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Abstract
Gut microbiome dysbiosis is associated with gestational diabetes mellitus (GDM), and its modulation represents 
a promising approach for enhancing glycemic control. In this study, we aimed to discover specific alterations in 
the gut microbiome through lifestyle management. We performed metagenome sequencing on fecal samples 
and measured short-chain fatty acid (SCFA) in plasma samples from 27 well-controlled GDM pregnancies before 
and after glycemic control. At the same time, 38 normal glucose tolerance (NGT) samples served as controls. 
Additionally, we employed two-sample Mendelian Randomization (MR) to validate our findings against Genome-
Wide Association Study (GWAS) database. Our dynamic analysis revealed Bifidobacterium genus increased in 
GDM patients after intervention. The MR analysis confirmed that the family of Bifidobacteriaceae (OR 0.929, 95% 
CI, 0.886–0.975; P = 0.003) was the only negatively associated family with GDM. Further analysis indicated the 
increased abundance of Bifidobacterium species were negatively correlated with glycemic traits (Spearman rho 
mean − 0.32 ± 0.34) but positively correlated with plasma SCFA levels (Spearman rho mean 0.24 ± 0.19). Functional 
analysis revealed that the quorum-sensing pathway had the strongest effect on the ability of Bifidobacterium to 
promote glucose homeostasis (Spearman rho = -0.34), suggesting its role in regulating intestinal microbiota. Finally, 
the multivariable MR analysis demonstrated that two pathways, COLANSYN PWY and PWY 7323, responsible for cell 
surface compound synthesis in gram-negative bacteria, mediated 14.83% (P = 0.017) and 16.64% (P = 0.049) of the 
protective effects of Bifidobacteriaceae against GDM, respectively. In summary, Bifidobacterium is an effective gut 
microbiota regulator for GDM-related glucose homeostasis.
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Introduction
Gestational diabetes mellitus (GDM) is a hyperglyce-
mic condition with onset during pregnancy [1] and its 
increasing prevalence has raised public concerns [2, 3]. 
The Hyperglycemia and Adverse Pregnancy Outcome 
(HAPO) study revealed that gestational hyperglycemia 
is positively correlated with various negative outcomes 
including large-for-gestational-age infants, cesarean sec-
tion, and neonatal hypoglycemia [4]. Importantly, women 
with GDM have an increased risk of developing type 2 
diabetes and cardiovascular diseases later in life [5, 6] and 
their offspring also experience increased long-term risks 
of metabolic disorders, obesity and cardiovascular com-
plications [7, 8]. Therefore, glycemic control in individu-
als with GDM is imperative for improving maternal and 
neonatal pregnancy outcomes.

Currently, the first-line interventions are medical 
nutrition therapy (MNT) and physical exercise [2, 9]. 
If conservative management fails, medical therapy is 
needed, leading to extra cost, insulin injection pain, 
the risk of hypoglycemia and poor compliance [10, 11]. 
Moreover, evidence of associations between gut micro-
biome dysbiosis and the prediction [12], development 
[13], progression [14, 15], and prognosis [16] of GDM 
has accumulated. Therefore, auxiliary approaches such 
as gut microbiome modulation may enhance the effects 
of nutrition and physical exercise and improve glycemic 
control. For instance, a previous randomized controlled 
trial has demonstrated the dietary supplementation of 
the potential health-related bacteria Lactobacillus rham-
nosus HN001 (6 × 109 colony-forming units, n = 184) for 
14–16 weeks reduced GDM prevalence in 26–28 weeks’ 
gestation (relative rates 0.59, 95% CI 0.32–1.08, P = 0.08), 
compared to a placebo consuming maize-derived malto-
dextrin (n = 189) [17]. Moreover, studies have focused on 
dynamic changes in the gut microbiome during preg-
nancy and its associations with GDM-related glucose 
metabolism [18]. For example, a recent study revealed 
that Bacteroides plebeius contributed to SCFA eleva-
tion from first to second pregnant trimester through the 
ANAGLYCOLYSIS-PWY pathway and increased GDM 
predictive performance [18]. Inspired by the above stud-
ies, dynamic research on the gut microbiome before and 
after successful glycemic control of GDM could help 
elucidate the interplay between the gut microbiome and 
host glucose homeostasis and provide a potential tar-
geted intervention reference.

Besides, the causal relationship between the gut micro-
biota and GDM remains unclear. Tow-sample Mendelian 
randomization (MR) uses genetic variations as instru-
mental variables (IVs) to evaluate causal associations 
between exposures and outcomes [19]. Therefore, MR 
could facilitate the investigation of the causal relationship 

between the gut microbiota and GDM, providing genetic 
evidence for gut microbiome therapy.

In this study, we enrolled NGT and GDM pregnancies 
at the second (T2, before GDM diagnosis) and third (T3, 
after glycemic control) trimesters and collected both fecal 
and plasma samples. The glycemic traits of our GDM 
cohort were controlled effectively, belonging to the GDM 
A1 group (A1: well-controlled GDM by lifestyle man-
agement; A2: GDM requiring medication) [2]. Through 
integrative analysis of gut metagenome sequencing and 
metabolic data, we explored the dynamic changes in 
the gut microbiota in GDM patients and the underlying 
mechanisms contributing to successful glycemic control. 
Further, we performed MR and mediation analyses using 
summary statistics from genome-wide association stud-
ies (GWASs) of the gut microbiota, gut bacterial path-
ways and GDM to validate the discovered associations.

Materials and methods
Study design and sample collection
We conducted a nested case‒control study at Peking 
University First Hospital between October 2017 and July 
2019. Pregnant women were enrolled in the first trimes-
ter and followed up throughout the entire pregnancy. Eli-
gible participants had singleton fetuses and were able to 
provide informed consent. The major exclusion criteria 
included a history of type 1 or 2 diabetes, gastrointestinal 
diseases, preeclampsia, hypertension disorders, smoking 
or alcohol consumption habits, and long-term medicine 
or prebiotic use. Together, 38 NGT and 30 GDM preg-
nancies were enrolled in the second trimester. Our goal 
was to focus on GDM A1 patients whose glucose lev-
els were well controlled without the use of exogenous 
medication; therefore, we excluded 3 GDM patients who 
were receiving medication. Ultimately, our study design 
included 38 NGT and 27 GDM A1 patients. Conse-
quently, we collected 130 fecal and plasma samples from 
these 65 patients during the T2 and T3 stages.

The samples were collected as previously described 
according to standard operating procedures [20]. Briefly, 
the middle of the fecal core (2–3 g) was self-collected at 
home and placed into a labeled sterile fecal sampling tube 
(Sarstedt, Germany, 80.734.311) containing RNA storage 
reagent (Tiangen, China, DP409-02). The fecal samples 
were transported to the hospital within 3  h. Maternal 
fasting blood was drawn in prechilled EDTA tubes by 
well-trained staff and centrifuged (2000 rpm, 20 min) to 
prepare the plasma. The feces and plasma were aliquoted 
and stored at -80 °C until laboratory analysis. This project 
was approved by the Ethics Committee of Peking Univer-
sity First Hospital (V2.0/201504.20), and informed con-
sent was obtained from all participants.
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Diagnosis and subtypes of gestational diabetes mellitus
According to the International Association of Diabe-
tes and Pregnancy Study Groups (IADPSG) criteria, the 
75 g oral glucose tolerance test (OGTT) was performed 
between 24 and 28 weeks of gestation. GDM was diag-
nosed if any single threshold value was met or exceeded 
(fasting-5.1 mmol/L, 1 h-10.0 mmol/L, 2 h-8.5 mmol/L). 
All the pregnancies diagnosed in our hospital were 
directed toward lifestyle treatment and self-glucose mon-
itoring. With intervention, GDM pregnancies could be 
further categorized into two subtypes: A1, which is well-
controlled through lifestyle management, and A2, which 
requires medication.

Anthropometrics and biochemical evaluation
Clinical information such as demographic factors (mater-
nal age; prepregnancy weight and height) and bio-
chemical examination results (white blood cell count; 
neutrophil percentage, OGTT) were collected from med-
ical records. The fasting glucose levels, hemoglobinA1c 
(HbA1c), insulin levels and total triglyceride (TG) levels 
in the second (T2) or third trimester (T3) were obtained 
from medical records or remeasured in our hospital. 
Maternal prepregnancy BMI (pre-BMI) was calculated as 
weight divided by height squared (kg/m2). The area under 
the curve (AUC) for glucose was calculated following the 
trapezoidal rule.

Measurement of SCFAs by LC‒MS/MS
SCFA contents were measured in the plasma. Briefly, 
100 µl of plasma was thawed at 4 °C and mixed with 400 
µL of cold methanol/acetonitrile (1:1, v/v) to remove the 
protein. The mixture was centrifuged for 20 min (14000 
× g, 4  °C). The supernatants were dried in a vacuum 
centrifuge, resuspended in 100 µL of acetonitrile/water 
(1:1, v/v) and adequately vortexed. After centrifugation 
for another 15  min (14000 × g, 4  °C), the supernatants 
were collected for LC‒MS/MS analysis. Analyses were 
performed using a UHPLC (1290 Infinity LC, Agilent 
Technologies, Palo Alto, CA, USA) coupled to a QTRAP 
(AB Sciex 5500) using an ACQUITY UPLC BEH Amide 
column (2.1*100 mm, 1.7 μm, Waters MS Technologies, 
Manchester, UK). MS/MS analysis (MRM) was per-
formed in ESI negative mode. Data acquisition and pro-
cessing were accomplished using Multiquant software 
(AB SCIEX, Boston, MA, USA).

DNA extraction and metagenomic sequencing
Total bacterial DNA was extracted from the fecal samples 
using a QIAamp Fast DNA Stool Mini Kit (QIAGEN, 
Hilden, Germany) according to the manufacturer’s stan-
dards. The genomic DNA was randomly sonicated into 
fragments of appropriately 350 bp for Illumina sequenc-
ing on a NovaSeq 6000 platform with a 150 bp paired-end 

sequencing strategy. The libraries were analyzed for size 
distribution using an Agilent 2100 Bioanalyzer and quan-
tified with real-time PCR.

Metagenomic sequencing data analysis
The quality control process of whole-genome shot-
gun sequencing data was performed by KneadData 
(https:/​/bitbuc​ket.org​/bio​bakery/kneaddata). After ​q​u​a​
l​i​t​y control, the taxonomic and functional profiles were 
determined by MetaPhlAn 3 and HUMAnN 3 [21], 
respectively. The functions were then annotated to path-
ways according to the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database.

We identified the microbiome biomarkers by LEfSe 
(version 1.1.01) with Linear discriminant analysis (LDA) 
scores > 2.0 and linear mixed models. For linear mixed 
models, the influences of pre-BMI and age were adjusted 
with MaAsLin2 (version 1.15.1) R package [22].

To identify the hub species associated with GDM-
related gut microbiome dysbiosis, weighted gene coex-
pression network analysis (WGCNA) was performed 
using the R package WGCNA (version 1.72-5) [23]. The 
co-occurrence network correlated with Bifidobacterium 
was visualized by Cytoscape 3.9.1 (http://cytoscape.org/).

SNP calling and filtering
Two tools, GATK (version 4.4.0.0) [24] and VarScan2 
(version 2.3.9) [25], were applied to identify SNPs in the 
metagenome sequencing data. After data quality con-
trol process by KneadData and based on the reference 
genome of Faecalibacterium prausnitzii. (reference strain 
KLE1255, GenBank accession no. GCA_000166035.1), 
we conducted alignment using BWA-MEM [26] and fil-
tered duplicates with Picard ​(​​​h​t​​t​p​:​​/​/​b​r​​o​a​​d​i​n​s​t​i​t​u​t​e​.​g​i​t​h​u​b​
.​i​o​/​p​i​c​a​r​d​/​​​​​)​.​​

For GATK, we used the HaplotypeCaller module 
(parameters: --do-not-run-physical-phasing --max-alter-
nate-alleles 2 --sample-ploidy 1) and generated the GVCF 
files. For Varscan2, SAMtools (version 1.17) [27] was 
used to generate “mpileup” files from the SAM-format-
ted alignment files. Then, mpileup files were employed as 
input files [27] for VarScan2 to further call SNPs (param-
eters: pileup2snp min-coverage 10, p value 0.05, min-avg-
qual15). The major SNPs (≥ 0.5 mutated alleles) detected 
by both tools were selected.

Phylogenetic tree construction
First, genome regions with > 20% samples not having 
valid coverage (≥ 10× depth) were discarded. The nucle-
otides at SNP sites from the samples were subsequently 
extracted. Phylogenetic trees were constructed based 
on whole-genome level aligned SNPs using randomized 
axelerated maximum likelihood (RAxML) v8.2.9 (100 
bootstrap replicates), with a GTR model of nucleotide 

https://bitbucket.org/biobakery/kneaddata
http://cytoscape.org/
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
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substitution, γ-distributed rates among sites, and Felsen-
stein correction for ascertainment bias [27, 28]. Trees 
were drawn with the ggtree (version 3.6.2) R package 
[28].

GWAS data source
The summary level of GDM GWAS data was obtained 
from the 10th release of the FinnGen project (European 
ancestry, released on December 18, 2023, ​h​t​t​p​s​:​/​/​r​1​0​.​f​i​
n​n​g​e​n​.​f​i​/​​​​​)​. The 10th FinnGen GDM study summarized 
21,306,157 SNPs based on 14,718 GDM individuals and 
215,592 GDM individuals [29, 30]. The detailed project 
information was described in a previous study [29]. Sum-
mary data on the gut microbiota and bacterial pathways 
were obtained from a previous study comprising 7,738 
individuals from the Dutch Microbiome Project cohort 
[31].

Instrumental variables
For the exposure data, single nucleotide polymor-
phisms (SNPs) that met the locus-wide significance level 
(P < 5 × 10− 5) were selected as instrumental variables 
(IVs). Next, we kept only independent significantly asso-
ciated IVs without linkage disequilibrium (r2 < 0.001 and 
a clump distance > 10,000 kb window).

MR analysis
For two-sample univariable Mendelian randomization 
(UVMR) analysis to explore the causal effect between 
the gut microbiota or bacterial pathway and GDM, we 
adopted inverse-variance weighted (IVW) and MR‒
Egger analysis modes and utilized the conventional IVW 
method to determine the genetic casual effect (P < 0.05). 
The results are reported as odds ratios (ORs) with 95% 
confidence intervals (CIs). For the heterogeneity test, the 
Cochran Q statistic was employed for the IVW and MR‒
Egger modes (P < 0.05 indicated the presence of heteroge-
neity). For the pleiotropy test, the MR‒Egger regression 
method reported an intercept to represent an average 
pleiotropic effect (a nonzero intercept and P < 0.05 indi-
cated potential pleiotropy). For the sensitivity test, leave-
one-out analysis was performed by removing one IV 
sequentially from the instrumental variables.

For bacterial pathways that are causally associated with 
GDM, we conducted UVMR between the significant gut 
microbiota and the above pathways and determined the 
final significant pathway mediators for the microbiota‒
GDM relationship. Finally, we performed Multivari-
able Mendelian Randomization (MVMR) to explore the 
causal effect of the gut microbiota after adjusting for each 
pathway and the mediating effect of each pathway.

Data organization, analysis and visualization were con-
ducted using R Software (version 4.2.2). The MR analysis 
was performed with the TwoSampleMR (version 0.6.3) 

and MVMR (version 0.4) R packages. Plots were gener-
ated using the ggplot2 (version 3.5.1) and forestploter 
(version 1.1.2) R packages.

Statistical analysis
We used species-level Bray‒Curtis distances to calculate 
β diversity between samples and visualized with principal 
coordinate analysis (PCoA). Then, the microbial compo-
sition difference between sample groups was calculated 
by Analysis of Similarities (ANOSIM) algorithm with a 
permutation of 999 times via vegan (version 2.6–6.1) R 
package.

The results are expressed as means ± standard devia-
tions (SDs) for continuous variables. Differences in 
normally distributed clinical and baseline data were 
calculated with Student’s t test. Non-parametric tests, 
including the Mann–Whitney U test for comparisons 
between two groups and the Kruskal-Wallis test followed 
by Dunn’s post-hoc test for pairwise comparisons within 
multiple groups, were performed to assess the differences 
in the relative abundances of the main bacteria (phyla, 
genera, and species). Spearman’s correlation analysis was 
carried out between microbiome constitution and clinical 
parameters. R v4.2.2 (R Foundation for Statistical Com-
puting) was used for statistical analysis. A P value < 0.05 
was considered statistically significant.

Results
Basic characteristics of the study participants
At the 75  g OGTT test time, we prospectively enrolled 
30 GDM patients and 38 NGT and the clinical measure-
ments and fecal and plasma samples were collected and 
appropriately stored. During follow-up, all GDM patients 
underwent MNT and physical exercise management 
in our “one-day” GDM clinics. Among the 30 recruited 
GDM patients, 3 were excluded because their glycemic 
control was ineffective because they were receiving medi-
cation. During the third trimester, the fecal and plasma 
samples of 27 GDM A1 and 38 NGT patients were col-
lected again with standard protocols, as well as clinical 
measurements (Fig.  1A). Our fecal and plasma samples 
were then used for metagenome sequencing and plasma 
SCFA detection. SCFAs are the metabolites of dietary 
fiber that promote host glucose homeostasis [32] and are 
utilized here as metabolic indicators for glycemic control.

In general, the GDM group presented greater mater-
nal ages and earlier delivery gestational weeks than the 
NGT group (Table 1). For the 75 g OGTT test, the GDM 
patients had significantly higher 0 h, 1 h, and 2 h blood 
glucose levels than the NGT patients (all P < 0.0001). In 
addition, elevated insulin levels, white blood cell counts 
and neutrophil percentages in the blood were observed 
in the GDM group relative to the NGT group, indicat-
ing that GDM patients have systematic inflammatory 

https://r10.finngen.fi/
https://r10.finngen.fi/
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Fig. 1  Study design and general gut microbiome communities. (A) Flow chart of the prospective study design. We divided patients according to the 75 g 
OGTT test. The GDM pregnancies achieved effective glycemic control in our one-day GDM clinics under standardized MNT and exercise management, 
belonging to the GDM A1 category. Together, 65 patients with 130 samples were included in this study, and glycemic traits as well as other clinical covari-
ates were measured. Fecal and plasma samples from each trimester were collected for metagenome sequencing and plasma SCFA detection, respective-
ly. (B) Principal coordinate visualization of the four groups of samples using Bray–Curtis distance at the species level. (C) Principal coordinate visualization 
of all samples annotated by both enterotype and group. (D) Sankey plot showing individual dynamic enterotype changes from T2 to T3 in GDM (left) 
and NGT (right) patients. (E) Sankey plot showing dynamic composition changes in the 4 main phyla from T2 to T3 in GDM (left) and NGT (right) patients
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disorders. Besides, the information of SCFAs of our 65 
samples are listed in Table S1. Specifically, the butyric 
acid of GDM (0.0046 ± 0.0012) was significantly lower 
than that of NGT (0.0052 ± 0.0012) at T3 (P = 0.011), con-
sistent with our previous study [33].

Notably, our GDM A1 group achieved satisfactory 
glycemic control. First, although the BMIs before preg-
nancy and during the OGTT of GDM patients were 
greater than those of the NGT, the BMIs at delivery were 
matched between the two groups (Table 1). Second, the 
GDM group also presented significantly lower gestational 
weight gains than the NGT group after GDM diagno-
sis. Third, the newborn weights of the GDM group were 
almost the same as those of the NGT group. Therefore, 
our study represents the significant on-set hyperglycemic 
but well-controlled GDM population, which are the pur-
sued goals in the management of GDM.

Overall gut microbiome structure
In total, 718 well-annotated bacterial species were 
detected by Metaphlan3 in all 130 samples. Previous 
studies have reported inconsistent results concerning the 
differences in overall microbial structure between GDM 

patients and healthy controls [13, 16, 34]. In our study, 
based on principal coordinate analysis of Bray‒Curtis 
distances among 718 species, we detected no obvious dif-
ferences in β diversity between GDM and NGT patients 
at either T2 or T3 (Fig.  1B, ANOSIM test). However, 
we reannotated our samples according to enterotype at 
the genus level and clearly identified three enterotype 
clusters [35] (Fig.  1C). Further analysis revealed that 
the major enterotype was ETF (Firmicutes), followed 
by ETB (Bacteroides) and ETP (Prevotella) in both the 
GDM and NGT groups (Fig.  1D). The ETP enterotype 
has been reported to be associated with type 2 diabe-
tes. Notably, there were more ETP individuals in the 
GDM group (T2 = 22.2%, T3 = 26.3%) than in the NGT 
group (T2 = 15.8%, T3 = 18.4%), indicating that the overall 
microbiome profiles reflected the disease state.

We next focused on the main gut microbial composi-
tions and differentially abundant microbiota from T2 
to T3 in each group. The five primary phyla were Fir-
micutes, Bacteroidetes, Actinobacteria, Proteobacteria 
and Verrucomicrobia (Fig. 1E). Among these, Bacteroide-
tes were reduced from T2 to T3 in both the GDM and 
NGT groups, while Firmicutes exhibited opposite trends 

Table 1  Clinical information of the study participants
Variables GDM (N = 27) Control (N = 38) P value
Age (year) 33.37 ± 3.42 31.32 ± 3.05 0.015
BMI (kg/m2)
  Prepregnancy (pre-BMI) 22.32 ± 2.47 20.98 ± 2.36 < 0.001
  OGTT 25.14 ± 2.55 23.56 ± 2.87 0.022
  Delivery 26.79 ± 2.55 26.82 ± 3.53 0.970
OGTT test
  0 h (mmol/L) 5.17 ± 0.52 4.61 ± 0.28 < 0.001
  1 h (mmol/L) 10.30 ± 1.23 7.60 ± 1.27 < 0.001
  2 h (mmol/L) 8.71 ± 1.2 6.09 ± 1.05 < 0.001
  AUC 17.2 ± 1.61 12.95 ± 1.63 < 0.001
Weight gain (kg)
  before OGTT 7.64 ± 4.38 6.14 ± 3.2 0.130
  after OGTT 4.19 ± 3.54 7.11 ± 3.48 0.002
Insulin (uIU/ml)
  T2 13.4 ± 11.76 23.98 ± 19.86 0.015
  T3 32.59 ± 49.95 15.00 ± 11.59 0.110
TG (mmol/L)
  T2 2.26 ± 0.58 2.11 ± 0.67 0.350
  T3 2.78 ± 1.02 2.74 ± 0.78 0.870
WBC (109/L)
  T2 10.61 ± 2.24 9.04 ± 1.71 0.004
  T3 10.03 ± 1.92 8.19 ± 1.49 < 0.001
NE (109/L)
  T2 8.00 ± 1.88 6.57 ± 1.36 0.002
  T3 7.62 ± 1.71 5.88 ± 1.26 < 0.001
HbA1c (%)
  T2 5.30 ± 0.32
  T3 5.41 ± 0.28
Newborn weight (g) 3304.81 ± 390.01 3306.97 ± 306.68 0.980
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between the GDM (decreased from T2 to T3) and NGT 
(increased from T2 to T3) groups. Notably, Actinobac-
teria significantly increased after glycemic control in 
the GDM group (Figure S1, 32.56% vs. 12.84%, P < 0.01), 
which is worthy of further detailed investigation.

Dynamic intestinal microbiota shifts revealed gut 
microbiome dysbiosis in GDM
To determine the influence of glycemic control on the 
gut microbiome we further conducted a dynamic analy-
sis of the GDM-related gut microbiome from T2–T3. 
We defined β diversity distance as the Euclidean distance 
between T2 and T3 paired samples to represent direct 
gut microbiome shifts (Fig.  2A). The correlations of β 

Fig. 2  β diversity distances were positively related to the progression of GDM-related glucose disorders. (A) Principal coordinate visualization of 27 GDM 
paired samples using the Bray–Curtis distance at the species level, and β diversity distances are marked by lines between two paired samples. (B) The 
association between β diversity distance and newborn weight. (C) The association between β diversity distances and HbA1c. The four panels clockwise 
from the upper left show the associations between T3 and T2 HbA1c, β-diversity distances and T2 HbA1c, β-diversity distances and T3 HbA1c and the 
comparison of β-diversity distances between the HbA1c down and up groups. (D) The associations between β diversity distances and FPG. The four pan-
els clockwise from the upper left show the associations between T3 and T2 FPG, β-diversity distances and T2 FPG, β-diversity distances and T3 FPG and 
the comparison of β-diversity distances between the lower and upper FPG groups. (E) The associations between β diversity distances and TG. The four 
panels clockwise from the upper left show associations with T3 and T2 TG, β diversity distances and T2 TG, β diversity distances and T3 TG, and compari-
sons of β diversity distances between the TG lower and upper groups. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. (F) Abundance distributions of 
specific species ordered by the β-diversity Euclidean distance. An increase in orange species and a decrease in blue species may increase the β-diversity 
Euclidean distance
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diversity distances with dynamic alterations in clinical 
measurements were subsequently analyzed.

We found that the β diversity distances were posi-
tively associated with newborn weight (Fig.  2B, Spear-
man rho = 0.4, P = 0.04). For glycemic traits, the HbA1c 
(Fig. 2C) and FPG (Fig. 2D) levels at T2 and T3 were both 
positively correlated with β diversity distances. When the 
GDM subgroup was further divided into downregulated 
and upregulated subgroups according to the changes 
in HbA1c and FPG, greater β diversity distances were 
observed in the elevated HbA1c and FPG subgroups. The 
relationships between β diversity distances and the lipid 
metabolic indicator TG were the same as those between 
HbA1c and FPG (Fig. 2E). Therefore, the smaller β diver-
sity distances here represented more effective glycemic 
control. Moreover, corresponding correlations were not 
observed in the NGT group (Figure S2), indicating the 
close relationship between the gut microbiome and GDM 
pathogenesis.

Furthermore, as the gut microbiome dysbiosis that 
occurs at T2 affects the effects of the intervention, we 
discovered associations between T2 microbial species 
and β diversity distances. By WGCNA, we detected sig-
nificantly negatively correlated “gray” and positively cor-
related “blue” modules (Figure S3A). In the gray module, 
the hub microbial species were Clostridium spiroforme 
and Roseburia inulinivorans, representing potentially 
beneficial species (Figure S3B). In the blue module, the 
hub microbial species included Clostridium phoceensis, 
Clostridia unclassified SGB14951, Bacteroides cellulosi-
lyticus, Alistipes ihumii, Escherichia coli and Eggerthel-
laceae bacteria, representing potentially harmful species 
(Figure S3B). When tracking the distributions of the 
abundances of the above hub species, we discovered that 
the proportions of less beneficial (blue) and more harm-
ful (orange) species at either T2 or T3 contributed to 
increases in β diversity distances (Fig. 2F), reflecting the 
importance of microbial community balance.

Overall, we found that dynamic shifts in the intestinal 
microbiota from T2 to T3 were positively associated with 
GDM metabolism progression. Moreover, the above find-
ings suggest that the causal role of glycemic control in the 
gut microbiome may be attributed to changes in specific 
genera, species or even strains.

The abundance of Bifidobacterium species specifically 
increased after intervention
We next focused on specific altered microbial species 
associated with our standardized glycemic control in 
GDM patients. As shown in Fig.  1E, the Actinobacteria 
phylum was significantly increased after GDM inter-
vention, and further LEfSe analysis revealed that Bifi-
dobacterium was the main enriched genus (Fig. 3A). As 
controlling for confounding variables could help identify 

the associated microbial species related to the disease 
itself, we utilized a MaAsLin2 linear mixed model with 
age and pre-BMI as random effects and further identi-
fied elevated Bifidobacterium pseudocatenulatum, Bifi-
dobacterium adolescentis and Bifidobacterium longum 
in GDM-T3 pregnancies (Fig.  3B‒D, coefficient > 0.5). 
LEfSe further revealed that Bifidobacterium adolescentis 
was also enriched in the GDM group compared with the 
NGT group at T3 (Figure S4), indicating that alterations 
in Bifidobacterium species may be specific to our glyce-
mic intervention.

As expected, dynamic changes in Bifidobacterium spe-
cies were negatively correlated with β diversity distance 
(Fig.  3E). To further distinguish the pathogenic or pro-
biotic functions of our three Bifidobacterium species, 
we investigated the correlations of the abundances of B. 
pseudocatenulatum, B. longum and B. adolescentis with 
plasma SCFAs and crucial glycemic traits. Moreover, 
the harmful LPS producer Escherichia coli was used as a 
reference (Fig.  3F). Unlike Escherichia coli, the dynamic 
changes of Bifidobacterium species were positively cor-
related with SCFAs (Spearman rho mean 0.24 ± 0.19), 
but negatively correlated with FPG (Spearman rho mean 
− 0.32 ± 0.34) (Fig.  3G-H). The above results confirmed 
that the increases in B. pseudocatenulatum, B. longum 
and B. adolescentis were health-promoting changes 
caused by our standardized management.

Advantageous functions of Bifidobacterium species
To better understand how Bifidobacterium species affect 
glucose homeostasis, we utilized the KEGG database to 
explore the differentially abundant pathways. By fitting 
a linear model, we identified 98 significantly enriched 
KEGG orthologs (KOs) in T3, referring to 74 pathways 
(Fig.  4A, coefficient > 0 and P < 0.05, still robust after 
adjustment for age and pre-BMI). Among these, most 
were related to amino acid biosynthesis or metabo-
lism (Fig. 4A, in purple) or carbon or glucose utilization 
(Fig. 4A, in red), indicating the important influence of the 
intestinal microbiota on energy metabolism.

We then selected the pathways enriched with three Bifi-
dobacterium species. In total, 71, 44 and 1 pathways were 
elevated in B. pseudocatenulatum, B. longum and B. ado-
lescentis, respectively. Next, we correlated the alterations 
in Bifidobacterium-related KOs with those in SCFAs and 
glycemic traits. We discovered that three key enzymes 
involved in butanoate metabolism (K01653, ALS: aceto-
lactate synthase I/III small subunit), starch and sucrose 
metabolism (K16148, glgM: alpha-maltose-1-phosphate 
synthase) and quorum-sensing (K07173, luxS: S-ribosyl-
homocysteine lyase) pathways were positively correlated 
with SCFA tendencies (Spearman rho mean 0.35 ± 0.22), 
yet negatively correlated with glycemic trait tendencies 
(Spearman rho mean − 0.22 ± 0.07) (Fig.  4B). Further 
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Fig. 3  Bifidobacterium was the enriched beneficial genus from GDM T2 to T3. (A) LEfSe analysis revealed that the microbes differed significantly between 
the GDM-T2 and GDM-T3 groups. The findings with respect to phylum, family, and genus are shown in the plot (LDA score > 2, p < 0.05). (B-D) Massalin-2 
was used to evaluate three main Bifidobacterium species including Bifidobacterium pseudocatenulatum (B), Bifidobacterium longum (C) and Bifidobacte-
rium adolescentis (D). * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. (E) Correlations of dynamic changes in Bifidobacterium species with β diversity 
distances. (F) Changes in the abundance of Escherichia coli from T2–T3. (G) The dynamic correlations of Bifidobacterium species and E. coli with glycemic 
traits. (H) The dynamic correlations of Bifidobacterium species and E. coli with plasma SCFA levels. Spearman correlation analysis, * P < 0.05, ** P < 0.01, *** 
P < 0.001, **** P < 0.0001

 



Page 10 of 17Cui et al. BMC Microbiology          (2024) 24:520 

Fig. 4 (See legend on next page.)
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analysis demonstrated that the increases in the three 
enzymes were caused mainly by Bifidobacterium spe-
cies (Fig. 4C-E). These findings revealed that the increase 
in Bifidobacterium abundance after intervention may 
regulate glucose homeostasis through the production of 
SCFAs, the synthesis of glycogen and the balance of the 
microbial community. Notably, K07173 in the Quorum-
sensing pathway exhibited the strongest correlation with 
glycemic alterations (Spearman rho = -0.34), suggesting 
that Bifidobacterium is a potential microbiome regulator 
of SCFA-producing microbiota and is worthy of further 
investigation.

Co-occurrence network associated with Bifidobacterium 
species
Since B. pseudocatenulatum and B. longum signifi-
cantly contributed to the elevation of K07173 (luxS, cru-
cial enzyme for the quorum-sensing pathway), we next 
explored the co-occurrence of gut microbes associated 
with dynamic changes in the above two species (Fig. 4F, 
Spearman’s rho > 0.3). We noticed a positive correlation 
with SCFA-producing species such as Blautia wexlerae 
[36], Bacteroides uniformis [37], Bacteroides caccae [38], 
Anaerobutyricum hallii [39] and Coprococcus catus [40]. 
Conversely, reported GDM pathogenic hallmarks, such 
as Ruminococcus torques, Ruminococcus gnavus and 
Ruminococcaceae bacterium [41, 42], were negatively 
correlated. The results suggest that Bifidobacterium spe-
cies may enhance the growth of beneficial SCFA-produc-
ing bacteria, inhibit pathogens via the luxS/AI-2 system, 
and help alleviate hyperglycemia.

Genetic causality and correlation between 
Bifidobacteriaceae and GDM
We further conducted two-sample MR analysis to vali-
date the relationship between Bifidobacterium and GDM 
and potential associated pathways (Fig. 5A). With respect 
to the causal effects of the gut microbiota on GDM, o_
Bifidobacteriales and f_Bifidobacteriaceae (OR 0.929, 
95% CI, 0.886–0.975; P = 0.003) were the only negatively 
associated orders and families, respectively (Figure S5-6 
and Fig. 5B). In addition, no heterogeneity or pleiotropy 
was observed (Table S2). The scatter plot and results of 
the leave‒one-out analyses are shown in Fig.  5C and D. 
Furthermore, reverse MR analysis revealed no causal 

effect of GDM on o_Bifidobacteriales or f_Bifidobacteria-
ceae (Table S3). Therefore, Bifidobacteriaceae is a geneti-
cally casual protective factor for GDM.

Furthermore, we evaluated the causal effects of gut 
bacterial pathways on GDM and identified 11 sig-
nificantly associated pathways (Table S4). Among 
these, f_Bifidobacteriaceae was causally associated 
with six bacterial pathways (Table  2). Finally, we per-
formed MVMR to validate the mediating effects of the 
above six bacterial pathways. We found that the roles 
of COLANSYN PWY-colanic acid building block bio-
synthesis, the PWY01415-superpathway of heme bio-
synthesis from uroporphyrinogen III and the PWY 
7323-superpathway of GDP mannose-derived O antigen 
building blocks remained significant after adjusting for 
f_Bifidobacteriacea (Table 3). Overall, the mediated pro-
portions of COLANSYN PWY, PWY01415 and PWY 
7323 on the f_Bifidobacteriacea-GDM relationship 
were 14.83% (P = 0.017), 8.501% (P = 0.029) and 16.64% 
(P = 0.049), respectively. The effects of LACTOSECAT 
PWY-lactose and galactose degradation I, the PWY 
5173-superpathway of acetyl-CoA biosynthesis and PWY 
7446-sulfoglycolysis were insignificant after adjusting for 
f_Bifidobacteriacea.

The differential gut microbiome signatures between two 
groups at T2
Finally, we focused on the mechanism by which the 
gut microbiome affects GDM onset by comparing the 
differences between GDM and NGT at T2. First, the 
Firmicutes/Bacteroidetes ratios were greater in the 
GDM-T2 group than in the NGT-T2 group (Figure S7), 
consistent with a previous study [43]. Further LEfSe anal-
ysis revealed that the abundance of Ruminococcaceae_
unclassified_SGB4191 and Faecalibacterium prausnitzii 
was the most significantly enriched species in NGT and 
GDM T2 group, respectively (Fig. 6A-B).

The increase of F. prausnitzii was also observed in the 
GDM cohort in our previous study and was positively 
correlated with inflammatory factors [20]. Interestingly, 
two SCFA-related pathways contributed by F. prausnitzii. 
were reduced in the GDM group while pathways related 
to glucose and amino metabolism were upregulated 
(Fig.  6C-D). Further, we analyzed all the differentially 
eggNOG enzymes in the GDM-T2 group and revealed 

(See figure on previous page.)
Fig. 4  Advantageous functions and co-occurrence network associated with Bifidobacterium species. (A) The categories of KEGG-mapped pathways 
associated with significantly increased KOs from T2 to T3. (B) Dynamic correlations of three enzymes with SCFAs and glycemic traits. (C) Boxplot of the 
relative abundance of the K16148 enzyme (belonging to starch and sucrose metabolism) in GDMs T2 and T3 and the relative abundances of the main 
contributing species. (D) Boxplot of K01653 enzyme abundance (belonging to butanoate metabolism) in GDMs T2 and T3 and the relative abundances of 
the main contributing species. (E) Boxplot of K07173 enzyme abundance (belonging to the quorum sensing pathway) in GDMs T2 and T3 and the relative 
abundances of the main contributing species. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. (F) The co-occurrence network associated with dynamic 
changes in B. pseudocatenulatum and B. longum from T2 to T3. The left part shows the negatively associated species (marked with blue lines, Spearman 
correlation test, P < 0.05, rho < -0.3), and the right part shows the positively associated changed species (marked with red lines, Spearman correlation test, 
P < 0.05, rho > 0.3)
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that the carbon-nitrogen hydrolase COG0010 was sig-
nificantly enriched, with F. prausnitzii being the domi-
nant contributor, which positively correlated with the 
OGTT AUC and WBC (Figure S8). According to a pre-
vious study, the same species but with single-nucleotide 

polymorphism (SNP) level differences may have dis-
tinct biological functions [44]. We constructed a phylo-
genetic tree using major SNPs of F. prausnitzii in 65 T2 
samples. The phylogenetic tree revealed a biased F. praus-
nitzii. distribution between the GDM and NGT groups 

Fig. 5  The MR study design and UVMR revealed causal effects between Bifidobacteriaceae and GDM. (A) The design of the mediation Mendelian ran-
domization (MR) analyses. First, two-sample bidirectional MR was performed to investigate the causal relationships between the gut microbiota (expo-
sure) and GDM (outcome). Second, 205 pathways (mediators) were utilized for subsequent mediation analyses. Specifically, we investigated the causal 
effect of pathways on GDM. For significant pathways, we further studied the causal effects of the gut microbiota on pathways. Finally, UVMR was used 
to validate the mediation relationship. β1 is the causal effect of the gut microbiota on the bacterial pathway. β represents the total effect of the gut 
microbiota on GDM. β* and β2* represent the adjusted direct effects of the gut microbiota and bacterial pathway on GDM. (B) The causal effect of Bifido-
bacteriaceae on GDM. (C) Scatter plot of the causal effect between f_Bifidobacteriaceae and GDM. (D) Leave-one-out plot of the causal effect between 
f_Bifidobacteriaceae and GDM
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(Fig. 6E). The intratree distance of the GDM (0.182) was 
greater than that of the NGT (0.164) and the total sam-
ple pool (0.172). We subsequently selected the genes of 
F. prausnitzii with the most biased SNP distributions 
(hypergeometric test, q < 0.05) and identified 3 genes 
responsible for the hydrolysis of glycosidic bonds in com-
plex sugars. Phylogenetic trees constructed based on the 
3 genes revealed that GDM and NGT also belonged to 
two distinct clusters (average pairwise distance of GDM 
vs. NGT: 0.164 vs. 0.158).

Discussion
To date, studies have focused on how the gut microbi-
ome affects GDM development [12, 13, 18, 45]. How-
ever, research on the impact of GDM management on 
the intestinal microbiota is still lacking. In this study, 
we aimed to investigate the dynamic changes in the gut 
microbiome associated with intervention in the GDM 
A1 group. We first investigated β diversity distances to 
explore the associations between shifts in metabolic traits 
and the intestinal microbiota, which exhibited positive 
correlations. These findings support those of a previous 
study in which gut microbiome dysbiosis occurring at the 
time of GDM diagnosis remained throughout pregnancy 

Table 2  Mendelian randomization analyses of the causal effects between the f_Bifidobacteriaceae-bacterial pathway and the 
bacterial pathway-GDM
Pathway Method f_Bifidobacteriaceae 

(Exposure)
GDM (Outcome)

SNP β ± SE P SNP β ± SE P
COLANSYN PWY
colanic acid building blocks biosynthesis

Inverse variance weighted 39 -0.146 ± 0.037 < 0.001 36 0.069 ± 0.027 0.016
MR Egger 0.035 ± 0.165 0.832 -0.134 ± 0.114 0.246

LACTOSECAT PWY
lactose and galactose degradation I

Inverse variance weighted 52 0.606 ± 0.031 < 0.001 35 -0.059 ± 0.029 0.045
MR Egger 0.593 ± 0.125 < 0.001 -0.004 ± 0.110 0.973

PWY0141
superpathway of heme biosynthesis from uroporphyrinogen III

Inverse variance weighted 52 -0.152 ± 0.050 0.002 37 0.043 ± 0.017 0.014
MR Egger -0.172 ± 0.199 0.391 0.138 ± 0.071 0.059

PWY 5173
superpathway of acetyl-CoA biosynthesis

Inverse variance weighted 52 -0.106 ± 0.042 0.011 37 0.045 ± 0.023 0.046
MR Egger 0.058 ± 0.165 0.728 -0.049 ± 0.086 0.571

PWY 7323
superpathway of GDP mannose derived O antigen building 
blocks biosynthesis

Inverse variance weighted 52 -0.201 ± 0.031 < 0.001 34 0.073 ± 0.032 0.021
MR Egger -0.029 ± 0.123 0.811 0.041 ± 0.116 0.728

PWY 7446
sulfoglycolysis

Inverse variance weighted 52 -0.172 ± 0.065 0.008 28 0.034 ± 0.016 0.031
MR Egger -0.119 ± 0.262 0.651 0.146 ± 0.055 0.013

Beta (β), standard error (SE), and P values were obtained from the univariate Mendelian randomization analysis

Table 3  Multivariate mendelian randomization analyses of the causal effects between f_Bifidobacteriaceae, bacterial pathways and 
GDM
Mediator-pathway Direct effect (β* 

± SE)
Direct effect 
(β2* ± SE)

Indirect effect 
(β1 × β2* ± SE)

P Mediated 
proportion 
(β1 × β2*/β)

COLANSYN PWY
colanic acid building blocks biosynthesis

-0.037 ± 0.031 0.074 ± 0.031 -0.011 ± 0.005 0.017 14.83

LACTOSECAT PWY
lactose and galactose degradation I

-0.043 ± 0.043 -0.033 ± 0.046 -0.019 ± 0.003 0.479 27.08

PWY01415
superpathway of heme biosynthesis from uroporphyrinogen III

-0.057 ± 0.026 0.041 ± 0.019 -0.006 ± 0.003 0.029 8.501

PWY 5173
superpathway of acetyl-CoA biosynthesis

-0.074 ± 0.025 0.024 ± 0.021 -0.003 ± 0.002 0.258 3.505

PWY 7323
superpathway of GDP mannose derived O antigen building blocks 
biosynthesis

-0.056 ± 0.026 0.061 ± 0.031 -0.012 ± 0.006 0.049 16.64

PWY 7446
sulfoglycolysis

-0.071 ± 0.026 0.029 ± 0.015 -0.005 ± 0.003 0.051 6.995

β* and β2* represent the adjusted direct effects of f_Bifidobacteriaceae and each bacterial pathway on GDM

β1 is the causal effect of f_Bifidobacteriaceae on each bacterial pathway

The indirect effect (β1 × β2*) is the effect of exposure on GDM via the corresponding mediator

β is the total effect of f_Bifidobacteriaceae on GDM

The mediated proportion is calculated as the “indirect effect/total effect”
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Fig. 6  The differential gut microbiome signatures between two groups at T2. (A) LEfSe revealed that the microbes significantly differed from those in 
the GDM-T2 to T3 samples. The findings with respect to species are shown in the plot (LDA score > 2, p < 0.05). (B) Abundances of F. prausnitzii in the GDM 
and NGT samples at both T2 and T3. (C) Abundances of SCFA-related metabolic pathways contributed by F. prausnitzii in the GDM and NGT samples at 
T2. (D) The significantly differential pathways affected by F. prausnitzii in the GDM and NGT samples at T2. (E) The phylogenetic trees constructed from F. 
prausnitzii’s major SNPs and three genes with significantly biased SNPs between groups
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[18]. Accordingly, lifestyle education and physical exer-
cise work on delicate changes in the gut microbiota.

We discovered that three Bifidobacterium species, 
B. longum, B. pseudocatenulatum and B. adolescentis, 
specifically increased after our glucose intervention. 
Enzyme analysis revealed that three Bifidobacterium 
species were the main contributors to K01653 (ALS: 
acetolactate synthase I/III small subunit), K16148 (glgM: 
alpha-maltose-1-phosphate synthase) and K07173 (luxS: 
S-ribosylhomocysteine lyase), which are key enzymes in 
butanoate (butyric acid) metabolism, starch and sucrose 
metabolism and quorum-sensing pathways, respec-
tively. Among the three pathways, quorum-sensing 
pathway (luxS/AI-2 system) had the strongest effects on 
both plasma SCFA elevation and glycemic trait reduc-
tion. A further co-occurrence network also confirmed 
the interactions of B. longum and B. pseudocatenulatum 
with SCFA producers and pathogens. Therefore, the gut 
microbiome regulatory capacity of Bifidobacterium is 
more important for glycemic control.

Furthermore, we validated the genetic causal effect 
of Bifidobacterium on GDM via MR methodol-
ogy. The mediation analysis revealed that COLAN-
SYN PWY-colanic acid building block biosynthesis, the 
PWY01415-superpathway of heme biosynthesis from 
uroporphyrinogen III and the PWY 7323-superpath-
way of GDP mannose-derived O antigen building blocks 
remained significant after adjustment for f_Bifidobacte-
riaceae. Notably, COLANSYN PWY and PWY 7323 are 
two pathways responsible for the synthesis of cell sur-
face compounds in gram-negative bacteria such as Esch-
erichia coli. The above mediating effect again emphasized 
the importance of Bifidobacterium as a gut microbiome 
regulator.

Several studies have shown an increased abundance of 
Bifidobacterium in normal pregnancies [18, 34, 46]. How-
ever, its function in regulating gestational glucose has not 
been well described. Recent studies have shown that B. 
adolescentis and B. longum are able to relieve T2DM by 
restoring the homeostasis of the gut microbiota, increas-
ing the abundance of SCFA-producing microbiota, and 
alleviating inflammation [47, 48]. Overall, we specu-
lated that the potential mechanism by which Bifidobac-
terium promotes glucose homeostasis is as follows: (1) 
increasing potential health-related bacteria and inhibit-
ing pathogens through the quorum-sensing system; (2) 
producing SCFAs and further alleviating hyperglycemia 
through reducing inflammation; and (3) improving gly-
cogenesis. Moreover, Bifidobacterium has been demon-
strated to be the dominant microbiota in healthy infants, 
and its reduction is related to an increased prevalence 
of obesity, diabetes, and metabolic disorders later in 
life [49–51]. Therefore, a special bond related to Bifido-
bacterium may exist between the glycemic regulation of 

mothers and newborns, and further investigations into 
the mechanism of Bifidobacterium intervention in hyper-
glycemic pregnant mouse models and their offspring are 
warranted.

Our second goal was to explore the effects of the gut 
microbiome on GDM pathology and identify enriched 
Faecalibacterium prausnitzii in GDM patients at the 
onset stage. F. prausnitzii is the most popular butyric 
acid producer, and several studies have reported deple-
tion in GDM or metabolism disorder patients [13, 43]; 
however, controversial phenomena exist: for example, 
a recent study showed that F. prausnitzii was enriched 
in obese pregnant women [52]. Our previous research 
also revealed increased Faecalibacterium in the gut of 
germ-free mice after transplantation with GDM donor 
feces [20]. With metagenome sequencing, we could bet-
ter understand the deeper and complicated reasons. We 
detected a greater abundance of amino hydrolases and 
SNP differences in the glycosyl hydrolases of F. praus-
nitzii in the GDM group than in the control group. The 
above results highlight the complex nature of bacteria, 
and strain-level and even SNP-level research is worth-
while before their clinical application [44, 53].

Our study has several limitations. First, the sample 
size was limited, and further large-cohort validation 
is needed. Second, although our GDM patients were 
educated and managed on a standardized basis, we did 
not directly quantify the management measurements, 
especially for the nutrient intake indicators. Third, our 
patients were mainly from North China, which limits the 
interpretability of our findings. Fourth, our MR analysis 
was based on European populations, and further inves-
tigations are still needed in Chinese and East Asian 
population.

In conclusion, we first depicted the dynamic microbi-
ome changes in well-controlled GDM patients before and 
after intervention. We found that the Bifidobacterium 
species were specific health-related bacteria for standard-
ized glycemic management, highlighting the regulatory 
capacity of the gut microbiome. Further MR analysis vali-
dated that Bifidobacteriacea could serve as a potentially 
protective target for GDM. Our findings enhance the 
understanding of the interplay between the gut micro-
biome and host glucose metabolism, offering poten-
tial health-related bacteria for targeted gut microbiome 
interventions.
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