in resistance and 

reactance values between the groups.
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FIGURE 4. 
EMG ROC curves for our test using ML for (A) EMG data alone (equally spaced frequency 

selection). (B) EIM data alone. (C) EIM and EMG data together. EMG data alone were 

significantly different than both EIM only data (p < .001) and EIM-EMG data (p < .001). 

EIM only data were slightly significantly different than EIM-EMG data (p = .047).
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