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Because evolution occurs by random events, the actual number of substitutions that
occur in any period is not exactly equal to the number expected from the mean rate of
substitution, but is statistically distributed about it. In consequence, even if rates of
evolution are constant in different lineages, ‘trees’ deduced from descendant protein
sequences contain random errors. When there are fewer than about eight differences
between the sequences of the most distantly related pair from a set of proteins, this
random effect is very large. It can then render trivial the statistical disadvantage inherent
in using a crude measure of protein difference, such as amino acid composition or
immunological cross-reactivity, in preference to a measure based on amino acid
sequence. In some cases, such as classification of mammals on the basis of cytochrome
¢ structure, it appears to make little difference to the reliability of the results whether the
sequences of the proteins concerned are known or not. It may also be possible to obtain
more reliable phylogenetic information from composition measurements on several
kinds of protein than one could obtain from sequence measurements on a single kind of

protein.

Despite the success of protein sequence studies in
providing a detailed and largely self-consistent
context for discussion of evolution, it is clear that
protein sequences do not provide an exact record of
evolution. There are discrepancies not only between
molecular phylogenies and those derived by
traditional methods, but also between the phylo-
genies derived from the sequences of different
proteins (see, e.g., Goodman, 1976). Moreover,
although phylogenies derived from crude measures
of protein similarity, such as immunological cross-
reactivity (Prager & Wilson, 1971) or amino acid
compositions (Cornish-Bowden, 1979a), are in most
respects inferior to those derived from sequences, the
degree of inferiority is by no means as great as one
might expect. Consider, for example, the two
‘trees’ in Fig. 1, which are derived from the a-chains
of the haemoglobins of nine primates. The
two classifications are rather similar and both are
almost certainly correct in many respects. Where
the sequences and compositions disagree, the
classification according to sequence is usually the
more reasonable: for example, the sequences in Fig.
1 show the a-chains (though not the 3a-chains,
which are minor variants) of all the Anthropoidiae as
more similar to one another than any is to that of the
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loris, a prosimian, whereas the compositions inter-
pose the loris between the Cercopithecidae and the
other Anthropoidiae. Nonetheless, in some points of
detail the compositions provide a more reasonable
classification: for example, they group the three
species of Cercopithecidae together, whereas the
sequences suggest that the hanuman langur is more
closely related to the human than to either of the
other species of Cercopithecidae. Moreover, the
sequences show the chimpanzee (as attested by its
3a-chain) as only a distant relative of the human,
whereas the compositions indicate a much closer
relationship.

In this example no confusion is likely, as there is
no reason to doubt that the 3a-chains are paralogous
to the normal a-chains, both because they are not
major components but minor variants, and because
the gorilla is represented in the data set by both
types of chain. In less clear-cut circumstances the
absence of definite evidence that a particular species
contains a protein that is only distantly related, or
not related at all, to the same protein in related
species can cause considerable confusion. It was,
for example, very difficult to account for the large
differences between the lysozyme of the goose and
those of the duck and chicken when these proteins
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(a) Loris
(Lorisidae)*

Capuchin monkey
(Cebidae)

Spider monkey
(Cebidae)

Rhesus monkey
(Cercopithecidae)
Savannah monkey)
(Cercopithecidae)
Gorilla

(Pongidae)
Human
(Hominidae)
Hanuman langur
(Cercopithecidae)
Gorilla (*a-chain)
(Pongidae)

Chimpanzee (3a-chain)

{Pongidae)
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{b) Rhesus monkey
(Cercopithecidae)
Savannah monkey)
(Cercopithecidae)
Hanuman fangur
(Cercopithecidae)
Loris
(Lorisidae®)
Capuchin monkey
(Cebidae)

Spider monkey
(Cebidae)

Human

(Hominidae)

Gorilla

(Pongidae)

Gorilla (3a-chain)
(Pongidae)
Chimpanzee (3a-chain)
(Pongidae)

Fig. 1. Classification of the a-chains of haemoglobin
All of the primate a-chains listed in Alignment 37 of Hunt & Dayhoff (1976) are included, apart from the two chains
from irus macaque, both of which lack residues 105-139. The *a-chains are minor variants observed in chimpanzee
and gorilla. (The normal a-chain of chimpanzee is identical with that of human.) Families are shown in parentheses.
All are in sub-order Anthropoidiae, apart from the family Lorisidae (*), which is in sub-order Prosimii. In (a) the
clustering was done as described in the Methods section by using the amino acid sequences; in (b) the amino acid

compositions were used.

were first studied. The anomaly was only resolved
when the black swan was found to have two kinds of
lysozyme, one like that of the goose and one like that
of the duck (Arnheim & Steller, 1970).

In both of these examples from Fig. 1 the
apparent superiority in some respects of the
classification derived from the compositions is
presumably due to chance rather than to any real
superiority of the approach. Nonetheless, the fact
that such anomalies occur at all emphasizes the
importance of chance in influencing the results of a
classification. It also raises the question of whether
the enormously greater experimental effort needed to
determine a protein sequence rather than just its
composition or immunological properties is certain
to be repaid in the form of more reliable phylo-
genetic information. I show in the pr :sent paper that
this is by no means certain and that, on the contrary,
the same experimental effort devoted to determining
the amino acid compositions of several proteins in a
group of species can lead to better phylogenetic
information than would be available from the
sequences of a single protein in the same species.

It has been recognized for many years that
evolution must be a stochastic process, i.e. one that
proceeds by the accumulation of random events, so
that the ‘molecular clock’ must be stochastic and not
metronomic, i.e. regular and non-random. None-
theless, although Fitch (1976) comments that
‘no-one expects evolutionary phenomena to be
metronomic’, there are numerous discussions of
protein sequences in the literature that attach a
significance to small numbers of differences that
seems to imply that the authors are regarding the
clock as metronomic. For example, the observation

that the cytochrome c¢ sequences of three Artio-
dactyla (cow, sheep and pig) are identical, whereas
that of a fourth (hippopotamus) differs at three loci,
has been taken as verification that evolutionary
rates are not constant (Thompson et al., 1978).
Assuming, for the sake of illustration, that the
proportions of the total length of the true
evolutionary ‘tree’ relating the four species are 20%
each for hippopotamus and pig, and 12.5% each for
cow and sheep, the probability that three random
substitutions will all occur on a limb unique to one
species is (0.23+0.23+0.125%+0.125%), or about
2%. This probability seems hardly small enough to
disprove the hypothesis of constant rates, especially
in view of the large number of cytochrome ¢
sequences now known: as this is well over 50, one
should not be surprised to find one with properties
with only 2% likelihood if considered in isolation.

A major consequence of the stochastic character
of evolution is that it can render the observed
number of differences between two sequences a very
unreliable guide to the expected number, and hence
to the time since separation, even if the simplest
possible statistical behaviour applies. This is
especially true for closely similar sequences, and in
the limit it makes a classification based on a highly
conservative protein, such as histone H4, little or no
improvement on classification at random. The
purpose of the present paper is to study the severity
of this effect and to determine how different the
sequences of a set of proteins have to be for them to
provide a reliable classification and, in particular,
one that is more reliable than one could obtain from
cruder information about the same proteins.

A preliminary account of some of this work was
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presented at the 11th International Congress of
Biochemistry (Cornish-Bowden, 1979b).

Methods

Estimation of amount of sequence difference from
amino acid compositions

For any pair of proteins of equal length the
number of sequence differences was estimated as
the value of SAn defined as follows (Cornish-
Bowden, 1977):

18
SAn=147% (n,—ng)
i=1

in which n,, is the number of residues of the ith type
in protein A and n; is the corresponding number in
protein B. The summation is carried out over the 18
types of amino acid commonly distinguished in
composition measurements, i.e. asparagine is
counted with aspartate, and glutamine is counted
with glutamate. This convention was also followed in
counting the numbers of differences between known
sequences: although this meant that a small
proportion of the information contained in the
sequences was discarded, it had only a slight and in
most cases insignificant effect on the classifications
produced. It also avoided the need for a complicated
definition of the number of sequence differences in
experimental circumstances where some of the
amide assignments were known and some were not.

Simulation of evolutionary ‘trees’

Methods were essentially as described by Dayhoff
(1976). For each simulation a random ancestral
sequence was generated with mean amino acid
frequencies in accordance with the values compiled
by Dayhoff & Hunt (1972). Random substitutions
were introduced in accordance with the substitution-
frequency data of Dayhoff ez al. (1972).

Two different ‘trees’ were simulated. In the
simpler of these the ancestral sequence gave rise to
two descendants, each of which independently
accumulated L substitutions on average before
giving rise to two further descendants each, each of
which then independently accumulated L more
substitutions on average. (This is illustrated as an
inset in Fig. 2.) In each leg of the ‘tree’ the actual
number of substitutions was randomly distributed
about the expected value L in accordance with a
Poisson distribution. This ‘tree’ resembled the one
simulated by Dayhoff (1976), except that her ‘tree’
was ‘unrooted’, i.e. it did not include a ‘node’
(branch point) for the common ancestor of all four
descendants, and the number of substitutions
between the two ‘first-generation’ descendants was L
rather than 2L, and her L values were exact rather
than Poisson-distributed. The distribution of L was
crucial in my work because of the very small values
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considered in some cases, but was of little
importance in Dayhoff’s (1976), because she was
primarily concerned with the performance of
different clustering methods at very high L values
(up to 400 per 100 residues).

The other ‘tree’ was a more complex one with
seven descendants, with topology and times of
separation based on the evolution of seven hoofed
mammals (sheep, goat, cow, llama, pig, horse and
donkey) as given by Langley & Fitch (1974). It is
shown as an inset in Fig. 3. The method of
simulation was the same as for the simpler tree.

The use of Dayhoff’s (1976) model of evolution
requires some justification, because it almost
certainly oversimplifies the true process. In
particular, it assumes that the probability of sub-
stitution at any site is fully determined by the identity
of the residue occupying the site and the sub-
stitution rate of the whole protein. It allows for no
variation of substitution probabilites with time,
between lineages, or according to the locations of
sites within the whole structure. A consequence of
this oversimplification is that the model is likely to
generate fewer parallel substitutions than occur in
reality. Nonetheless, for several reasons I have not
attempted to set up a more complex and perhaps
more realistic model. First, any such model could
only be justified by a detailed and lengthy argument.
Secondly, it would be difficult to make a meaningful
comparison between new results and those in the
literature. Thirdly, I have been concerned in the
present paper to show that, even if the simplest
assumptions about protein evolution apply,
phylogenies deduced from amino acid sequences are
subject to substantial random errors. Any additional
complexities in the actual processes of evolution can
only make this problem worse. Fourthly, the
introduction of such complexities into the model
would be unlikely to have a large effect on the
relative reliability of phylogenies derived from
sequence data compared with those derived from
cruder data, because they would be expected to have
parallel deleterious effects on all methods of analysis.
Finally, the presence of some invariant loci, for
example, would decrease the effective size of the
protein considered, but it would have no other effect,
because all methods of analysis referred to in the
present paper are concerned with differences, not
identities.

Method of clustering

After each ‘tree’ had been simulated, the four or
seven descendant sequences were first adjusted to
remove differences between aspartate and
asparagine and between glutamate and glutamine.
Compositions were then calculated from these
adjusted sequences. For both sequences and com-
positions, difference matrices were compiled relating
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the four or seven descendants. In the sequence case
the differences were simple counts of the numbers of
loci at which the residues were non-identical, i.e. the
matrices were ‘unitary matrices’ in the terminology
of Dayhoff (1976). More precise scoring is possible,
but Dayhoff (1976) has shown that the differences
between the results given by different kinds of
sequence matrix are slight or even non-existent
unless the period of evolution is very long. For the
compositions the difference matrices consisted of
SAn values as defined above.

Clustering was done by the UPGMA method
(Sneath & Sokal, 1973) after addition to each value
in the starting matrix of a random number from a
Cauchy distribution with median 0 and median
absolute value 103, censored at +0.01 (i.e. random
numbers numerically greater than 0.01 were
discarded). In the absence of ties (equal values) in
the starting matrix these random numbers were too
small to affect the results, but if any ties were present
in the data they caused them to be broken in an
unbiased manner. A Cauchy distribution was used
to ensure that the distribution was not altered by the
averaging that occurs during the course of UPGMA
clustering. [The distribution of the mean of a sample
from a Cauchy distribution is the same as that of a
member of the sample, i.e. the central limit theorem
does not apply (Kendall & Stuart, 1969).]

Scoring of clusters

For the simple ‘tree’ with four descendants, the
resulting clusters were scored as correct if they had
the correct topology (including the correct ‘root’)
and incorrect otherwise. This simple binary scoring
system seemed unreasonable for the more complex
‘tree’ with seven descendants, because it would take
no account of considerable degrees of incorrectness
that might be observed. For example, it would not
differentiate between a ‘tree’ with llama and pig
reversed but otherwise correct and one containing no
correct clusters apart from the final one containing
all seven species. Accordingly, each ‘tree’ was scored
in the following way. For each pair of descendants
the step of the UPGMA method in which they were
clustered was compared with the step in which they
ought to have been clustered. For example, in the
true ‘tree’ the pig and cow are clustered in step 5, so
a ‘tree’ clustering them at step 2 would have a
difference of 3 for these two descendants. The whole
‘tree’ was given a score equal to the sum of squares
of these differences, summed over all possible (21)
pairs of descendants. With this scheme the best
possible score is 0, for a ‘tree’ in which all of the
correct clusters occur in the correct order. The worst
possible score is 133, but this requires a deliberately
perverse ‘tree’, such as one in which goat is clustered
successively with horse, pig and llama, and then
sheep is clustered successively with donkey, cow and
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the cluster containing goat. It is more useful to
regard a typical bad score as 95, as this is the
median score of ‘trees’ produced by clustering at
random; 95% of such random ‘trees’ have scores of
52 or more. The maximum score for a ‘tree’ that
contains the correct clusters formed in the wrong
orderis 18.

Results

Fig. 2 shows the probability of obtaining the
correct topology for four 100-residue proteins that
evolved according to the simple ‘tree’ defined above
and illustrated in the inset. For values of L less than
2 there is little or no difference between the results
obtained from the sequences and those from the
compositions. Thus for these small values of L the
statistical uncertainty, of the order of 40% (Cornish-
Bowden, 1977, 1979a) inherent in estimating the
amount of sequence difference from measurements
of composition difference is trivial by comparison
with the statistical uncertainty inherent in the
stochastic nature of evolution. A value of L =2
corresponds to about 8% difference between the most
distantly related descendants, or a little less than the
amount of difference between the cytochrome c
sequences of the most distantly related mammals.
Thus this simple model suggests that, if one used a
protein such as cytochrome c¢ for classifying
mammals, it would make little difference whether
one knew the sequences or only the compositions.
For larger values of L the difference in performance

100

L
80
L

60

\

Sequences

Compositions

Probability (%)

20 ag

0.1 1 10 100
Mean number of substitutions per 100 residues (L)

Fig. 2. Probability of deducing the correct tree
The simple tree shown as an inset was simulated as
described in the Methods section. Each sequence
contained 100 residues and each point represents
the mean of 100 simulations. In each simulation the
descendant sequences were clustered both according
to sequences (@) and according to compositions
(O). The resulting trees were considered correct if
the descendants were paired correctly.

1980



Phylogenies from protein structural comparisons

becomes progressively more marked: sequences
give virtually perfect results if L is in the range
10-100, whereas compositions never offer much
better than a 50% chance of obtaining a correct
‘tree’.

An apparent inconsistency between the results in
Fig. 2 and those of Dayhoff (1976) requires
comment. According to Fig. 2, the probability of
obtaining the correct ‘tree’ from sequence data
approaches about 20% as L approaches zero,
whereas according to Dayhoff (1976) it is 100% for
several methods of clustering for all values of L up
to about 50. Although there are several differences
between Dayhoff’s (1976) simulations and those
shown in Fig. 2 (for example, the total length of her
‘trees’ was 5L rather than 6L, and her ‘trees’ were
‘unrooted’), the main reason for the apparently
different behaviour at L = 0 is likely to lie in the fact
that Dayhoff (1976) was concerned with the
behaviour of different clustering methods at very
large L values and the smallest L value at which
actual measurements were made was 25. Clearly,
therefore, there is no real discrepancy, as extra-
polation to zero of the sequence curve in Fig. 2 for
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the portion with L in the range 10-100 would
suggest 100% success at L = 0.

Fig. 3 shows the scores obtained in simulations of
the ‘tree’ with seven descendants. They confirm the
qualitative impression given by the simpler example,

.ie. they show that for very low rates of evolution

sequences provide negligible phylogenetic infor-
mation beyond what is contained in the corres-
ponding compositions. The range of evolutionary
rates covered by Fig. 3 includes the rates at which
real proteins evolve, as indicated by the scale at the
top of Fig. 3. For an extremely conservative
protein, such as histone H4, neither sequences nor
compositions provide any phylogenetic information;
for cytochrome c there is only slight divergence
between the sequence and composition curves; only
with rapidly evolving proteins such as k-casein do
sequence data provide near-perfect results, and only
then is there a substantial advantage in using
sequence data rather than a cruder measure of
structural difference.

As the failure of composition data to give perfect
results is statistical in nature, one would expect to be
able to improve the results by combining data for the

Evolutionary rates of selected proteins
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/ Compositions
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Mean number of substitutions per 100 residues since first divergence

Fig. 3. Scores obtained in simulation of a realistic tree
The tree shown in the inset is based on information given by Langley & Fitch (1974). It was simulated, and the
resulting sequences and compositions were clustered and scored, as described in the text. Results for sequences (@),
compositions (O) and grouped compositions (C0) are given. For the grouped compositions the simulations were
grouped in sets of five, so that the difference matrix used for clustering was obtained by adding together five
independent difference matrices. Each sequence had 100 residues, and 100 trees were simulated at each substitution
rate. The rates of substitution of six real proteins are shown for comparison at the top of the Figure, as follows: A,
histone H4; B, histone H2A; C, cytochrome c; D, trypsinogen; E, haemoglobin; F, x-casein. In placing this reference
scale along the abscissa the period since divergence of the hoofed mammals from a common ancestor was assumed to

be 80 million years.
Vol. 191
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compositions of several proteins. The third curve in
Fig. 3 confirms that this is so. Not only are the
results given by combined data for the compositions
of five proteins better at all rates of evolution than
those given by i1ie compositions of a single protein,
they are also better than those obtained from the
sequences of a single protein over much of the range
of rates. Even at high rates of evolution one can do
almost as well with the compositions of five proteins
as one can with the sequences of a single protein. As
Prager & Wilson (1978) have pointed out,
combining results from several different proteins has
the further advantage of decreasing the danger of
invalid results from failure to recognize that
particular proteins may be anomalous, e.g. goose
lysozyme mentioned at the beginning of the present
paper.

Discussion

The main disadvantage of using amino acid
sequences of proteins for classifying organisms is
that the determinations are laborious and expensive
to obtain. As a result, the number of interesting
questions of evolution or classification that have
been illuminated by comparing proteins is a meagre
fraction of the number of such questions that can be
asked. There can be little doubt that sequences
provide more detailed and more accurate in-
formation about evolution than is available from
cruder measures of protein structure, such as
composition, immunological cross-reactivity or
electrophoretic mobility. Equally, however, there can
be no doubt that these cruder alternatives are much
cheaper than the determination of sequences and, at
least in the case of compositions, the literature
already contains an enormous body of largely
uninterpreted data. For purposes of classification,
therefore, one can regard the choice of structural
measure as one of cost-effectiveness. The data in the
present paper indicate that, when a group of proteins
to be classified differs at only a few sites, there is
negligible advantage to be gained from measuring
the sequences if the compositions are known. For
proteins that evolve more rapidly, one may still do as
well or better by using composition data for several
different proteins rather than sequence data for a
single protein.

I have been mainly concerned with amino acid
compositions in the present paper, but most of the
conclusions would apply with similar force to the
immunological techniques that have been used for
classification, which are of the same order of
precision as composition measurements (Nei, 1977;
Cornish-Bowden, 1979a). Nonetheless, composition
measurements enjoy two additional advantages.

A. Cornish-Bowden

First, compositional differences can be expressed on
the same scale as sequence differences by means of
the index SAn (Cornish-Bowden, 1977), so that it is
simple and convenient to replace crude estimates
derived from compositions by more precise ones
derived from sequences if these become available.
Similarly, there are no scaling difficulties to prevent
mixing of data of the two different kinds. Secondly,
amino acid compositions are frequently obtained
independently of any investigations of evolution or
classification for other (usually obscure) reasons.
Consequently the cost of obtaining composition data
for purposes of classification is often zero.

I am grateful to Dr. A. J. G. Moir for constructive
criticism.
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