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INTRODUC TION

Multiple sclerosis (MS) is a chronic inflammatory disease of the cen-
tral nervous system (CNS) with features of acute demyelinating as 

well as chronic active inflammation in the white and grey matter. In 
contrast to active demyelinating lesions with blood–brain barrier 
impairment, chronic active lesions are characterized by proinflam-
matory microglia/macrophages at their edges that accumulate iron 
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Abstract
Background and purpose: Paramagnetic rim lesions (PRLs) are chronic active lesions 
associated with a severe disease course in multiple sclerosis (MS). This study was un-
dertaken to investigate an association between retinal layer thinning (annualized loss of 
peripapillary retinal nerve fiber layer [aLpRNFL] and ganglion cell–inner plexiform layer 
[aLGCIPL]) and PRLs in patients with MS (pwMS).
Methods: In	 this	 study,	 pwMS	with	 brain	magnetic	 resonance	 imaging	 and	 ≥2	 optical	
coherence tomography scans were included. Cox proportional hazard regression models 
were	performed	using	progression	independent	of	relapse	activity	(PIRA)	as	the	depend-
ent variable, and aLpRNFL, aLGCIPL, or the number of PRLs as independent variables, 
adjusted for covariates.
Results: We	analyzed	data	from	97	pwMS	(mean	age = 35.2 years	[SD = 9.9],	71.1%	female,	
median	disease	duration = 2.3 years	[interquartile	range	= 0.9–9.0]).	The	number	of	PRLs	
was	associated	with	aLpRNFL	and	aLGCIPL.	PIRA	was	observed	in	18	(18.6%)	pwMS,	with	
aLpRNFL (hazard ratio [HR] = 1.44	per	%/year),	aLGCIPL	(HR = 1.61	per	%/year),	and	the	
number	of	PRLs	(HR = 1.24	per	PRL)	being	associated	with	increased	risk	of	PIRA.
Conclusions: The number of PRLs is associated with inner retinal layer thinning and in-
creased	risk	of	PIRA.	A	combination	of	PRLs	and	retinal	layer	thinning	could	serve	as	a	
surrogate for pwMS at highest risk of disability progression.
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[1, 2]. These lesions can be visualized as so- called paramagnetic 
rim lesions (PRLs) by iron- sensitive magnetic resonance imaging 
(MRI), that is, susceptibility- weighted imaging (SWI) or quantita-
tive susceptibility mapping [3].	 PRLs	 occur	 in	 up	 to	 60%	 of	 pa-
tients with MS (pwMS), reaching their highest prevalence in late 
relapsing–remitting MS [4].	Although	the	exact	pathophysiological	
mechanism contributing to their development remains unclear [5], 
PRLs are associated with a profound axonal transection, as re-
flected by prolonged intra-  and perilesional T1 relaxation times 
[6–8], and also with progression independent of relapse activity 
(PIRA)	[9], a critical determinant of disability accumulation driving 
long- term prognosis in MS.

Inner retinal layer thinning, as measured by optical coherence 
tomography	(OCT),	 is	an	emerging	biomarker	of	neuroaxonal	dam-
age in MS [10]. Peripapillary retinal nerve fiber layer (pRNFL) and 
ganglion cell–inner plexiform layer (GCIPL) thickness are both robust 
indicators of neuroaxonal degeneration in MS [11], and their thinning 
is associated with an increased risk of disability progression includ-
ing	PIRA	 [12–15]. Recently, we reported a cross- sectional associa-
tion of the number of PRLs with pRNFL and GCIPL thickness [16], 
indicating that PRL load transfers to more pronounced neuroaxonal 
damage	as	reflected	by	OCT.

Here, we aimed to investigate whether the number of PRLs is 
also associated with longitudinal degree of inner retinal layer thin-
ning in MS.

METHODS

Patients and definitions

For this longitudinal retrospective study, patients from the Vienna 
MS database (VMSD) were included based on following inclusion 
criteria:	(i)	relapsing	onset	MS	diagnosis	according	to	the	2017	ver-
sion of the McDonald criteria [17];	(ii)	age	≥ 18 years;	(iii)	availability	
of	 T1-	,	 fluid-	attenuated	 inversion	 recovery	 (FLAIR)-	,	 and	 SWI-	
based	MRI	scan	at	3	T;	and	(iv)	availability	of	an	OCT	scan	<90 days	
from	MRI	and	at	 least	one	follow-	up	OCT	scan	≥12 months	 later	
[18]. To avoid effects of treatment change on retinal layer thin-
ning, we included only patients without disease- modifying therapy 
(DMT)	change	within	3 months	before	baseline	and	during	follow-
 up [19]. The selection process based on the inclusion and exclusion 
criteria is shown in Figure 1. Data on Expanded Disability Status 
Scale (EDSS) and relapses were obtained at the time of MRI and 
at	every	clinical	visit	at	3-		or	6-	month	 intervals	for	up	to	5 years	
[20].	 A	 relapse	 was	 defined	 as	 patient-	reported	 symptoms	 and	
objectively confirmed neurological signs typical of an acute CNS 
inflammatory	 demyelinating	 event	with	 duration	 of	 at	 least	 24 h	
in the absence of fever or infection and separated from the last 
relapse	by	at	 least	30 days	 [21]. Relapses were further classified 
as either resulting or not resulting in a subsequent EDSS wors-
ening	sustained	6 months	after	relapse	 (relapse-	associated	wors-
ening)	 compared	 to	 the	 last	 EDSS	 before	 the	 relapse.	 PIRA	was	

defined	as	 a	 confirmed	EDSS	 increase	 (≥1.5/1.0/0.5	points	 from	
baseline	score	of	0/1.0–5.5/≥6.0	points)	with	no	clinical	attack	in	
the	30 days	before	or	after	the	EDSS	increase	and	confirmed	after	
6 months	[22, 23].

The patients' DMT status was classified as follows: (i) “no DMT,” 
defined as patients receiving no DMT; (ii) “moderately effective 
DMT (M- DMT),” defined as patients receiving either interferon- beta 
preparations, glatiramer acetate, dimethyl fumarate, or terifluno-
mide; or (iii) “highly effective DMT (H- DMT),” defined as patients 
receiving either natalizumab, fingolimod, siponimod, ponesimod, 
ozanimod, alemtuzumab, cladribine, ocrelizumab, ofatumumab, or 
rituximab.

Optical coherence tomography

OCT	 imaging	 was	 performed	 by	 experienced	 neuro-	
ophthalmologists	 at	 the	 Department	 of	 Ophthalmology	 and	
Optometry	 using	 the	 same	 spectral-	domain	 OCT	 (Spectralis	
OCT,	 Heidelberg	 Engineering,	 Heidelberg,	 Germany;	 Heidelberg	
eye explorer software version 5.4.8.0) without pupil dilatation in 
a dark room on both eyes of each patient. For pRNFL measure-
ment,	a	custom	12°	(3.4 mm)	ring	scan	centered	on	the	optic	nerve	
head	was	used	(1536	A-	scans,	automatic	real-	time	tracking	[ART]:	
100 averaged frames) [24].	 For	GCIPL	measurement,	 a	20° × 20°	
macular	volume	scan	(512	A-	scans,	25	B-	scans,	vertical	alignment,	
ART:	16	averaged	frames)	centered	on	the	macula	was	performed.	
GCIPL thickness was defined as the mean layer thickness of the 

F I G U R E  1 Flowchart	of	patients'	selection	based	on	the	
inclusion and exclusion criteria. MRI, magnetic resonance imaging; 
MS,	multiple	sclerosis;	OCT,	optical	coherence	tomography;	
ON,	optic	neuritis;	PwMS,	patients	with	MS;	VMSD,	Vienna	MS	
database.
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four inner and outer quadrants of the circular grid centered around 
the foveola corresponding to the 3-  and 6- mm rings as defined by 
the Early Treatment Diabetic Retinopathy Study [25]. Image pro-
cessing was conducted semiautomatically using the built- in pro-
prietary	 software	 with	 manual	 correction	 of	 obvious	 errors.	 All	
examinations	were	checked	for	sufficient	quality	using	OSCAR-	IB	
criteria [26].	OCT	scans	that	 lacked	macula	scan	or	did	not	fulfill	
OSCAR-	IB	criteria	were	excluded	from	the	final	analysis.

Thicknesses of GCIPL and pRNFL were calculated as the mean 
of the values for both eyes. Patients with a history of unilateral 
optic	neuritis	(ON)	<6 months	before	baseline	were	excluded	from	
the	 study.	 Eyes	with	 a	 history	 of	ON	≥6 months	 before	 baseline	
were	eligible	for	inclusion.	Eyes	suffering	ON	during	the	observa-
tion period were excluded from the study, and only the values of 
eyes	without	ON	during	the	observation	period	were	used	for	cal-
culation of retinal thinning in the analyses. To identify subclinical 
ON	during	the	course	of	the	study,	we	used	interocular	asymmetry	
with	cutoff	values	of	≥5 μm	for	pRNFL	and	≥4 μm for GCIPL [27,	
28]. In these cases, we used only the eye with the higher value. In 
this way, all parameters used for statistical analyses are not under-
lying	 intereye	 interactions.	Annualized	 loss	of	pRNFL	and	GCIPL	
(aLpRNFL, aLGCIPL) was calculated by individual linear regression 
models as the slope of the regression line best fitted to all mea-
surements over the observation period. Patients with diagnoses 
of	ophthalmologic	(i.e.,	myopia	greater	than	−4	diopters,	optic	disc	
drusen, glaucoma), neurologic, or drug- related causes of retinal 
damage not attributable to MS were excluded [29].	 All	 patients	
were screened for the presence of macular edema and excluded 
if	macular	edema	occurred.	The	investigators	performing	the	OCT	
were blinded to clinical parameters and vice versa. The quantita-
tive	OCT	study	 results	were	 reported	using	 the	 revised	Advised	
Protocol	for	OCT	Study	Terminology	and	Elements	(APOSTEL	2.0)	
recommendations [30].

MRI acquisition

All	 cranial	MRI	 scans	between	January	2015	and	December	2023	
were performed on a Siemens (Erlangen, Germany) Magnetom 
3- T MRI system, using a 64- channel radio frequency coil. Isovoxel 
(1 mm3)	 three-	dimensional	 FLAIR	 (repetition	 time	 [TR] = 6000 ms,	
echo	time	[TE] = 288 ms,	inversion	time	[TI] = 2100 ms),	T1-	weighted	
images	(TE = 2,16 ms,	TR = 1670 ms,	flip	angle = 15°;	before	and	after	
gadolinium [Gd]- based contrast administration), and SWI sequences 
(TE = 40 ms,	 TR = 49 ms,	 image	 matrix = 224 × 256,	 slices = 80,	 slice	
thickness = 2 mm)	were	acquired	consecutively.

Evaluation of MRI lesions

Periventricular, juxtacortical, deep white matter, and infratentorial 
lesions were analyzed by two raters experienced in MS imaging in 
consensus	(L.Ho.,	L.Ha.).	PRLs	were	defined	as	FLAIR-	hyperintense	

lesions that were partially or completely surrounded by a pro-
nounced and distinct SWI- hypointense rim. Gd- enhancing lesions 
were excluded from the analysis. Patients were grouped according 
to	the	number	of	PRLs	(0	PRLs,	1–3	PRLs,	and	≥4	PRLs)	[31].

Standard protocol approvals, registrations, patient 
consents, and reporting

The study was approved by the ethics committee of the Medical 
University	of	Vienna	(ethical	approval	number:	1257/2022).	Because	
this was a retrospective study, the requirement for written informed 
consent from study participants was waived by the ethics commit-
tee. This study adheres to the reporting guidelines outlined within 
the	STROBE	(Strengthening	the	Reporting	of	Observational	Studies	
in Epidemiology) Statement.

Statistics

Statistical analysis was performed using SPSS 26.0 (SPSS, Chicago, 
IL,	USA).	Categorical	variables	are	expressed	in	frequencies	and	per-
centages, and continuous variables as mean and SD or median and 
interquartile range (IQR) as appropriate. Continuous variables were 
tested for normal distribution by the Kolmogorov–Smirnov test with 
Lilliefors correction.

Multivariate linear stepwise regression models were fitted 
with	OCT	parameters	(aLpRNFL,	aLGCIPL)	as	dependent	variables	
and the number of PRLs as an independent variable, adjusted for 
age, sex, disease duration, EDSS at baseline, DMT group, T2 lesion 
count, and visual pathway lesion count. Multivariate Cox propor-
tional	hazard	regression	models	were	performed	using	PIRA	as	the	
dependent variable and aLpRNFL, aLGCIPL, or the number of PRLs 
as independent variables, adjusted for age, sex, disease duration, 
EDSS at baseline, DMT group, T2 lesion count, and visual pathway 
lesion count.

Regression models were checked for collinearity by variance in-
flation factor (VIF) excluding all variables if the VIF was >2.0, corre-
sponding to an R2 of 0.50. Missing values were handled by multiple 
(20 times) imputation using the missing not at random approach with 
pooling of estimates according to Rubin's rules [32].

Prespecified sensitivity analyses to determine the potential 
confounding influence were performed with the same statistical 
analysis setup excluding patients with secondary progressive MS 
(SPMS).

The significance level was set at a two- sided p- value < 0.05.	All	
multiple analyses were corrected using the Bonferroni method.

RESULTS

In	 all,	 97	 pwMS	 were	 included	 (mean	 age = 35.2 years	 [SD = 9.9],	
71.1%	 female,	 median	 disease	 duration = 2.3 years	 [IQR = 0.9–9.0],	
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median	 EDSS = 2.0	 [IQR = 0–3.0]).	 Median	 number	 of	 PRLs	 was	 1	
(range = 0–10),	with	42	(43.3%),	46	(47.4%),	and	9	(9.3%)	pwMS	hav-
ing	 0	 PRLs,	 1–3	 PRLs,	 and ≥4	 PRLs,	 respectively.	Median	 number	
of	OCT	scans	was	3	 (range = 2–6)	over	a	median	follow-	up	time	of	
1.4 years	 (IQR = 1.0–2.1),	with	 52	 (53.6%)	 patients	 having	 ≥3	OCT	
scans. Characteristics of the study cohort are shown in Table 1.

Inner retinal layer thinning

Mean	 aLpRNFL	 and	 aLGCIPL	 were	 −0.60%/year	 (SD = 1.50)	 and	
−0.50%/year	 (SD = 1.08),	 respectively.	 pwMS	 with	 PRLs	 had	 sig-
nificantly	 higher	 aLpRNFL	 (−1.23%/year	 [SD = 1.42]	 vs.	 0.09%/
year	 [SD = 1.25],	p < 0.001)	 and	 aLGCIPL	 (−0.88%/year	 [SD = 1.20]	
vs.	–0.07%/year	[SD = 0.72],	p < 0.001)	compared	to	pwMS	without	
PRLs. In a multivariate linear regression model, aLpRNFL was associ-
ated with the number of PRLs (β = −0.36,	95%	confidence	 interval	
[CI] =	 –0.32	 to	−0.26,	p < 0.001),	 explaining	10.0%	of	 its	 variance	
(Table 2, Figure 2). Similarly, aLGCIPL was associated with the num-
ber of PRLs (β = −0.50,	95%	CI	=	–0.31	to	−0.27,	p < 0.001),	explain-
ing	29.3%	of	its	variance	(Table 2, Figure 2).

Progression independent of relapse activity

During	a	median	interval	of	24.5	(range = 12–85)	months	from	base-
line	to	the	last	follow-	up,	PIRA	was	observed	in	18	(18.6%)	pwMS.	
Patients	 with	 PIRA	 were	 older	 and	 had	 higher	 EDSS	 at	 baseline	
(Table S1). In the regression model, retinal layer thinning (aLpRNFL: 
hazard ratio [HR] = 1.44	per	%/year,	95%	CI = 1.34–1.56,	p < 0.001;	
aLGCIPL:	 HR = 1.61	 per	 %/year,	 95%	 CI = 1.47–1.77,	 p < 0.001)	
and	 the	 number	 of	 PRLs	 (HR	 1.24	 per	 PRL,	 95%	 CI = 1.17–1.32,	
p < 0.001)	were	both	associated	with	an	 increased	 risk	of	PIRA.	 In	
a	combination	with	≥4	PRLs,	aLpRNFL	≥ 1.0%/year	(HR = 4.70,	95%	
CI = 3.51–6.29,	p < 0.001)	and	aLGCIPL	≥ 1.0%/year	(HR = 8.06,	95%	
CI = 6.11–10.64,	 p < 0.001)	were	 associated	with	 an	 approximately	
five-		and	eightfold	increased	risk	of	PIRA,	respectively	(Table 3).

Prespecified sensitivity analyses excluding patients with SPMS 
did not significantly alter the overall results or impact individual 
variables.

DISCUSSION

Here, we aimed to longitudinally investigate the association between 
PRLs and the degree of inner retinal layer thinning in MS. Two main 
findings emerge from our study: (i) the number of PRLs is associated 
with subsequent inner retinal layer thinning and (ii) PRLs alone or in 
a combination with inner retinal layer thinning are associated with an 
up	to	eightfold	increased	risk	of	PIRA	in	the	following	5 years.

In the past decade, PRLs have gained particular interest as a new 
imaging biomarker of chronic active MS, often referred to as the 
“smoldering” disease. PRLs appear to be highly neurodestructive by 
featuring chronic inflammation with remyelination failure, leading to 
pronounced myelin loss and axonal degeneration within and around 
the PRLs [33, 34]. They have been shown to be typically larger than 
the remaining lesions and to expand slowly over time [1], losing their 
iron rim and ceasing to expand in the process [7]. Their presence 
is associated with a more severe disease course [35], higher serum 
neurofilament light chain levels [36,	 37], and faster brain atrophy 
rates [35, 36]. The characteristics of PRLs were initially studied on 

TA B L E  1 Characteristics	of	the	study	cohort	at	baseline.

Characteristic Study cohort, n = 97

Demographics and clinical characteristics

Femalea 69	(71.1)

Age,	yearsb 35.2 (9.9)

Disease duration, yearsc 2.3 (0.9–9.0)

EDSSc 2.0 (0–3.0)

RRMSa 89 (91.8)

History	of	unilateral	ONa 50 (51.5)

DMT

Time on DMT at baseline, 
monthsc

5 (3–14)

No DMTa 8 (8.2)

M- DMTa 42 (43.3)

Interferon- beta preparations 7	(7.2)

Glatiramer acetate 10 (10.3)

Dimethyl fumarate 21 (21.6)

Teriflunomide 4 (4.1)

H- DMTa 47	(48.5)

S1PM 15 (15.5)

Cladribine 15 (15.5)

Natalizumab 5 (5.2)

Anti-	CD20	mAbs 12 (12.4)

MRI data

Presence of PRLsa 55	(56.7)

Number of PRLsd 1 (0–10)

T2 lesion countc 18 (10–39)

Visual pathway lesion countc 3 (1–5)

OCT	data

Time	from	MRI	to	OCT,	daysd 75	(0–90)

pRNFL, μmb 96.4 (11.4)

GCIPL, μmb 67.4	(6.0)

Abbreviations:	Anti-	CD20	mAbs,	monoclonal	antibodies	against	cluster	
of differentiation 20; DMT, disease- modifying therapy, EDSS, Expanded 
Disability Status Scale; GCIPL, ganglion cell–inner plexiform layer; H- 
DMT, highly effective DMT; M- DMT, moderately effective DMT; MRI, 
magnetic	resonance	imaging;	OCT,	optical	coherence	tomography;	ON,	
optic neuritis; PRL, paramagnetic rim lesion; pRNFL, peripapillary retinal 
nerve fiber layer; RRMS, relapsing–remitting multiple sclerosis; S1PM, 
sphingosine- 1- phosphate receptor modulator.
an	(%).
bMean (SD).
cMedian (interquartile range).
dMedian (range).
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7-	T	MRI	[31], but can also be reliably detected on 3- T and even 1.5- T 
MRI [38], making them a useful biomarker of chronic active MS, po-
tentially even for routine clinical use.

Here, we show that PRLs likely lead to faster inner retinal layer 
thinning, a dynamic process that appears to be age- dependent, with 
faster rates occurring in younger patients [39], which indicates that 
the period of greatest adaptive immune- mediated inflammatory ac-
tivity	is	also	the	period	of	the	greatest	neuroaxonal	loss.	As	subclin-
ical neuroaxonal loss appears to occur early in MS due to residual 
neuroaxonal reserve [40], the prognostic value of PRL is likely high-
est early in the disease course (PRLs can be already found in up to 
50%	of	patients	with	 clinically	 isolated	 syndrome	 (CIS))	 to	 stratify	
patients at higher risk of disability progression, which is the critical 
determinant of long- term prognosis in MS.

Although	 the	 pathophysiology	 underlying	 inner	 retinal	 layer	
thinning in MS is not entirely clear, the currently prevailing concept 
involves retrograde (Wallerian) degeneration secondary to axonal 
damage occurring anywhere in the brain [41].	Although	it	was	pre-
viously thought that only lesions in the visual pathway contribute to 
inner retinal layer thinning, we show that PRLs, regardless of their 

location in the CNS, are also associated with the former, which is con-
sistent with our recent study showing that PRLs lead to pronounced 
periplaque white matter damage [8]. Thus, changes in the periplaque 
white matter, or even potentially normal- appearing white matter 
of patients with PRLs, may contribute to increased inflammatory- 
driven neuroaxonal loss, reflected by faster inner retinal layer thin-
ning, and thus drive the irreversible disability progression.

This is particularly important because the classic dichotomous 
division of clinical phenotypes into relapsing and (secondary) pro-
gressive MS has recently been challenged, and the currently widely 
accepted concept is that the clinical course of MS is part of a con-
tinuum in which inflammatory activity predominates in the early 
stages of the disease but can also occur in the later stages and vice 
versa (smoldering disease). Recent studies have confirmed that dis-
ability progression can be observed even in patients with relapsing 
MS	without	clinical	relapses	(PIRA)	[42, 43]. This progression, some-
times	ill-	suitedly	termed	“silent,”	occurs	in	approximately	5%	of	pa-
tients	with	 relapsing	MS	per	year,	accounts	 for	at	 least	50%	of	all	
disability accrual events in MS [44], and is reflected in faster brain 
and spinal cord atrophy rates [9] as well as retinal layer thinning [15], 

TA B L E  2 Multivariate	linear	regression	models.

aLpRNFL aLGCIPL

β 95% CI p β 95% CI p

PRLs −0.36 −0.32,	−0.26 <0.001 −0.50 −0.31,	−0.27 <0.001

Age 0.24 0.03, 0.04 <0.001 0.07 0.01, 0.01 0.003

Sex 0.08 0.13, 0.40 <0.001 0.04 0.01, 0.18 0.039

Disease duration 0.13 0.02, 0.04 <0.001 0.06 0.01, 0.02 0.009

EDSS at baseline −0.10 −0.16,	−0.05 <0.001 −0.16 −0.15,	−0.09 <0.001

DMT group 0.06 0.04, 0.23 0.005 0.05 0.02, 0.15 0.008

T2 lesion count −0.05 −0.01,	0.00 0.065 0.05 0.00, 0.01 0.102

Visual pathway lesion count 0.05 −0.01,	0.05 0.142 −0.03 −0.03,	0.01 0.330

ΔR2 = 0.100, p < 0.001 ΔR2 = 0.293, p < 0.001

Note: Bold values denote a significant association between PRLs and inner retinal layer thinning, along with other covariates included in the model.
Abbreviations:	aLGCIPL,	annualized	loss	of	ganglion	cell–inner	plexiform	layer;	aLpRNFL,	annualized	loss	of	peripapillary	retinal	nerve	fiber	layer;	CI,	
confidence interval; DMT, disease- modifying therapy; EDSS, Expanded Disability Status Scale; PRL, paramagnetic rim lesion.

F I G U R E  2 Association	between	the	
number of paramagnetic rim lesion (PRLs) 
and annualized loss of peripapillary 
retinal nerve fiber layer (aLpRNFL; a) 
and annualized loss of ganglion cell–
inner plexiform layer (aLGCIPL; b). CI, 
confidence interval.
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suggesting that neurodegenerative processes may start much earlier 
than previously thought [22].

In line with this, we show that PRLs are also associated with an 
increased	risk	of	PIRA,	most	likely	as	a	result	of	the	aforementioned	
dynamic changes in PRLs and their surrounding white matter, which 
may be the ultimate driver of disability accrual. In our study, a com-
bination	of	both	inner	retinal	layer	thinning	and	the	presence	of	≥4	
PRLs	was	associated	with	an	up	to	eightfold	increased	risk	of	PIRA,	
providing a promising stratification tool for future clinical trials to 
identify patients who may benefit most from tailored therapeutic 
regimens.

Some limitations of this study must be acknowledged. First, the 
sample size was relatively small, and the retrospective study design 
introduced a number of potential biases, although these were miti-
gated by the detailed and standardized characterization of patients 
within the VMSD [18]. Thus, replication of our data in an indepen-
dent cohort is needed for confirmation. Second, the effect of DMT 
on inner retinal layer thinning was grouped into M- DMT and H- 
DMT, as the available sample size was insufficient to allow further 

subgroup	 analyses.	 Third,	 OCT	 scans	 were	 performed	 at	 slightly	
irregular intervals, which was partially overcome by calculating aL-
pRNFL and aLGCIPL using linear regression models. In addition, as 
retinal layer atrophy, similar to brain atrophy, is not specific for MS 
and may be caused by other conditions such as diabetic maculopa-
thy or compressive optic neuropathy, the applicability of the results 
is limited to the population without any confounding comorbidities. 
Finally, some patients had a relatively short clinical follow- up, and 
PIRA	was	detected	in	only	18.6%	of	patients,	limiting	complex	sta-
tistical analysis.

In conclusion, we found that PRLs are associated with faster 
inner retinal layer thinning in MS, providing additional evidence that 
patients with PRLs are exposed to a more extensive neurodegener-
ative process. Thus, we emphasize the importance of early identifi-
cation	of	risk	for	PIRA	by	a	combination	of	paraclinical	biomarkers	
to prevent irreversible tissue loss and to stratify patients who could 
benefit most from neuroprotective agents.
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