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Abstract

Elexacaftor/tezacaftor/ivacaftor (ETI) has had a substantial
positive impact for people living with cystic fibrosis (pwCF).
However, there can be substantial variability in efficacy, and
we lack adequate biomarkers to predict individual response.
We thus aimed to identify transcriptomic profiles in nasal
respiratory epithelium that predict clinical response to ETI
treatment. We obtained nasal epithelial samples from pwCF
before ETI initiation and performed a transcriptome-wide
analysis of baseline gene expression to predict changes in
forced expiratory volume in 1 second (DFEV1), year’s best
FEV1 (DybFEV1), and body mass index (DBMI). Using the top
differentially expressed genes, we generated transcriptomic risk
scores (TRSs) and evaluated their predictive performance. The
study included 40 pwCF >6 years of age (mean, 27.7 [SD, 15.1]
years; 40% female). After ETI initiation, FEV1 improved by >5%

in 22 (61.1%) participants, and ybFEV1 improved by>5% in
19 (50%). TRSs were constructed using top overexpressed and
underexpressed genes for each outcome. Adding theDFEV1 TRS to a
model with age, sex, and baseline FEV1 increased the area under the
receiver operating characteristic curve (AUC) from 0.41 to 0.88, the
DybFEV1 TRS increased the AUC from 0.51 to 0.88, and theDBMI
TRS increased the AUC from 0.46 to 0.92. Average accuracy was thus
�85% in predicting the response to the three outcomes. Results were
similar in models further adjusted for F508del zygosity and previous
CFTRmodulator use. In conclusion, we identified nasal epithelial
transcriptomic profiles that help accurately predict changes in FEV1

and BMI with ETI treatment. These novel TRSs could serve as
predictive biomarkers for clinical response to modulator treatment
in pwCF.
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Cystic fibrosis (CF) is a progressive,
multisystem genetic disease. Although CF is a
monogenic disorder, there is wide variation in
phenotype and disease severity, even among
individuals from the same family who share

genotype, environment, and pathogen
exposures. Modifier genes and pathways
contribute substantially to phenotypic
variability in CF (1, 2). Non-CFTR heritability
has been estimated to be as high as 54–80%

for CF lung disease (2, 3), with similar
estimates for nutritional status (4), CF-related
diabetes (5), and other phenotypes (6). Yet
studies focused exclusively on genotype yield
an incomplete view of disease pathobiology,
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as genetic polymorphisms do not change
and are thus poorly suited to predict an
individual’s varying risk of poor outcomes
over time. As gene expression reflects both
genetic susceptibility (from known and
unknown genes) and the environmental
factors to which an individual is exposed,
transcriptomic studies are uniquely
positioned to identify dynamic biomarkers
of disease severity, activity, and treatment
response.

Triple CFTRmodulator therapy with
elexacaftor, tezacaftor, and ivacaftor (ETI;
Trikafta; Vertex Pharmaceuticals) was
approved by the U.S. Food and Drug
Administration in 2019. Although the clinical
trials that led to Food and Drug
Administration approval were extremely
encouraging, there was significant variability
in treatment response: the mean increase in
forced expiratory volume in 1 second (FEV1)
was 10–14%, but�20–30% of subjects had
only relatively small changes (similar to those
seen in the respective control arms), and a few
even showed decreases from baseline (7, 8).
Similarly, some subjects had Cystic Fibrosis
Questionnaire–Revised scores that failed to
improve or worsened. Moreover, up to�20%
reported adverse events related to the drug,
some of which led to temporary treatment
holds (8). Real-world studies of ETI efficacy
have also described variation in clinical
outcomes such as lung function (9–11),
weight gain (12), and exercise capacity (13).

Despite this wide variability, we
currently lack biomarkers to predict response
to CFTRmodulators and other treatments
for CF. These compounds are selected
for their effects on CFTR, so any large
differences in response are likely driven
by non-CFTR pathways. We hypothesized
that analyzing transcriptomic profiles in
CF respiratory epithelium would allow us
to identify biomarkers that predict response
to modulator treatment. We further
hypothesized that analyzing gene expression
associated with suboptimal response would
help us to better understand underlying CF
pathways and to identify novel potential drug
targets. Although not the main motivation
for our approach, given medication costs, it
will be important to identify patients who are
more likely to benefit and those at higher risk
of adverse events. Some of the results of this
study have been previously reported as an
American Thoracic Society International
Conference abstract (14).

Methods

Study Population
Participants were recruited from the adult and
pediatric Cystic Fibrosis Center at the
University of Pittsburgh and the University of
PittsburghMedical Center Children’s
Hospital of Pittsburgh between November
2019 and October 2021. Inclusion criteria
were 1) people living with CF (pwCF) who
were clinically eligible for ETI treatment on
the basis of their CFTR genotype and age
and 2) age> 6 years to ensure adequate
lung function testing for our analyses.
Exclusion criteria were 1) sinus infection
or sinus surgery in the previous month
and 2) treatment for a CF pulmonary
exacerbation in the previous month. The
study was approved by the Institutional
Review Board at the University of Pittsburgh.
Informed consent was obtained from all
participants before participation in the
study; for participants,18 years of age,
consent was obtained from their parents,
together with assent from the children as
developmentally appropriate. Data extracted
from the electronic health record included age
and sex, CFTR genotype (homozygous vs.
heterozygous), previous use of other CFTR
modulators, and clinical characteristics
before and after ETI initiation, including
FEV1, weight, and bodymass index (BMI).
Spirometry was obtained in accordance with
American Thoracic Society guidelines as
part of clinical standard of care, and FEV1

was expressed as percentage of predicted
(FEV1%pred) on the basis of Global Lung
Function Initiative equations (15).

Clinical Outcomes
We focused on three relevant clinical
outcomes: 1) change in FEV1%pred (DFEV1),
2) change in year’s best FEV1%pred
(DybFEV1), and 3) change in BMI (DBMI).
On the basis of clinical relevance and previous
literature, we classified participants into
“responders” and “nonresponders” using the
following cutoffs: forDFEV1 andDybFEV1,
responders were subjects whose FEV1

improved by>5% after the initiation of ETI
compared with their pre-ETI baseline, and
nonresponders were those whose lung
function improved by,5% (including
subjects in whom lung function did not
improve or declined). ForDFEV1, we
compared the latest stable FEV1%pred (i.e.,
not taken during a pulmonary exacerbation)
before ETI initiation with the first stable

FEV1%pred after at least onemonth of ETI
therapy; forDybFEV1, we compared the best
FEV1 in the 12months before ETI with the
best FEV1 in the year after initiation. For BMI,
we defined responders as subjects whose
DBMI was above the median of the cohort
after at least one month of ETI therapy, and
nonresponders were those whoseDBMI was
below the median (including subjects whose
BMI did not improve or declined).

Nasal Epithelial Samples, RNA
Sequencing, and Data Preprocessing
Nasal epithelial samples were collected from
the inferior turbinate using a cytology brush,
and samples were processed to extract high-
quality RNA, following the same protocols
we have used in previous studies (16, 17).
Baseline nasal samples were obtained for all
participants, and follow-up samples were
obtained when participants returned to the
clinic; the initial plan was to obtain samples
and follow-up data 3–6 months after ETI
initiation, but because of the coronavirus
disease (COVID-19) pandemic, we extended
this window to,10 months. Bulk mRNA
sequencing was performed at the University
of PittsburghMedical Center Genome
Center, following standard protocols. Library
preparation was done using the TruSeq
Stranded Total RNA Library Prep Kit with
the Ribo-Zero Gold High Throughput Kit
(Illumina), which removes both cytoplasmic
andmitochondrial ribosomal RNA,
according to the manufacturer’s protocol.
Libraries were run on the Illumina NextSeq
500 platform, with paired-end 75 cycles
and 80 million reads per sample. RNA
sequencing (RNA-seq) quality control
was conducted using FastQC (18) and
summarized withMultiQC (19). All 39
adapters and low-quality reads were trimmed
using Trim Galore! (https://github.com/
FelixKrueger/TrimGalore) and Cutadapt
(20). Trimmed reads were aligned to the
latest human reference genome, hg38, with
the STAR RNA-seq aligner (21) and
annotated using RSEM (22). Samples with
poor overall quality and those with low
alignment rates were excluded from analysis.
Subsequently, genes with low expression
(mean count, 2), low variation (SD
of count, 0.1), sex chromosomes,
mitochondrial genes, and duplicated genes
were all removed from downstream analyses.
After quality control, preprocessing, and
filtering, a total of 19,550 genes were retained
for analysis.
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Transcriptome-Wide Differential Gene
Expression Analysis
First, we performed a transcriptome-wide
analysis on the changes in nasal epithelium
gene expression profiles before versus after
the initiation of ETI, using a negative
binomial regression framework in DESeq2
(23) adjusting for the paired design. Next, to
identify transcriptomic biomarkers that
predict clinical response to ETI, we analyzed
baseline gene expression profiles associated
with good response (vs. nonresponse) in
lung function and BMI. The transcriptomic
analysis for each clinical outcome was
performed using DESeq2 and was adjusted
for relevant covariates and potential
confounders including age, sex, F508del
zygosity (homozygous vs. heterozygous),
previous use of other CFTRmodulators,
sample processing protocol, and the baseline
measure of each outcome (i.e., baseline FEV1,
ybFEV1, or BMI before starting ETI), as a
patient’s pre-ETI status might influence
howmuch they improve with treatment.
As a sensitivity analysis, given the relatively
small size of the cohort, we also evaluated
“reduced”models adjusted only for age,
sex, and baseline measures. To control for
multiple testing, adjusted P values for each
gene were calculated using the Benjamin-
Hochberg false discovery rate (FDR)
procedure (24). No similar cohorts have
been described to date, so to further validate
our findings, we compared our results with
previous reports of blood transcriptomics
in response to ivacaftor (25) and ivacaftor/
lumacaftor (I/L) (26). Finally, to investigate
the underlying biological processes triggered
by ETI treatment, we performed pathway
enrichment analysis using Ingenuity
Pathway Analysis (Qiagen) (27) and string-
db protein enrichment analysis (28),
including the top differentially expressed
genes (DEGs) in each model.

Transcriptome-Wide
Prediction Analysis
We constructed transcriptome-wide risk
scores using the top 15 genes with the largest
positive and the 15 genes with the largest
negative fold-change values for each clinical
outcome, among all genes whose P values
were,0.01 in the transcriptome-wide
analyses. These outcome-specific TRSs were
calculated as the weighted averages of log2-
transformed TPM values, using the log2-
transformed fold change as the weight:

TRSi 5
X

k

bkj j3 log2 TPMik1dð Þ,

where bk is the log2 fold change of selected
gene k, and d=0.1 is a prespecified offset to
avoid numerical null. Among selected genes,
upregulated genes had a “preventive” effect
on the outcome, whereas the downregulated
genes had a “risk” effect on the outcome.

The TRSs were then used to build
logistic regression predictive models with
age, sex, and the baseline measure of each
clinical outcome (e.g., the predictive
model for the change in FEV1%pred was
DFEV1=TRS1 age1 sex1 baseline FEV1).
We evaluated TRS performance using leave-
one-out cross-validation and calculated
the area under the receiver operating
characteristic curve (AUC) and the
corresponding performance or confusion
matrices. Finally, we performed additional
sensitivity analyses using fully adjusted
models that included age, sex, the baseline
measure of each outcome, F508del zygosity
(homozygous vs. heterozygous), previous
use of other CFTRmodulators, and sample
processing protocol.

Results

The main characteristics of the cohort
(n=40) are shown in Table 1. Mean age
was 27.7 years (range, 6–64 yr), and 40%
of participants were female; 47.5% of
participants were F508del homozygous, and
42.5% had previously used other modulators
before ETI (11 tezacaftor/ivacaftor, 5 ivacaftor,
and 1 lumacaftor/ivacaftor). Median intervals
were as follows: 0.5 months (interquartile
range [IQR], 0.2–0.93 mo) between baseline
samples and ETI initiation; 5.4 months
(IQR, 2.8–6.7 mo) between ETI initiation
and follow-up outcomes; and, overall,
5.9 months (IQR, 3.2–7.7 mo) between
baseline and follow-up measurements.
After starting ETI, there was a reduction
in the proportion of subjects with cultures
growing Pseudomonas or methicillin-
resistant Staphylococcus aureus, as well as a
nonsignificant reduction in the number of
hospitalizations per year (Table 1).

Mean baseline FEV1 was 78.6% (range,
41–129%), andmean ybFEV1 was 85.7%
(range, 41–137%). After starting ETI
treatment, meanDFEV1 was 7.9% (SD,
8.8%), andmeanDybFEV1 was 4.1% (SD,
10.2%) (Table 1). In the cohort, 26 subjects
>20 years of age had BMI values available
for analysis; their mean baseline BMI was
22.9 kg/m2 (range, 16.5–30.1 kg/m2),
and mean DBMI on ETI was 1.1 kg/m2

(SD, 1.9 kg/m2). Overall, 22 (61.1%)
participants were FEV1 responders (i.e.,
DFEV1> 5% on ETI compared with
baseline), 19 (50%) were ybFEV1 responders
(DybFEV1> 5%), and 18 (48.7%) were
BMI responders (DBMI above the median
for the cohort). Therefore, 38.9%, 50%,
and 51.3%, respectively, were classified as
nonresponders. Clinical factors associated
with response for each outcome are shown
in Table E1 and Figure E1 in the data
supplement.

Change in Nasal Epithelial Gene
Expression with ETI Treatment
We first performed a paired pre/post analysis
with data from subjects who had nasal
samples and clinical data both before and
2–12months after ETI initiation (n=28).
Although principal-component analysis
(PCA) showed no clear clustering (Figure 1A),
the paired pre/post analysis identified 136
DEGs at an FDR P value,0.05 with |log2
fold-change|. 2.0 (Figure 1B). The top 20
DEGs with FDR P values,0.01 are shown
in Table 2, and the full list is included in
Table E2. Pathway analysis including all
DEGs at an FDR P value,0.05 identified
27 significantly enriched pathways (see
Table E3). We did not find clear clustering
in the PCA stratified by sex or by prior
modulator use (see Figure E2). Top pathways
included cytokine storm signaling, IL-12
signaling, and pulmonary fibrosis idiopathic
signaling, showing potential biological
plausibility to the changes observed in
patients with CF receiving ETI treatment.
String-db analysis (28) showed enrichment
for collagen trimerization, assembly of
collagen fibrils, and collagen degradation
pathways.

Analysis of Differential Gene
Expression Associated with ETI
Clinical Response
We then evaluated baseline (pre-ETI) gene
expression profiles associated with clinical
response to ETI treatment (Figure 2). At a
nominal P value,0.01, we found 223 genes
whose expression was associated with FEV1

response, 376 DEGs for ybFEV1 response,
and 265 DEGs for BMI response (see Table
E4). Among those, we identified three DEGs
associated with FEV1 response at an FDR
P value,0.05 (RNU1-2, ACTRT3, and
NFATC3), two DEGs associated with
ybFEV1 response (GPRC6A andVCAM1),
and six DEGs associated with BMI response
(PADI6, loc100996517, loc102723584, EVC2,
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VPREB3, and FAM124A) (Table 3). In the
sensitivity analysis using a reduced model
(see Table E5), there were 262, 185, and 363
DEGs associated with DFEV1,DybFEV1,
andDBMI, respectively, at a nominal P value
,0.01, including 4 DEGs associated with
DFEV1 at an FDR P value,0.05 (RNU1-2,
ELOVL3, ACTRT3, and C10orf105) and
four for DBMI (GOLGA6L1, LINC00668,
VPREB3, andGPRC6A).

As with the pre/post analysis, we
performed pathway analyses for each of the
clinical outcomes (see Table E6). ForDFEV1,
themost relevant enriched pathways at an
FDR P value,0.05 included neuregulin
signaling, natural killer (NK) cell signaling,
and PI3K/AKT signaling. Among pathways
significantly enriched in ourDybFEV1model,
several immune response–related pathways
appear at the top, including the pathogen-
induced cytokine storm pathways, the
T-helper cell type 1 (Th1) and Th2 activation
pathway, Th1, and Th2 activation pathway,
NK cell, and IL-10 signaling. Similarly,
string-db analysis of the top genes in Table 3
showed significant enrichment for pathways,
includingmixed antigen recognition proteins
and NK cell regulation.

Predicting Clinical Response to ETI
Ourmain goal was to evaluate the clinical
utility of the nasal transcriptome as a
predictive biomarker for treatment response
in CF.We thus constructed TRSs using the
genes with the highest and lowest fold-change
differential expression for each clinical
outcome (see Table E7). Clinical prediction
models using age, sex, and baseline (pre-ETI)
values of the corresponding clinical measures
(e.g., baseline FEV1, ybFEV1, or BMI), but
without our TRS, achieved AUCs of 0.41
forDFEV1, 0.51 forDybFEV1, and 0.46 for
DBMI (Figure 3).When the respective
TRSs were added to those models, the AUCs
increased significantly to 0.88 forDFEV1, 0.88
forDybFEV1, and 0.92 forDBMI (Figure 3).
Similarly, classification performance markedly
improved with the addition of the TRS:
overall accuracy of the models to identify
patients who would have good clinical
response in FEV1 improved from 56%
to 83%, from 61% to 87% for ybFEV1
response, and from 43% to 86% for BMI
response (Figure 3). Prediction accuracy for
the three outcomes increased on average by
�1.64-fold by adding the TRS, from�53%
to�85%. PCA for the TRS genes showed

good separation between responders and
nonresponders for each clinical outcome (see
Figure E3). Fully adjusted predictive models
yielded similar accuracy improvements, with
average accuracy increasing from�55% to
�85% (see Figure E4).

Comparison with Previously Reported
Differential Gene Expression with
CFTR Modulators
Sun and colleagues (25) previously
evaluated gene expression changes in blood
in response to ivacaftor, reporting 102 DEGs
in peripheral blood mononuclear cells
(PBMCs) before versus after ivacaftor
treatment. Of those, 19 were in our list of
136 pre/post DEGs with nominal P values
,0.05 and the same effect direction in our
pre/post ETI analysis in nasal epithelium,
corresponding to an overlap of 18.6% (19 of
102) of their PBMCDEGs or 13.9% (19 of
136) of our nasal DEGs. Sun and colleagues
also reported 4,219 DEGs in PBMCs
associated with clinical response to ivacaftor,
defined on the basis of composite changes in
FEV1, BMI, and symptom scores. Of those
4,219 DEGs, we found 75, 102, and 78 genes
that had nominal P values,0.05 and the

Table 1. Characteristics of the Study Cohort (n=40)

Baseline On ETI Change (D)

Age, yr, mean (SD) 27.7 (15.1) — —
Age, yr, median (IQR) 26.5 (15.5–38.5) — —
Sex, male, n (%) 24 (60.0) — —
F508del, n (%) — —
Homozygous 19 (47.5)
Heterozygous 21 (52.5)

Previous modulator, n (%) — —
No 23 (57.5)
Yes* 17 (42.5)

Months from baseline to ETI initiation, median (IQR) 0.5 (0.2–0.93) — —
Months on ETI at the time of follow-up, median (IQR) — 5.4 (2.8–6.7) —
Hospitalizations for CF, n (%)† 8 (21.1) 1 (2.6) —
Culture results, n (%)‡

Pseudomonas 17 (42.5) 11 (27.5)§ —
MRSA 17 (42.5) 13 (32.5)§ —

FEV1%pred, mean (SD) 78.6 (22.8) 87.42 (20.9) 7.9 (8.8)§

DFEV1>5%, n (%) — — 22 (61.1)
Year’s best FEV1%pred, mean (SD) 85.7 (22.1) 91.0 (24.3) 4.1 (10.2)§

DybFEV1> 5%, n (%) — — 19 (50)
BMI, kg/m2, mean (SD) 22.9 (3.4) 24.07 (4.1) 1.1 (1.7)§

DBMI above median, n (%) — — 18 (48.7)

Definition of abbreviations: BMI=body mass index; CF=cystic fibrosis; ETI = elexacaftor/tezacaftor/ivacaftor; FEV1= forced expiratory volume in
1 second; IQR= interquartile range; MRSA=methicillin-resistant Staphylococcus aureus; %pred=percentage of predicted; ybFEV1= year’s best
forced expiratory volume in 1 second.
Bold significance values are indicated P,0.05.
*Previous modulators included Symdeko (Vertex Pharmaceuticals) (n=11), Orkambi (Vertex Pharmaceuticals) (n=1), and Kalydeco (Vertex
Pharmaceuticals) (n=5).

†Number of subjects with hospitalizations for CF in the 12-month period before or after ETI initiation.
‡Number of subjects with positive cultures in the 12-month period before or after ETI initiation.
§P, 0.01 (paired t test).
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Figure 1. Change in nasal epithelium gene expression with elexacaftor/tezacaftor/ivacaftor treatment. (A) Top: PCA showing no clear pre/post
clustering pattern. Blue, pre; red, post. (B) Bottom: volcano plot showing 2log10 (nominal P values) versus log2 (post vs. pre, fold change).
Red, |log2 fold-change|. 2 and FDR P,0.05; blue, FDR P, 0.05 but fold-change less than |log2 fold-change| threshold; green, |log2 fold
change|.2 but P value less than significance threshold. FDR= false discovery rate; PC=principal component; PCA=principal-component
analysis.
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same effect direction in our respective
analyses of DFEV1, DybFEV1, andDBMI
(only�6% overlap between the DEGs in the
two studies). Potentially relevant common
genes included TLR4 (Toll-like receptor 4)
and IL10.

Similarly, there was little overlap
between our results and those reported by
Kopp and colleagues (26), who evaluated
gene expression changes in blood in response
to I/L in a cohort of 20 pwCF. Kopp and
colleagues reported 104 DEGs in blood
before versus after I/L initiation; of those,
none overlapped with our pre/post ETI
analysis in nasal epithelium, and only one
gene overlapped with our list of DEGs
associated with clinical outcomes (TTN,
associated withDybFEV1). Kopp and
colleagues also compared pwCF on I/L
versus non-CF control subjects and reported
191 DEGs; of those, 1 gene (LMNB1) was
on our list of DEGs pre/post ETI, 3 genes
(KCNG2,ANO9, and RECQL4) were on our
list of DEGs associated withDFEV1, 4 genes
(IFNG, FCRL6, ITGA1, and CST7) were on
our list forDybFEV1, and 3 genes (MARC1,
TLR5, and SLC22A17) were on our list for
DBMI. Finally, Kopp and colleagues reported
five DEGs associated (at FDR P, 0.10) with
clinical response on I/L; overlap with our
results included only one gene (SAP25,
associated withDFEV1 andDBMI in our
analysis).

Discussion

In this prospective cohort analysis, we
report significant differences in nasal
epithelial gene expression after ETI initiation,
compared with pre-ETI baseline expression.
Furthermore, we build TRSs that serve as
significant predictive biomarkers, markedly
improving accuracy in identifying pwCF
whose lung function and nutritional status
went on to improve after the initiation of
ETI. To our knowledge, this is the first such
report of transcriptome-wide predictive
biomarkers for ETI clinical response in CF.

Various studies have reported factors
associated with ETI efficacy, such as age, sex,
CFTR genotype or F508del zygosity, prior
modulator use, and baseline lung function
(9, 12, 29). Our initial analysis using those
factors was only modestly accurate in
identifying individuals in our cohort who
would go on to have good versus poor
response. For FEV1, accuracy ranged from
56% in the reduced model to 67% in the
full model; when we incorporated the TRS,
these increased to 83% and 97%, respectively.
Our fully adjusted TRS model accurately
predicted FEV1 response in 35 of 36
participants. Similarly, our TRSmodels were
able to accurately predict ybFEV1 response
in 87% of subjects and BMI response in 86%.
Improving prediction accuracy in clinical
practice could have important implications:

patients predicted to have reduced response
to ETI could consider initiating a different
modulator (or remaining in their current
one), as well as simultaneously increasing
other therapies. On the other hand,
prediction of poor response might rebalance
the decision-making process in patients who
are experiencing more significant treatment
side effects. If validated, extending this
approach to other and new CFTRmodulators
could eventually help clinicians decide which
therapies to try for specific patients or identify
candidates for inclusion in trials of new
therapies.

In our cohort, average increase in FEV1

after five months on ETI was�8%, and
�39% of participants were nonresponders.
This range ofDFEV1 is comparable with
other real-world analyses (9), such as the
U.S. Cystic Fibrosis Foundation Registry
or the RECOVER (Real World Clinical
OutcomesWith Novel Modulator Therapy
Combinations in PeopleWith CF) study
in the United Kingdom and Ireland, which
reported averageDFEV1 of�9% after
6–12 months of ETI (30, 31). Using the
same cutoff of DFEV1> 5%, a recent study
in individuals with advanced CF lung disease
reported that 36% were nonresponders (11).
On the other hand, a recent meta-analysis
reported mean improvements in FEV1 of
9.2% at 4 weeks and 12.5% after 24 weeks,
although those estimates pooled the results

Table 2. Top Changes in Nasal Epithelium Gene Expression with Elexacaftor/Tezacaftor/Ivacaftor Treatment

Gene Name Log2FC P Value FDR P Value

SCN8A Sodium voltage-gated channel a subunit 8 21.173 4.4431029 8.0131025

CPVL Carboxypeptidase vitellogenic like 21.191 1.7531028 1.3331024

GAL3ST4 Galactose-3-O-sulfotransferase 4 20.909 2.2131028 1.3331024

MTMR11 Myotubularin related protein 11 20.547 9.7031027 4.3831023

SQSTM1 Sequestosome 1 0.397 1.2931026 4.6731023

COL12A1 Collagen type XII a 1 chain 21.024 1.6431026 4.9431023

FCGR1A Fc fragment of IgG receptor Ia 21.966 2.8831026 7.4331023

ALKBH1 AlkB homolog 1, histone H2A dioxygenase 0.179 3.5631026 8.0431023

COL1A2 Collagen type I a 2 chain 22.129 4.4231026 8.8731023

SPG11 SPG11 vesicle trafficking associated, spatacsin 20.253 5.4431026 9.8231023

GBGT1 Globoside a-1,3-N-acetylgalactosaminyltransferase 1 20.786 6.2431026 9.9231023

ANKRD20A5P Ankyrin repeat domain 20 family member A5, pseudogene 20.962 6.6031026 9.9231023

DCT Dopachrome tautomerase 21.789 7.631026 0.0106
RETREG2 Reticulophagy regulator family member 2 0.149 8.831026 0.0106
CREB5 cAMP responsive element binding protein 5 21.086 9.431026 0.0106
FMNL3 Formin like 3 20.596 9.431026 0.0106
TGFBI Transforming growth factor b induced 20.766 1.131025 0.0111
PMPCA Peptidase, mitochondrial processing subunit a 0.135 1.331025 0.0134
COL6A3 Collagen type VI a 3 chain 21.109 1.531025 0.0138
KNTC1 Kinetochore associated 1 20.256 1.631025 0.0145

Definition of abbreviations: DEG=differentially expressed gene; FDR= false discovery rate; Log2FC= log2 fold change.
Top 20 DEGs from the paired analysis before versus after the initiation of elexacaftor/tezacaftor/ivacaftor treatment. Table E1 shows all 136
DEGs at FDR P,0.05.
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from observational studies with those from
randomized controlled trials (32). In terms of
nutritional outcomes, median DBMI in our
sample was 1.1 kg/m2, comparable with
improvements described by others (12, 29,
31, 32). Although many pwCF on ETI
achieve meaningful weight gains, in up to
half of them, weight changes can be minor,
while 5–15% might even become overweight
(12). These and other reports highlight the
variability in efficacy and therefore the
importance of identifying pwCF who are
more (or less) likely to respond.

Our analyses identified several
biologically plausible genes. Among genes
present in most of the models, PAPP-A in
sputum has been associated with eosinophilic
asthma and chronic obstructive pulmonary
disease (33, 34). Pathways from the pre/post
analysis include neutrophil extracellular
trap signaling, chemokine signaling, IL-12
signaling, and collagen metabolism.
Pathways from the clinical response models
include NK cell signaling, PI3K/AKT and
NF-kB activation, several Th1 and Th2
immune pathways, IL-4 and IL-10 signaling,
and others. A recent single-cell RNA-seq
study in 13 children before and after starting
ETI (35) identified several genes that were
also significant in our different models,
mainly for DFEV1 andDybFEV1. Such genes
included STAT1, IRF1,GBP1,GBP4, IFIT3,
IFI6, IFITM1, and ISG15, which were
reported by Loske and colleagues to be
associated with pathogen sensing and IFN
responses, driven mostly by ciliated
respiratory cells, goblet cells, and club cells
when comparing ETI with baseline (35).
Similarly, IL1B, IL1R2, STAT1, CCL3, CCL4,
and CXCL2were significant in our models
and were reported by Loske and colleagues
to drive IL-1 response in macrophages and
neutrophils in children with CF on ETI
compared with baseline.

When we compared our DEGs in
nasal epithelium with those reported by
Sun and colleagues when analyzing PBMC
transcriptomics in response to ivacaftor (25),
we found CFmodifier genes in common,
such as TLR4 and IL10, but otherwise, there
was little gene overlap. We also found very
few results in common with Kopp and
colleagues (26), who evaluated PBMC
transcriptomics in response to I/L, although
several overlapping DEGs might be
biologically relevant (e.g., KCNG2, ANO9,
IFNG, FCRL6, CST7, TLR5). These
differences should of course be interpreted
cautiously, given the different CFTR

Figure 2. Baseline nasal epithelium gene expression associated with elexacaftor/tezacaftor/
ivacaftor clinical response. Volcano plots showing 2log10 (nominal P values) versus log2

(post/pre, fold change) for forced expiratory volume in 1 second (FEV1) percentage predicted
(top), yb-FEV1 percentage predicted (middle), and BMI (bottom). Notice the different axis
scales for each outcome. Red, |log2 fold-change|.2 and P, 0.01; blue, P, 0.05 but fold
change less than |log2 fold-change| threshold; green, |log2 fold change|.2 but P value less
than significance threshold. BMI=body mass index; yb-FEV1= year’s best forced expiratory
volume in 1 second.
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modulators and definitions of “response,”
but they suggest a role for incorporating
biomarkers from different tissues. Future
studies should investigate the value of
“multimodal multitissue” omics analysis,
incorporating for instance both respiratory
and blood transcriptomics to determine
whether this approach further improves
prediction accuracy or target identification.
Furthermore, future studies using sweat
chloride changes to define a more “proximal”
response to ETI would allow us to elucidate
whether these findings are more closely
related to direct changes in CFTR function or

also encompass other pathways and factors
that contribute to clinical disease outcomes.

The present study has several strengths.
Our prospective cohort included both
children and adults living with CF, as well as
a broad phenotypic variation, with baseline
FEV1 ranging from�40% to�130% and
BMI categories ranging from underweight to
overweight. We obtained high-quality RNA-
seq data from respiratory epithelium cells,
following protocols we have successfully used
in large-scale studies of asthma and atopy
(16, 36). We used both recent stable FEV1

and ybFEV1 to ensure that our approach

was robust to the timing of the phenotype
measurements. Finally, the predictive
performance and accuracy of our TRS were
comparable using both simplified models
andmodels adjusted for several potential
confounders, including F508del zygosity
and previous modulator use.

At the same time, we acknowledge
several limitations. Many eligible patients
started Trikafta within the first year of the
COVID-19 pandemic, hindering our ability to
recruit patients, obtain samples, and gather
baseline and follow-up information on a
larger cohort. Because of the unique nature of

Table 3. Top Baseline Differentially Expressed Genes Associated with Elexacaftor/Tezacaftor/Ivacaftor Response

Gene Name Log2FC P Value FDR P Value

FEV1 improvement >5% on ETI
treatment

RNU1-2 RNA, U1 small nuclear 2 3.57 3.653 1028 7.1331024

ACTRT3 Actin-related protein T3 0.509 7.253 1027 5.5431023

NFATC3 Nuclear factor of activated T cells 3 20.282 8.503 1027 5.5431023

CLDN15 Claudin 15 0.628 2.323 1025 1.1331021

KLHL17 Kelch like family member 17 0.571 3.113 1025 1.2131021

LOC729732 — 0.997 5.733 1025 1.8731021

LOC102724192 — 1.598 8.543 1025 2.0631021

MIR3648 MicroRNA 3648 3.275 1.033 1024 2.0631021

BREA2 Breast cancer estrogen-induced apoptosis 2 1.076 1.203 1024 2.0631021

ELOVL3 ELOVL fatty acid elongase 3 2.581 1.213 1024 2.0631021

ybFEV1 improvement >5% on ETI
treatment

GPRC6A G protein–coupled receptor class C group 6
member A

8.945 1.053 1028 2.0631024

VCAM1 Vascular cell adhesion molecule 1 23.014 3.193 1027 3.1231023

DLGAP1-AS5 DLGAP1 antisense RNA 5 21.909 1.953 1025 1.1531021

CRTAM Cytotoxic and regulatory T-cell molecule 22.399 3.083 1025 1.1531021

GZMH Granzyme H 22.646 4.823 1025 1.1531021

CD8A CD8a molecule 21.907 5.043 1025 1.1531021

MFNG MFNG O-fucosylpeptide 3-b-N-
acetylglucosaminyltransferase

21.428 5.203 1025 1.1531021

SH2D2A SH2 domain containing 2A 21.652 5.823 1025 1.1531021

GZMB Granzyme B 22.65 6.513 1025 1.1531021

KLRC3 Killer cell lectin like receptor C3 22.777 6.813 1025 1.1531021

BMI improvement above the
median on ETI treatment

PADI6 Peptidyl arginine deiminase 6 20.04 3.223 10210 6.2931026

LOC100996517 Vesicle-trafficking protein SEC22b 214.508 6.373 1027 6.2331023

LOC102723584 Cell division cycle protein 27 homolog 6.132 3.113 1026 2.0231022

EVC2 EvC ciliary complex subunit 2 20.458 1.283 1025 4.4531022

VPREB3 V-set pre–B-cell surrogate light chain 3 21.309 1.333 1025 4.4531022

FAM124A Family with sequence similarity 124 member A 21.072 1.373 1025 4.4531022

CLDN11 Claudin 11 21.756 2.023 1025 5.3831022

CPQ Carboxypeptidase Q 20.3 2.463 1025 5.3831022

IFNAR2 IFN a and b receptor subunit 2 0.32 2.473 1025 5.3831022

ADAMTS19 ADAM metallopeptidase with thrombospondin
type 1 motif 19

21.714 4.583 1025 8.9631022

Table shows the top 10 DEGs for each clinical outcome, including those significant at FDR P, 0.05. Table E4 shows all DEGs at a nominal
P value ,0.01.
Bold significance values are indicated P,0.05.
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the cohort and the transcriptomic data
needed, we lack external replication to validate
our findings. However, we used statistical
cross-validation to reduce overfitting and
minimize estimate bias. Given budget and
other restrictions, we lacked healthy control
subjects, disease control subjects (e.g., non-CF,
such as asthma), and drug control subjects
(i.e., pwCF not taking ETI). As ETI is now
approved for patients>2 years of age, future
replication studies should include younger
children. The goal of our analysis was to
identify transcriptomic biomarkers that could

be useful in clinical practice; although
elucidating underlyingmechanisms is beyond
the scope of our study, future research could
pursue experimental validation of the
reported genes to assess potential underlying
mechanisms. Finally, the analysis was based
on a single-center cohort, althoughmean
DFEV1 andDBMI suggest that changes are
representative of what others have reported.

Conclusions
Using transcriptome-wide data from nasal
respiratory epithelium, we were identified

biomarkers that were accurate predictors of
ETI clinical effectiveness. If validated, this
approach could help understand the
mechanism for heterogeneous responses
and aid clinical decision making in pwCF.
Future research should focus on independent
validation of our TRS and on experimental
interrogation of potential underlying
mechanisms.�

Author disclosures are available with
the text of this article at www.atsjournals.
org.
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