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Abstract
Background and purpose: Cognitive	impairment	(CI)	in	multiple	sclerosis	(MS)	is	associated	
with	 bidirectional	 changes	 in	 resting-	state	 centrality	 measures.	 However,	 practicable	
functional magnetic resonance imaging (fMRI) biomarkers of CI are still lacking. The aim 
of this study was to assess the graph- theory- based degree rank order disruption index 
(kD) and its association with cognitive processing speed as a marker of CI in patients with 
MS	(PwMS)	in	a	secondary	cross-	sectional	fMRI	analysis.
Methods: Differentiation	 between	 PwMS	 and	 healthy	 controls	 (HCs)	 using	 kD and its 
correlation	with	CI	(Symbol	Digit	Modalities	Test)	was	compared	to	established	imaging	
biomarkers (regional degree, volumetry, diffusion- weighted imaging, lesion mapping). 
Additional	associations	were	assessed	for	fatigue	(Fatigue	Scale	for	Motor	and	Cognitive	
Functions), gait and global disability.
Results: Analysis	in	56	PwMS	and	58	HCs	(35/27	women,	median	age	45.1/40.5 years)	
showed lower kD	in	PwMS	than	in	HCs	(median	−0.30/−0.06,	interquartile	range	0.55/0.54;	
p = 0.009,	Mann–Whitney	U test), yielding acceptable yet non- superior differentiation 
(area under curve 0.64). kD and degree in medial prefrontal cortex (MPFC) correlated 
with CI (kD/MPFC	Spearman's	ρ = 0.32/−0.45,	p = 0.019/0.001,	n = 55).	kD also explained 
fatigue (ρ = −0.34,	p = 0.010,	n = 56)	but	neither	gait	nor	disability.
Conclusions: kD is a potential biomarker of CI and fatigue warranting further validation.
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INTRODUC TION

Multiple	sclerosis	(MS)	is	frequently	associated	with	cognitive	im-
pairment (CI) [1]. Being often neglected in routine neurological ex-
amination [1, 2], CI and its imaging biomarkers, such as grey matter 
volume, white matter integrity or resting- state functional con-
nectivity (rsFC), are attracting increasing attention [1, 3]. Recent 
resting- state functional magnetic resonance imaging (fMRI) stud-
ies	 utilizing	 graph-	theoretical	 approaches	 have	 identified	 a	 rela-
tionship between CI and decreased overall mean degree [4] or 
increased	centrality	in	the	default	mode	network	(DMN)	accompa-
nied	by	decreased	centrality	outside	the	DMN	[5–10]. Moreover, 
changes in centrality also seem to precede the actual cognitive 
decline, indicating its potential utility as a prognostic biomarker 
[6].	However,	the	ultimate	goal,	that	is,	providing	individual	predic-
tions applicable in day- to- day practice, remains far from achieved, 
thus urging further refinement of imaging and analytical methods 
[3].

Whereas	 a	 voxel-	wise	 centrality	 assessment	 would	 require	
considerable time and personal resources, a recently introduced 
centrality- derived global scalar metric, the degree rank order 
disruption index (kD) [11], could serve as a biomarker reflecting 
simultaneous focal increases and decreases in degree centrality 
throughout	 the	 brain,	 requiring	 less	 demanding	 interpretation.	
The kD has previously been demonstrated to be associated with 
brain- wide degree centrality changes in impaired consciousness 
[12] and chronic pain [11], but so far it was evaluated neither as 
a	biomarker	of	the	MS-	related	brain	damage	nor	as	a	predictor	of	
CI	in	MS.

Hence,	 the	 aim	 of	 this	 study	 was	 to	 investigate	 the	 relation-
ship between kD	and	the	presence	of	MS	and	its	clinical	presenta-
tion (reduced cognitive processing speed as a marker of global CI) 
in comparison to established multimodal MRI biomarkers (resting- 
state fMRI with regional degree assessment, diffusion- weighted 
imaging	[DWI],	volumetry	and	lesion	mapping)	in	patients	with	MS	
and matched healthy controls. The hypotheses were as follows: (1) 
kD	differs	between	patients	with	MS	(PwMS)	and	matched	healthy	
controls	(HCs);	(2a)	kD is superior to the regional degree centrality in 
the pre- selected regions of interest (ROIs) in differentiating between 
PwMS	and	HCs	and	(2b)	improves	such	differentiation	when	used	in	
conjunction with established structural imaging diagnostic biomark-
ers	of	MS	(lesion	load,	global	atrophy,	global	white	matter	integrity);	
(3) kD	correlates	with	deficits	in	cognitive	processing	speed	in	PwMS;	
(4a) kD provides superior correlation with cognitive processing speed 
in comparison to the regional degree centrality in pre- selected ROIs 
and (4b) improves the regression model of cognitive processing 
speed when added on top of established structural imaging diagnos-
tic	biomarkers	of	MS.

In addition, the following exploratory hypotheses were tested 
to assess associations between kD and potential confounding fac-
tors: (5) kD correlates with global disability, fatigue and motor per-
formance (gait) and (6) improves regression models for these clinical 
outcomes when used jointly with the established structural imaging 

diagnostic	 biomarkers	 of	 MS	 (lesion	 load,	 global	 atrophy,	 global	
white matter integrity); (7) kD correlates with these structural imag-
ing	biomarkers;	and	(8)	the	structural	imaging	diagnostic	biomarkers	
of	MS	differ	between	PwMS	and	matched	HCs.

METHOD

Study design and participant selection

The secondary analysis was performed on cross- sectional imaging 
and	behavioural	data	of	65	PwMS	and	65	HCs	matched	for	age	and	
sex,	with	participants	recruited	from	MS	centres	across	Czechia.	
The same cohort has been partially analysed and published using 
other methods [13, 14]. Original inclusion criteria were the diagno-
sis	of	MS	[15]; spastic paraparesis as a prominent clinical feature; 
stable clinical status for at least 3 months preceding the study (de-
termined by a neurologist); physical ability to undergo clinical test-
ing—consistent	with	 an	 Expanded	Disability	 Status	 Scale	 (EDSS)	
score	≤7.5.	Subjects	were	excluded	in	the	case	of	missing	imaging	
data or imaging artefacts and conditionally excluded if exceeding 
the motion outlier criteria (see the section ‘Pre- processing’ in the 
Supplementary	 Methods).	 To	 address	 potential	 attrition	 bias,	 a	
sensitivity analysis was performed in a sample including motion 
outlier subjects.

Clinical assessment and questionnaires

Clinical parameters comprised an objective assessment of cogni-
tive	performance	using	a	Symbol	Digit	Modalities	Test	(SDMT)	[16] 
and	 possible	 confounding	 factors	 such	 as	 fatigue	 (Fatigue	 Scale	
for	Motor	 and	Cognitive	Functions,	FSMC)	 [17], global disability 
(EDSS)	[18]	and	motor	performance	(Timed	Up	and	Go	Test,	TUG)	
[19].

Standard protocol approvals, registrations and patient 
consents

The secondary data analysis was pre- registered at osf.io (https:// osf. 
io/	v8ejw	).	The	original	study	was	approved	by	the	Ethics	Committee	
of	 the	 Faculty	 Hospital	 Královské	 Vinohrady,	 approval	 no.	 EK-	
VP/22/0/2014.	All	patients	gave	their	written	informed	consent	to	
participate in the study.

MRI data acquisition

Imaging	 was	 performed	 using	 a	 3 T	 magnetic	 resonance	 scanner	
(Siemens	 Trio	 Tim,	 Erlangen,	Germany)	 equipped	with	 a	 12-	channel	
phased- array head coil. The MRI protocol included blood oxygena-
tion level dependent resting- state fMRI, as well as high- resolution 

https://osf.io/v8ejw
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1-	mm T1-	weighted	and	T2-	weighted	imaging	and	2-	mm	DWI.	Detailed	
acquisition	parameters	have	been	published	elsewhere	[13, 14].

Imaging data analysis

Following the pre- processing, subject- specific functional connec-
tivity	 matrices	 containing	 Fisher-	transformed	 Pearson's	 r coeffi-
cients	were	computed	in	CONN	toolbox	v.	21a	[20] for 4632 large 
voxels created using 6- mm resampling of a common grey mat-
ter	mask	 (see	Supplementary	Methods	 for	more	details).	Degree	
centrality was then computed for each subject using a brain con-
nectivity toolbox (https:// sites. google. com/a/ brain -  conne ctivi 
ty-  toolb ox. net/ bct/ ) with 10% link density [11]. Regional degree 
centrality	was	extracted	by	averaging	nodal	degree	from	the	DMN	
(four ROIs) [5,	6,	8], basal ganglia (six ROIs) [6,	8], thalamus, hip-
pocampus and cerebellum (five ROIs) [8] and from the multimodal 
ROIs	explicitly	participating	in	the	SDMT:	superior	parietal	lobule	
(two ROIs), dorsolateral prefrontal cortex (two ROIs) and anterior 
cingulate cortex (ACC) (1 ROI) [21] (see Figure S1 and Table S1). 
Finally, kD was calculated using custom MATLAB scripts imple-
menting a modified approach according to Mansour et al. [11], as 
described	in	Supplementary	Methods.

The	pre-	processing	of	T1-	weighted	and	DWI	data,	 the	calcula-
tion	of	grey	matter	volume	(GMV)	as	a	measure	of	cortical	atrophy	
and extraction of fractional anisotropy (FA) as a measure of white 
matter	 integrity,	as	well	as	the	ROI	definition	for	GMV	and	FA	are	
described elsewhere [14]. Finally, the lesion load (LL) was calculated 
using the lesion segmentation tool (https:// www. stati stica l-  model 
ling. de/ lst. html) with the lesion prediction algorithm [22].

Statistical analysis

Initially, normality was assessed for all continuous variables using 
the	 Kolmogorov–Smirnov	 test.	 Non-	parametric	 tests	were	 applied	
in case normality was violated. Additionally, regressors considerably 
deviating from the normal distribution (LL) were log- transformed 
prior	to	any	subsequent	analysis	to	meet	regression	model	assump-
tions. Demographic variables were compared between groups using 
Fisher's	exact	test	and	the	Mann–Whitney	U test. Pairwise deletion 
was applied in the case of missing clinical data. A summary of all vari-
ables, outcome measures and statistical tests for each hypothesis is 
provided in Table S2.	All	tests	were	performed	using	SPSS	v29.0.1.1	
(IBM,	 Armonk,	 NY,	 USA).	 p < 0.05	 was	 considered	 significant.	 For	
correlations	 of	 regional	 degree	 centrality	 (4a),	 Bonferroni–Holm	
correction	 for	 multiple	 comparisons	 across	 18	 ROIs	 was	 applied	
(α = 0.0028).	One-	tailed	tests	were	used	where	superiority	was	as-
sumed by the hypotheses or statistics with one- tailed distribution 
were employed (2a, 2b, 4b and 6), with two- tailed tests applied oth-
erwise. Details on figure preparation, power analysis as well as ad-
ditional	post	hoc	analyses	are	provided	in	Supplementary	Methods.

RESULTS

Study sample

Out	of	 the	original	sample	of	65	PwMS	and	65	HCs,	one	PwMS	
and	one	HC	were	excluded	due	to	missing	data	(incomplete	field	
of	 view	 and	 susceptibility	 artefact)	 and	 another	 PwMS	was	 ex-
cluded due to a suspected vascular lesion. In the remaining sam-
ple, 13 subjects with excessive motion levels were identified 
(seven	PwMS	and	six	HCs)	(see	Figure S2 for the inclusion/exclu-
sion	diagram).	Here,	 only	 results	 in	 56	PwMS	and	58	HCs	 after	
excluding motion outliers are reported (‘final’ sample), whereas 
results	in	the	sample	with	outliers	are	provided	in	Supplementary	
Results.	Whilst	both	analyses	yielded	mostly	similar	results,	two	
differences are explicitly stated below. Demographic details of 
the ‘final’ sample and summary statistics for clinical parameters 
are provided in Table 1.

Group differences and differentiation between 
PwMS and HCs

Patients	with	MS	showed	significantly	 lower	kD	compared	to	HCs	
(PwMS,	 median	 −0.298,	 interquartile	 range	 [IQR]	 0.549;	 HCs,	
median	 −0.058,	 IQR = 0.542;	 p = 0.009;	 Mann–Whitney	 U test) 
(Figure 1).	Underlying	 raw	degree	centrality	data	are	 summarized	
in Figure S3.

TA B L E  1 Demographic	and	clinical	data.

Variable Statistic PwMS HC p

Number Count 56 58

Sex	[women/men] 35/21 27/31 0.095a

Age [years] Median ± IQR 45.1 ± 17 40.5 ± 17 0.090b

Diagnosis RRMS Count, % 35, 62.5%

SPMS 15,	26.8%

PPMS 5,	8.9%

no data 1,	1.8%

Time since diagnosis 
[years]

Mean ± SD 12.6 ± 6.2

EDSS Median ± IQR 4.5 ± 2.5

SDMT 45 ± 29

FSMC 57 ± 23

TUG	[s] 10.3 ± 9

Abbreviations:	EDSS,	Expanded	Disability	Status	Scale;	FSMC,	Fatigue	
Scale	for	Motor	and	Cognitive	Functions;	HCs,	healthy	controls;	IQR,	
interquartile	range;	MS,	multiple	sclerosis;	PPMS,	primary	progressive	
MS;	PwMS,	patients	with	MS;	RRMS,	relapsing–remitting	MS;	SD,	
standard	deviation;	SDMT,	Symbol	Digit	Modalities	Test;	SPMS,	
secondary	progressive	MS;	TUG,	Timed	Up	and	Go	Test.
aFisher’s exact test.
bMann–Whitney	U test.

https://sites.google.com/a/brain-connectivity-toolbox.net/bct/
https://sites.google.com/a/brain-connectivity-toolbox.net/bct/
https://www.statistical-modelling.de/lst.html
https://www.statistical-modelling.de/lst.html
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The	ROC	analysis	 for	 differentiation	between	PwMS	and	HCs	
yielded	 significant	 above-	chance	 area	 under	 curve	 (AUC)	 for	 kD 
(AUC = 0.642,	p = 0.007;	two-	tailed	asymptotic	significance	for	null	
hypothesis	AUC = 0.5),	the	left	 lateral	parietal	portion	of	the	DMN	
(AUC = 0.671,	 p = 0.001)	 and	 the	 ACC	 (AUC = 0.619;	 p = 0.026)	
(Figure 2 and Table S3).	 In	pairwise	 comparisons,	AUC	 for	kD was 
significantly	higher	than	AUC	for	six	ROIs	and	did	not	significantly	
differ from the remaining ROIs (Table S3).

No	significant	 improvement	was	observed	in	a	multiple	 logistic	
regression	model	differentiating	between	PwMS	and	HCs	after	add-
ing kD	as	an	additional	regressor	on	top	of	GMV,	FA,	log(LL)	(χ

2 step 
0.007, p = 0.934).

Correlation with cognitive processing speed

A significant correlation was detected between kD	 and	 SDMT	
(Spearman's	 ρ = 0.32,	 p = 0.019,	 n = 55,	 Figure 3). For the regional 
degree	centrality,	significant	correlation	with	SDMT	was	observed	
in	the	medial	prefrontal	part	of	the	DMN,	yielding	slightly	higher	ef-
fect	size	than	the	kD (Table 2). An ordinal regression model including 
GMV,	FA,	 log(LL),	 age,	 sex	and	years	 since	diagnosis	as	 regressors	
of	 the	SDMT	score	was	 significantly	 improved	after	 adding	kD (χ2 
step	4.49,	p = 0.034,	likelihood	ratio	test;	see	Table S4). In contrast, 
neither	significant	correlation	with	SDMT	nor	 improvement	of	 the	
regression	model	for	SDMT	were	observed	in	the	analysis	with	mo-
tion	outliers	(see	Supplementary	Results).

Correlation with fatigue, global disability and motor 
performance

A significant correlation was detected between kD	 and	 FSMC	
(Spearman's	ρ = −0.34,	p = 0.010,	n = 56)	but	not	for	EDSS	(Spearman's	
ρ = −0.06,	p = 0.674,	n = 56)	or	TUG	(Spearman's	ρ = −0.18,	p = 0.211,	
n = 52)	 (Figure 4). In ordinal regression, kD significantly improved 
the	model	 fit	 for	 fatigue	 (FSMC)	when	added	on	 top	of	GMV,	FA,	
log(LL),	age,	sex	and	years	since	diagnosis,	but	not	for	EDSS	or	TUG	
(Table S4).

Relationship between kD and structural imaging 
biomarkers

No	significant	correlation	was	observed	between	kD and structural 
imaging	parameters,	that	is,	GMV,	LL	and	global	FA	(see	Figure S4). 
In analysis with motion outliers, however, kD was significantly cor-
related	 with	 LL	 (see	 Supplementary	 Results).	 All	 structural	 imag-
ing	parameters	significantly	differed	between	PwMS	and	HCs	(see	
Table S5).

Analysis with motion outliers

For complete results of the sensitivity analysis with motion outliers, 
see	Supplementary	Results	and	Tables S6–S10.

Post hoc analyses

Voxel-	wise	 group	 differences	 are	 illustrated	 in	 Figure S3.	 Voxel-	
wise regression analysis for degree centrality as response variable 
and	SDMT	as	explanatory	variable	yielded	significant	clusters	with	
negative effect mainly in medial prefrontal cortex (MPFC) and ACC, 
and to a lesser degree in the subcallosal cortex and the right nucleus 
accumbens,	overlapping	in	part	with	the	DMN-	MPFC	ROI	(Figure 4, 
Figure S3	for	unthresholded	data).	The	regression	for	FSMC	yielded	

F I G U R E  1 Group	differences	in	degree	rank	order	disruption	
index (kD). Raincloud plots illustrating individual kD values and 
distribution. Patients with multiple sclerosis are shown in green, 
healthy	controls	in	red.	Mann–Whitney	U test p value is provided in 
annotation.

F I G U R E  2 Receiver	operating	characteristic	(ROC)	analysis.	
ROC curves for differentiation between patients with multiple 
sclerosis and healthy controls using degree rank order disruption 
index (kD)	(area	under	the	curve	[AUC] = 0.642;	p = 0.007;	two-	tailed	
asymptotic	significance	for	null	hypothesis	AUC = 0.5,	uncorrected);	
the	left	lateral	parietal	portion	of	the	default	mode	network	(DMN-	
LLP;	AUC = 0.671;	p = 0.001)	and	the	anterior	cingulate	cortex	(ACC;	
AUC = 0.619;	p = 0.026).
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a positive effect in predominantly the right cerebellum, right cau-
date nucleus, right inferior frontal gyrus and a negative effect in the 
left temporo- occipital fusiform and lateral occipital cortex (Figure 4, 
Figure S3 for unthresholded data).

The	ROI	analysis	for	FSMC	yielded	significant	correlation	in	the	
left	 and	 right	 caudate	 nuclei	 (left,	 Spearman's	 ρ = 0.41,	 p = 0.002;	
right,	 Spearman's	 ρ = 0.40,	 p = 0.002;	 n = 56;	 Bonferroni–Holm-	
corrected	across	the	18	ROIs,	i.e.,	α = 0.0028).	See	Table 2 for com-
plete results.

DISCUSSION

The present study aimed to investigate the potential utility of kD as 
a new functional imaging biomarker of cognitive processing speed 
(and	hence	of	CI)	in	MS	in	comparison	to	regional	degree	central-
ity.	Whilst	 kD	 in	 PwMS	 significantly	 differed	 from	HCs	 and	was	
a significant explanatory variable for cognitive processing speed 
(SDMT)	in	PwMS,	it	yielded	weaker	correlation	than	the	mean	de-
gree	centrality	 in	 the	 frontal	hub	 (MPFC)	of	 the	DMN.	 In	an	ex-
ploratory analysis, kD turned out to be a significant explanatory 
variable for self- reported fatigue. A post hoc analysis indicated 
that the correlation with fatigue might be driven by degree cen-
trality changes in the cerebellum, basal ganglia (caudate nuclei) 
and left fusiform gyrus. These results were shown to be largely 

independent of structural imaging parameters, which were not 
significantly correlated with kD.

Differentiation between PwMS and HCs

Our primary observation of decreased kD	 in	 PwMS	 captures	 the	
global character of changes in nodal centrality (both degree and 
eigenvector) that have recently been reported on the local and 
network-	wide	 level	 in	MS	[5,	7,	8,	23,	24]. Lower kD	 in	PwMS	sug-
gests	less	centralized	and	more	diffusely	distributed	rsFC,	which	is	
analogous to a previously described disruption of the rich- club to-
pology	of	the	brain	network	in	MS	[25].	However,	our	multiple	re-
gression analysis indicated that kD did not improve differentiation 
between	PwMS	and	HCs	when	added	on	top	of	structural	imaging	
parameters. Taken together with the considerable overlap between 
kD	distributions	in	PwMS	and	HCs	(Figure 1), it can be inferred that 
degree	reordering	is	not	primarily	driven	by	the	mere	presence	of	MS	
and is more probably related to the resulting neurological deficits.

Correlation with cognitive processing speed

Our next main analysis demonstrated that kD was a significant ex-
planatory variable for cognitive processing speed compared to 

F I G U R E  3 Correlation	between	kD and 
clinical	scores.	Scatter	plots	illustrating	
relationship between the degree rank 
order disruption index (kD) and cognitive 
processing	speed	(Symbol	Digit	Modalities	
Test,	SDMT),	global	disability	(Expanded	
Disability	Status	Scale,	EDSS),	fatigue	
(Fatigue	Scale	for	Motor	and	Cognitive	
Functions,	FSMC)	and	motor	performance	
(Timed	Up	and	Go	Test,	TUG).	Spearman's	
rank correlation coefficient (rho), 
two- tailed uncorrected significance 
and number of valid observations are 
provided.
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global	 structural	 imaging	parameters.	Whilst	 the	negative	 correla-
tion between kD	and	SDMT	is	a	novel	finding,	it	is	in	line	with	previ-
ous	evidence	for	a	weak	positive	association	between	SDMT	score	
and rsFC of the peripheral nodes outside the rich club [25]. The 
correlation between kD	and	SDMT	yielded	an	effect	size	similar	to	
some previously reported structural imaging biomarkers of cogni-
tive processing speed, including fractional anisotropy in the superior 
longitudinal fascicle [26] or grey matter atrophy- based brain age gap 
[27],	but	was	lower	than	overall	effect	size	in	a	recent	meta-	analysis	
of multimodal structural MRI data [28].

In	our	dataset,	a	superior	correlation	with	SDMT	was	achieved	
using	 regional	 degree	 centrality	 in	 the	 MPFC	 hub	 of	 the	 DMN,	

yielding	an	effect	size	comparable	with	structural	imaging	biomark-
ers [28,	29].	Correspondingly,	cognitive	impairment	in	MS	has	been	
shown to be associated with increased degree or eigenvector cen-
trality	in	the	DMN	[6–10] and decreased centrality in the visual [7, 
9,	10] and sensorimotor network [7], whilst eigenvector and degree 
centrality show high agreement even within the same group [8]. 
Nevertheless,	our	results	add	novel	evidence	for	the	strength	of	the	
relationship	 between	 degree	 centrality	 in	 the	DMN	and	 cognitive	
processing	speed	since	no	such	correlation	in	MS	has	been	reported	
before.

Role of the DMN in pathophysiology of cognitive 
deterioration in MS

The ROI and post hoc voxel- wise analyses indicated that the 
MPFC	and	ACC	 (i.e.,	 anterior	DMN)	provided	 the	highest	 corre-
lation between degree and cognitive processing speed. The role 
of	 abnormalities	 in	 DMN	 in	 CI	 remains	 controversial,	 possibly	
being non- specifically linked to the dysfunction of the entire brain 
network [3].	 However,	 an	 excessively	 central	 and	 less	 dynamic	
DMN	 has	 also	 been	 proposed	 to	 directly	 hinder	 externally	 ori-
ented cognitive processing by superfluous introspective thoughts 
[7].	 Additionally,	 rsFC	 studies	 using	 the	 Paced	 Auditory	 Serial	
Addition	Test	 also	point	 to	dysfunction	of	DMN	and	 subcallosal	
cortex [24,	29].	Hence,	graph-	theoretical	measures	extracted	from	
the	anterior	portion	of	 the	DMN	are	potential	 future	candidates	
for even more accurate biomarkers of cognitive processing speed 
than kD.

Association with fatigue

Our results indicate that, cognitive processing speed aside, kD was 
also a significant explanatory variable for the self- reported global fa-
tigue	score	(FSMC).	Whilst	cognitive	performance	and	fatigue	have	
been shown to be associated with similar rsFC dysfunctions, such 
as	increased	rsFC	in	posterior	DMN	and	reduced	rsFC	in	the	ante-
rior	DMN	[30], our post hoc analyses on ROI and voxel- wise level 
suggested potential differentiation between mechanisms underlying 
cognitive	decline	and	global	fatigue.	Whereas	SDMT	correlated	with	
average	degree	in	DMN-	MPFC,	fatigue	scores	were	more	strongly	
associated with degree in the caudate nuclei, cerebellum and fusi-
form cortex (Table 2 and Figure 4).

From the network perspective, fatigue has been associated with 
damage to cortico- subcortical pathways and with particular involve-
ment of the prefrontal cortex [31]. On the computational (metacog-
nitive) level, it has been proposed to result from mismatch between 
predicted and measured output from cognitive and sensorimotor 
networks [3, 32].	Our	results	fit	in	by	emphasizing	the	role	of	basal	
ganglia [33] and cerebellum, which is involved in maintaining internal 
forward models and error monitoring [34]. Future dedicated studies 
should evaluate the specificity and stability of the here identified 

TA B L E  2 Correlation	between	regional	degree	and	clinical	
scores.

ROI

SDMT n = 55 FSMC n = 56

ρa pa ρa pa

DMN-	MPFC −0.45 0.001 0.23 0.081

DMN-	LP

L −0.03 0.847 0.12 0.365

R −0.28 0.036 0.27 0.041

DMN-	PCC −0.18 0.177 0.13 0.346

Putamen

L −0.35 0.009 0.38 0.004

R −0.27 0.044 0.30 0.024

Caudate nucleus

L −0.35 0.008 0.41 0.002

R −0.38 0.004 0.40 0.002

Thalamus

L −0.27 0.043 0.30 0.025

R −0.27 0.046 0.25 0.059

Hippocampus

L −0.24 0.084 0.23 0.085

R −0.33 0.015 0.26 0.053

Cerebellum −0.25 0.067 0.34 0.010

Superior	parietal	lobule

L −0.04 0.781 −0.21 0.118

R −0.12 0.396 −0.12 0.369

DLPFC

L −0.05 0.728 −0.24 0.069

R −0.11 0.424 0.01 0.913

ACC −0.21 0.120 0.06 0.657

Abbreviations: ACC, anterior cingulate cortex; DLPFC, dorsolateral 
prefrontal	cortex;	DMN,	default	mode	network;	DMN-	LP,	lateral	
parietal	part	of	the	DMN;	DMN-	MPFC,	DMN	-		medial	prefrontal	
cortex;	DMN-	PCC,	DMN	-		posterior	cingulate	cortex;	FSMC,	Fatigue	
Scale	for	Motor	and	Cognitive	Functions;	L,	left;	R,	right;	ROI,	region	
of	interest;	SDMT,	Symbol	Digit	Modalities	Test;	SPL,	superior	parietal	
lobule.
aSpearman's	rank	correlation	coefficient	ρ, significant correlations at 
Bonferroni–Holm-	corrected	α = 0.0028	are	in	bold	type.
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biomarkers and their accuracy with respect to the motor and cogni-
tive	sub-	domains	of	FSMC.

Limitations and future directions

Whilst	the	main	strength	of	the	study	was	rigorous	pre-	registration	
of all main analyses, there are also several limitations related to the 
fact	that	this	study	was	carried	out	as	a	secondary	analysis:	SDMT	
reflects mainly cognitive processing speed and involves visual pro-
cessing. Further assessments across multiple cognitive domains 
and sensory modalities as well as consideration of depression as 
a potential confounding factor are warranted. Furthermore, nor-
mative	data,	assessment	of	test–retest	reliability,	consideration	of	
compound predictive models (involving regional degree centrality) 
and longitudinal evaluation are also necessary. Finally, our data 
cannot	be	currently	generalized	to	all	individuals	with	MS	(see	our	
inclusion criteria); hence, a cross- validation of our results in an in-
dependent dataset is necessary before translating the results into 
clinical practice.

CONCLUSION

Although	our	results	require	further	cross-	validation,	they	suggest	
that obtaining a single scalar functional imaging biomarker of cogni-
tive processing speed and CI in general is feasible and may provide 
an important diagnostic tool to assess performance decline due to 
CI and fatigue.
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