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Abstract
Background Efforts toward tuberculosis management and control are challenged by the emergence of 
Mycobacterium tuberculosis (MTB) resistance to existing anti-TB drugs. This study aimed to explore the potential of 
machine learning algorithms in predicting drug resistance of four anti-TB drugs (rifampicin, isoniazid, streptomycin, 
and ethambutol) in MTB using whole-genome sequence and clinical data from Uganda. We also assessed the model’s 
generalizability on another dataset from South Africa.

Results We trained ten machine learning algorithms on a dataset comprising of 182 MTB isolates with clinical data 
variables (age, sex, HIV status) and SNP mutations across the entire genome as predictor variables and phenotypic 
drug-susceptibility data for the four drugs as the outcome variable. Model performance varied across the four anti-TB 
drugs after a five-fold cross validation. The best model was selected considering the highest Mathews Correlation 
Coefficient (MCC) and Area Under the Receiver Operating Characteristic Curve (AUC) score as key metrics. The 
Logistic regression excelled in predicting rifampicin resistance (MCC: 0.83 (95% confidence intervals (CI) 0.73–0.86) 
and AUC: 0.96 (95% CI 0.95–0.98) and streptomycin (MCC: 0.44 (95% CI 0.27–0.58) and AUC: 0.80 (95% CI 0.74–0.82), 
Extreme Gradient Boosting (XGBoost) for ethambutol (MCC: 0.65 (95% CI 0.54–0.74) and AUC: 0.90 (95% CI 0.83–0.96) 
and Gradient Boosting (GBC) for isoniazid (MCC: 0.69 (95% CI 0.61–0.78) and AUC: 0.91 (95% CI 0.88–0.96). The best 
performing model per drug was only trained on the SNP dataset after excluding the clinical data variables because 
intergrating them with SNP mutations showed a marginal improvement in the model’s performance. Despite the 
high MCC (0.18 to 0.72) and AUC (0.66 to 0.95) scores for all the best models with the Uganda test dataset, LR model 
for rifampicin and streptomycin didn’t generalize with the South Africa dataset compared to the GBC and XGBoost 
models. Compared to TB profiler, LR for RIF was very sensitive and the GBC for INH and XGBoost for EMB were 
very specific on the Uganda dataset. TB profiler outperformed all the best models on the South Africa dataset. We 
identified key mutations associated with drug resistance for these antibiotics. HIV status was also identified among 
the top significant features in predicting drug resistance.

Conclusion Leveraging machine learning applications in predicting antimicrobial resistance represents a promising 
avenue in addressing the global health challenge posed by antimicrobial resistance. This work demonstrates that 
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Introduction
The growing challenge of antimicrobial resistance (AMR) 
is a global public health emergency posing a great threat 
to modern medicine [1, 2]. AMR is associated with a neg-
ative effect on the economies of communities and coun-
tries most especially low-income and middle-income 
countries (LMICs) having a higher burden of infec-
tious diseases [3]. Previous estimates in 2022, estimated 
4.95 million deaths to be associated with AMR, including 
1.27 million deaths attributed to bacterial AMR in 2019 
[4]. While some researchers critique these forecasts [5], 
the World Health Organization (WHO) and numerous 
organizations recognize AMR as a pressing issue requir-
ing a coordinated global response [4]. The WHO has 
established the Global Antimicrobial Resistance Surveil-
lance System in 2015, marking the first global collabora-
tive effort for AMR surveillance [6].

Mycobacterium tuberculosis (MTB) is the causative 
agent of tuberculosis (TB), a leading infectious disease 
with an estimated 1.6 million deaths annual deaths glob-
ally [7]. MTB is part of the Mycobacterium tuberculosis 
Complex which encompasses several lineages (L) caus-
ing TB in both humans and animals. While some of the 
MTBC human associated lineages are geographically 
widespread, others are more restricted and they are 
often referred to as M. tuberculosis sensu stricto (L1 - L4 
and L7)), Mycobacterium africanum (L5, and L6), and 
a recently discovered L 8 [8, 9]. Standard TB treatment 
involves a 6-month regimen of four first-line drugs: iso-
niazid (INH), rifampicin (RIF), ethambutol (EMB) and 
pyrazinamide (PZA) [10]. However, the increasing preva-
lence of first-line drug resistance necessitates the use of 
second-line drugs for longer durations (at least 9 to 20 
months) to treat multidrug-resistant TB (MDR-TB) [10].

The emergence and spread of drug-resistant TB (DR-
TB) poses a major challenge to global TB control efforts 
[11]. In 2022, the WHO estimated that 410,000 people 
developed MDR-TB/Rifampicin-Resistant TB (RR-TB) 
and these accounted for 3.9 of the 10.6 million estimated 
incident TB cases for that year [11]. Effective manage-
ment of DR-TB management requires multi-pronged 
approach encompassing rapid accurate detection, treat-
ment, prevention, surveillance, and continuous program 
evaluation [12].

Current diagnostic methods for TB and DR-TB strains 
in Uganda include the GeneXpert MTB/RIF assay and 
conventional culture-based tests like Phenotypic Drug 

Susceptibility Testing [12–14]. However, these methods 
have limitations including focusing only on the principal 
mutations associated with rifampicin-resistance and have 
extended turnaround times [10, 12]. Recently, the WHO 
TB Supranational Reference Laboratory in Uganda has 
started performing Next-generation sequencing (NGS) 
for DR-TB especially for national drug resistance survey 
samples and potential extensively drug-resistant TB cases 
[15].

To address these limitations and enable faster identifi-
cation and prediction of antibiotic resistance, researchers 
have explored various approaches. Conventional asso-
ciation rule methods based on whole genome sequenc-
ing (WGS) data have been used to identify variants 
associated with AMR but are also limited in detecting 
resistance by unknown mechanisms as they depend on 
pre-existing databases [10, 16]. In recent years, machine 
learning (ML) has emerged as a powerful tool for predict-
ing resistance to different antibiotics using WGS data. A 
study in 3 African countries applied ML for E. coli resis-
tance prediction suggesting broader applicability for 
DR-TB diagnosis in resource limited settings [17]. This 
aligns with existing research demonstrating the potential 
of ML for DR-TB prediction.

For instance, Green et al. developed a comprehen-
sive framework utilizing a neural network to predict 
resistance patterns in Mycobacterium tuberculosis from 
genomic data [18]. Similarly, a study in the United King-
dom developed and compared traditional ML methods 
including support vector machine (SVM), logistic regres-
sion (LR) and random forests (RF) for predicting resis-
tance to eight anti-TB drugs in a cohort of 1839 MTB 
isolates [19]. Using a cohort of 13,402 MTB isolates col-
lected from 16 countries across 6 continents, several ML 
classifiers and linear dimension reduction techniques 
were developed to predict DR-TB for 11 drugs [20]. Also 
another study by Zhang et al. employed a deep convolu-
tional neural network model for resistance diagnosis and 
a SVM model to identify resistance genes and mutations 
utilizing clinically collected MTB genomic data of MTB 
for PZA resistance [21]. Kuang et al. developed 24 binary 
classifiers for MTB drug resistance status across eight 
anti-MTB drugs using LR, RF and 1D CNN with a train-
ing dataset of 10,575 MTB isolates [10].

Despite the growing application of ML in TB research, 
most of this has been applied in the high-income 
countries with limited research done in the Low- and 

integration of diverse data types such as genomic and clinical data could improve resistance predictions while using 
machine learning algorithms, support robust surveillance systems and also inform targeted interventions to curb the 
rising threat of antimicrobial resistance.
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Middle-Income Countries (LMICs). Furthermore, prior 
methods often lack integration of clinical data, which 
is critical in LMIC contexts for capturing the full spec-
trum of factors influencing resistance. This study aims to 
evaluate the performance of ML algorithms in predicting 
drug resistance of MTB isolates using both genomic and 
clinical data from Uganda.

Materials and methods
Study design
This was a cross-sectional study utilizing data collected 
in the past years (2013 to 2023) to explore associations 
between predictors and outcomes from drug resistance 
using machine learning algorithms.

Sample size
In this study, we used two datasets referred to as the 
Uganda (UG) data and the South Africa (SA) (Table  1) 
and (Fig. 1).

Data description
In this study we used WGS data and corresponding clini-
cal data consisting of age, sex, and HIV status. We then 
focused on four anti-TB drugs; rifampicin (RIF), isonia-
zid (INH), ethambutol (EMB) and Streptomycin (STM). 
Three of these drugs (RIF, INH, EMB) are known as 
first-line drugs for TB treatment and STM belongs to the 
aminoglycoside class of drugs. These drugs were used 
because data on resistance was available in the two data-
sets and also because increasing prevalence to resistance 
to these drugs.

Uganda dataset
The UG dataset comprised of WGS of 226 MTB isolates 
that was corresponded to phenotypic information for the 
anti-TB drugs and associated clinical data (age, sex and 
HIV status) (Table 2). This data was made publicly avail-
able from the sequence read archive database [22] by var-
ious studies (Table 3).

Table 1 Overview of the antimicrobial resistance phenotype data for the four drugs: the number of isolates that are resistant or 
susceptible
Drug RIF INH EMB STM
Source UG SA UG SA UG SA UG SA
Resistant 131 210 93 173 68 128 80 141
Susceptible 75 26 113 63 138 108 126 95
Total 206 236 206 236 206 236 206 236
Abbreviations* UG – Uganda; SA – South Africa

Fig. 1 Venn diagram quantifying the number of instances of co-occurrence of resistance between the four drugs in the UG dataset
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South Africa dataset
The SA dataset consisted of WGS data obtained from 
patients in KwaZulu-Natal, South Africa who were 
recruited with drug-resistant TB as they had previously 
experienced the worst outcomes and most problems 
with acquired resistance, as well the drug susceptible 
cohort [26]. Out of the 399 MTB isolates, only 236 were 
included in the study as they had complete phenotypic 
information from the four drugs. All WGS data are avail-
able under the NCBI SRA Bio Project PRJNA559528.

Genome processing
The quality of the raw WGS reads was assessed using 
FastQC v0.11.3 [27] and trimmomatic v0.39 for adapter 
clipping, quality trimming and minimum length 
exclusion (LEADING:3, TRAILING:3 SLINDING-
WINDOW:4:20 MINLEN:25) [28]. Read taxonomy 
investigation using kraken v.2.1.3 [29] and bracken v.2.9 
[30] was performed to assess for read contamination and 
a total of 23 reads were excluded with less 95% propor-
tion of MTB. The trimmed reads were then mapped to 
a reference genome (H37Rv; NC_000962.3) using Snippy 
v4.6.0 which is a variant calling and core genome align-
ment pipeline [31]. This pipeline begins by mapping the 
reads to the reference genome using BWA MEM v0.7.17 
[32] generating a sequence alignment file (SAM). The 
SAM file is then processed by samtools v.1.18 [33] gener-
ating a binary alignment file (BAM) from which variants 
are called using Freebayes v.1.3.6 [34] with default values 
for key parameters (--mincov –minfrac –minqual). These 
variants were subsequently annotated using SnpEff v.5.0 
[35]. Additionally, we used the default parameters of TB 
Profiler too v4.3.0 for lineage and drug resistance pre-
diction using the trimmed reads [36]. The entire bioin-
formatics analysis workflow (Fig. 2) was executed on the 
Open Science Grid High Throughput Computing infra-
structure [37, 38].

Table 2 Overview of the patient characteristics from the 
Uganda dataset
Characteristic Frequency(N)
Age Range (years)
13–29 74
30–39 51
40+ 44
SEX
Male 96 (45.07%)
Female 74 (34.74%)
Missing 43 (20.19%)
HIV Status
Positive 75 (35.21%)
Negative 94 (44.13%)
Missing 44 (20.66%)

Table 3 Description of the studies from which UG data was obtained
Study Bio project Sam-

ple 
size

Coun-
try

Elucidating emergence and transmission of multidrug-resistant tuberculosis in treatment experienced patients 
by whole genome sequencing [23]

PRJEB2424 51 Uganda

High Genotypic Discordance of Concurrent Mycobacterium tuberculosis Isolates from Sputum and Blood of 
HIV-Infected Individuals [24]

PRJEB10577 26 Uganda

Whole genome sequencing to complement drug resistance surveys in Uganda [25] PRJEB10533 90 Uganda
Whole Genome Sequencing-based Characterization of Mycobacterium tuberculosis Isolated from HIV-Seroposi-
tive Ugandans with Tuberculosis and CD4 + T-Cell Counts of 0-1150 Cells/µL

PRJNA481638 59 Uganda

First report of Whole-genome analysis of an extensively drug-resistant Mycobacterium tuberculosis clinical 
isolate with Bedaquiline, Linezolid and Clofazimine resistance from Uganda [15]

PRJNA749651 2 Uganda

Fig. 2 Illustration of the bioinformatics analysis workflow
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Phylogenetics analysis
Using the Snippy-core, we generated a core SNP align-
ment file that we used to obtain the phylogenetic tree. 
Prior to obtaining the core SNP alignment file we masked 
repetitive regions (PE/PPE/PGRS genes) of the genome 
using the bed file provided by Snippy. We also filtered for 
recombination regions using gubbins [39] and obtained 
the core snp alignment file containing the polymorphic 
sites using snp-sites v.2.5.1 [40] tools. Using FastTree 
v.2.1.11 [41], we generated the maximum likelihood tree 
with a generalized time-reversible model. The phyloge-
netic tree obtained was visualized using iTOL v6 (Inter-
active Tree Of Life) (https://itol.embl.de/).

SNPs pre-processing and encoding
We utilized the bcftools [42] to extract the reference 
alleles, alternate alleles and their chromosome positions 
from the individual filtered VCF files obtained from the 
snippy pipeline and merged all the isolates based on posi-
tion of the reference alleles [17]. The final output was a 
SNP matrix which consisted of samples represented in 
the rows and the variant alleles as columns.

One hot encoding was employed to encode the SNP 
matrix, where each sequence variation was represented 
as a binary vector. The presence of a specific allele at a 
given chromosome position was denoted by a ‘1’, while 
the absence was denoted by a ‘0’. This approach allowed 
us to effectively capture variants across the entire genome 
for each of the MTB isolates included in the study and 
also transformed the categorical data indicated by A, C, 
G, T into a numerical format which is suitable for the ML 

analyses. We also denoted the missing values represented 
as N in the SNP matrix with a ‘0’. To assess the generaliz-
ability of the ML models on the unseen data, we obtained 
a homogeneous set of variants between the training (UG 
dataset) and the validation dataset (SA dataset). Using 
the similar technique, the antibiotic phenotypes for key 
drugs were represented a binary vector where the ‘S’ for 
susceptible was denoted by a ‘0’ and ‘R’ for resistant by a 
‘1’.

Machine learning for antimicrobial resistance prediction
We trained ten machine learning algorithms imple-
mented in the Scikit-learn version 1.3.2 [43]on a com-
bined dataset consisting of 4994 variants across the entire 
MTB genome and clinical data variables (age, sex and 
HIV status) (Fig. 3). However, since we had missing val-
ues within our dataset, we excluded 21 MTB isolates of 
which 19 had no antimicrobial resistance phenotype data 
for the four drugs (RIF, INH, EMB and STM) and 2 had 
empty VCF files after filtering for low quality variants. 
In addition, we imputed the missing data for the clini-
cal data variables using the simple imputer module with 
either mean strategy for numerical data or most frequent 
strategy for categorical data in order to obtain a complete 
dataset. For each drug, the dataset consisting of 182 MTB 
isolates was split into training set (145 MTB isolates) that 
comprised 80% of the resistant and susceptible isolates 
respectively and the remaining 20% to the testing set (37 
MTB isolates).

All the ML models included had unique capabilities and 
were implemented using the default parameters, focusing 

Fig. 3 Illustration of machine learning workflow
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on each antibiotic at a time to ensure accurate predic-
tions. Logistic Regression (LR) is a simple, fast and easy 
model to implement for binary classification tasks. Deci-
sion Trees (DT), Extra Trees Classifier (ETC) and Ran-
dom Forest are tree-based models that construct tree-like 
structures to make predictions. However, ETC and RF 
aggregate multiple decision trees, reducing overfitting 
which is one of the problems arising from using DT. 
Support Vector Machines (SVM) can perform well with 
small datasets, handle high dimensional data and have a 
good generalization performance on unseen data. Boost-
ing classifiers such as Adaptive Boosting (AdaBoost) and 
Gradient Boosting (GBC) improve the predictive per-
formance by training a sequence of weak models, each 
compensating the weaknesses of its predecessors in order 
to make a strong ML model. CatBoost are employed for 
their state -of-art performance in handling categorical 
data variables and Extreme Gradient Boosting (XGBoost) 
is a powerful gradient-boosting algorithm known for its 
versatility and effectiveness in handling large datasets 
and complex feature interactions. Multilayer Perceptron 
(MLP), a neural network captures complex non-linear 
relationships in the data.

All models were trained on both originally imbalanced 
and balanced datasets. First, we trained the ML mod-
els on SNP data only and combined dataset to assess if 
integration of the clinical data improves the model per-
formance. For balancing, we applied the up-sampling 
strategy using the Synthetic Minority Over-sampling 
Technique (SMOTE) technique on the training dataset. 
This balancing technique is crucial most especially when 
dealing with data in real-world scenarios as it prevents 
models from becoming biased towards the majority class, 
thereby enhancing performance.

Model selection and evaluation on the Uganda test dataset
The performance of the ML models was evaluated using 
various key metrics such as accuracy, precision, recall 
(sensitivity), specificity, F1 score, MCC, receiver operat-
ing characteristics curve (ROC) and the area under the 
curve (AUC) after a five-fold cross-validation was per-
formed on the training set. Each metric was calculated 
along with its 95% confidence intervals (CI) using the 
bootstrap method. The best model was selected con-
sidering the highest MCC and AUC score as key met-
rics, the parameters of the model were then optimized 
through cross-validation on the training set while using 
the gridsearchCV technique This is because the MCC 
metric considers all the elements of a confusion matrix 
for instance the True Negative (TN), True Positive (TP), 
False Positive (FP) and False Negative (FN). Additionally, 
the AUC score shows the ability of the ML models to dis-
tinguish between the classes and it’s plotted as the true 

positive rate (TPR) against the false positive rate (FPR) at 
various threshold settings.

The LR model achieved the optimal parameters as a 
regularization strength (C) of 10 and maximum number 
of iterations (max_iter:300) for the RIF drug and C of 5 
and maximum number of iterations (max_iter:500) for 
the STM drug. For EMB, XGBoost had optimal parame-
ters as learning rate: 0.3, maximum depth(max_depth):3, 
number of estimators (n_estimators):100 and subsam-
ple:1.0. Finally, for INH, GBC model achieved the optimal 
parameters as learning rate: 0.5, maximum depth(max_
depth):9, number of estimators (n_estimators):100 and 
subsample:0.7. The performance of these best models for 
each drug were then evaluated on the test Uganda data-
set while using the optimal parameters obtained.

Model evaluation on the external dataset (South Africa)
To assess the generalizability of the best ML models, 
we assessed the performance of the best ML models in 
predicting DR on the SA dataset (validation dataset). 
This dataset consisted of 236 samples with a severe class 
imbalance issue that varied across the antibiotics.

Feature importance ranking and marker gene 
identification
To identify the top ten most important features for the 
best model, we used the feature importance attribute for 
the tree-based models like XGBoost, GBC which quanti-
fies the contribution of each feature to the model’s pre-
diction. For LR, we calculated the absolute values of the 
coefficients to identify feature importance scores. We 
annotated the identified the SNPs and extracted the cor-
responding gene annotations from annotated VCF files 
in order to obtain the functional consequence of these 
genes and to further investigate their potential contribu-
tion to drug resistance mechanisms in MTB.

Results
Genetic diversity of the UG sequence data: MTB lineages, 
sublineage distribution and drug resistance types
The MTB UG isolates were classified into five Lineages(L) 
where L4 was the most predominant with n = 149/203 
followed by L3 (46/203), L2(6/203), L3&L4(1/203) and 
finally L1(1/203) (Table  4) The most predominant sub-
lineage observed was L4.6.1.1(T2-Uganda or Uganda II) 
with n = 36/203 (17.73%) belonging to the Uganda geno-
type (L4.6.1 or T2-Uganda; T2) compared to the other 
sub lineages Among the 203 MTB isolates, 37.93% were 
susceptible to all anti TB drugs, 2.96% were purely resis-
tant to Rifampicin (RR-TB), 0.49% were Pre-XDR-TB, 
32.51% were MDR-TB, 0.99% were XDR-TB, 22.66% were 
mono resistant to Isoniazid (HR-TB) and 2.46% were 
classified as Others (Table 5).
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A maximum likelihood phylogenetic tree of 203 
MTB isolates constructed using all genome-wide SNPs 
revealed the expected clustering by sub lineage (Fig. 4).

Comparison of the performance of the ML models in 
predicting AMR on the SNP data only and a combined 
dataset (SNP data and clinical data)
The mean scores for each of the metrics (accuracy, recall, 
precision, MCC, F1_score, ROC_AUC), after a five-fold 
cross validation on the training set consisting of SNP 
data only and combined dataset respectively (Tables  6 
and 7). In this study we focused on the MCC score and 
AUC score as our metrics of performance. Generally, 
there were marginal changes in ML model performance 
(increase or decrease by 0.01or 0.02) across all metrics 
which was consistent across all the drugs. For drugs INH 
and RIF, there a notable increase MCC score (INH:0.17 
and RIF:0.26) and AUC score (INH:0.60 and RIF:0.66) 

after Intergrating the clinical and SNP data compared to 
the other drugs (EMB and STM).

Evaluation of the ML models on the up sampled UG 
dataset
The models showed a substantial increase in all the met-
rics after a five-fold cross validation on the up sampled 
dataset for all the drugs (Table 8). For RIF, the best model 
was LR, it had the highest MCC (0.83) with AUC score as 
(0.96), recall (0.90), precision (0.93), specificity (0.93) and 
f1score (0.91). For INH, GBC achieved the highest MCC 
(0.69) with AUC score as (0.91), recall (0.76), precision 
(0.90), specificity (0.91) and f1 score (0.82). For EMB, 
XGBoost achieved the highest MCC (0.65), with AUC 
score as (0.90), recall (0.79), precision (0.85), specific-
ity (0.85) and f1 score (0.81). For STM, LR and Adaboost 
shared the same MCC score (0.44) which was the highest. 
However, LR was selected as the best model as it had a 
higher AUC score (0.80) compared to that of Adaboost 
(0.77). LR also had recall (0.70), precision (0.73), specific-
ity (0.73) and f1 score (0.71) (Table 8).

Performance of the best performing ML algorithms for 
predicting DR on Uganda data
The best performing models for each drug were trained 
on up sampled SNP dataset only because adding the clin-
ical data features didn’t significantly improve the model 
performance. Generally, all the models demonstrated 
good predictive performance with MCC scores rang-
ing from 0.18 to 0.72 and AUC scores from 0.66 to 0.95 
across the four drugs (Table 9). Performance metrics with 
confidence intervals for each ML model on this dataset 
are shown in Table 9.

Performance of the best performing ML algorithms for 
predicting DR on South Africa data
The LR model didn’t generalize well on the SA dataset 
achieving an MCC of 0.02 (95% CI: -0.25 -0.01) to -012 
(95% CI: -0.25 -0.01) and ROC-AUC of 0.63 (95% CI: 
0.52–0.73) to 0.46 (95% CI: 0.39–0.53) when compared to 
GBC for INH and XGBoost for EMB (Table 10).

Benchmarking the best ML models against TB profiler on 
the UG dataset
We compared the predictive performance of the best ML 
models for four drugs (RIF, INH, EMB and STM) using 
key metrics sensitivity, specificity and ROC-AUC against 
WHO catalogue based tool TB profiler. Generally, all the 
best models had a higher ROC-AUC score compared to 
TB profiler (Fig. 5) with exception of LR model for STM. 
The mean LR sensitivity (0.75) for RIF is significantly 
higher than that of TB profiler (0.5). XGBoost for EMB 
showed a similar performance as TB profiler in terms 
of mean sensitivity (0.77) but achieved a higher mean 

Table 4 MTB lineage and sublineage distribution
Lineage (L) N (203) Sublineage N (203)
L4 149 L4.6.1.1/Uganda II 36

L4.6.1.2/Uganda I 27
L4.4.1.1 17
L4.3.4.2.1/LAM 15
L4.1.1.3/X 12
L4.3.4.2 12
L4.8 8
L4.6.1 5
L4.3.3/LAM 4
L4.2.2.2 3
L4.1.2.1/Haarlem 2
L4.9 2
L4.1.1.1/X 1
L4.6.1.1; L4.3.4.2 1
L4.6.1.2; L4.2.2.2 1
L4.6.1.2; L4.3.4.2.1 1
L4.6.1.2; L4.6.1.1 1
L4.7 1

L3 46 L3 27
L3.1.2.1 12
L3.1.1 7

L2 6 L2.2.1 6
L3; L4 1 L4.6.1.2; L3 1
L1 1 L1.1.2 1

Table 5 Distribution of the drug-resistant TB profiles
DR-TB type N = 203(%)
HR-TB 46(22.66)
MDR-TB 66(32.51)
Other 5(2.46)
Pre-XDR-TB 1(0.49)
RR-TB 6(2.96)
Sensitive 77(37.93)
XDR-TB 2(0.99)
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Table 6 Performance of the best three ML models on only SNP data
Drug Model Recall

(Sensitivity)
(95% CI)

Specificity
(95% CI)

ROC_AUC
(95% CI)

MCC
(95% CI)

RIF LR 0.88 (0.80–0.93) 0.84 (0.69–0.95) 0.92 (0.89–0.96) 0.71 (0.64–0.78)
CatBoost 0.91 (0.87–0.94) 0.73 (0.52–0.86) 0.90 (0.88–0.92) 0.65 (0.52–0.74)
GBC 0.88 (0.83–0.93) 0.74 (0.61–0.88) 0.89 (0.87–0.91) 0.63 (0.55–0.71)

INH GBC 0.74 (0.68–0.82) 0.89 (0.79–0.99) 0.89 (0.85–0.93) 0.65 (0.52–0.78)
XGBoost 0.77 (0.68–0.86) 0.79 (0.67–0.92) 0.86 (0.81–0.90) 0.58 (0.42–0.69)
CatBoost 0.66 (0.58–0.75) 0.85 (0.75–0.96) 0.85 (0.80–0.89) 0.54 (0.42–0.68)

EMB CatBoost 0.59 (0.38–0.74) 0.91 (0.84–0.97) 0.84 (0.74–0.93) 0.53 (0.28–0.72)
AdaBoost 0.63 (0.42–0.78) 0.87 (0.83–0.92) 0.83 (0.77–0.89) 0.52 (0.35–0.63)
GBC 0.58 (0.41–0.72) 0.87 (0.82–0.92) 0.83 (0.75–0.91) 0.47 (0.31–0.64)

STM GBC 0.47 (0.40–0.57) 0.80 (0.74–0.85) 0.70 (0.64–0.76) 0.29 (0.26–0.31)
XGBoost 0.50 (0.33–0.66) 0.75 (0.66–0.83) 0.70 (0.63–0.78) 0.25 (0.08–0.45)
CatBoost 0.34 (0.26–0.42) 0.81 (0.74–0.85) 0.65 (0.55–0.73) 0.17 (0.06–0.27)

Fig. 4 A maximum likelihood phylogenetic tree of 203 MTB UG isolates showing three major clades alongside the sublineage and individual drug 
resistance profile for the anti TB drugs obtained from TB profiler with the white colour indicating absence and the black colour indicating presence of 
resistance mutation for the drug
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specificity of 0.92 compared to TB profiler (0.88). Despite 
the fact that, TB profiler achieved a higher mean sensitiv-
ity (0.82) than GBC (0.76) for INH, it’s mean specificity 
(0.7) was slower than that of GBC (0.75).

Benchmarking the best ML models against TB profiler on 
the SA dataset
Generally, the TB profiler tool achieved a higher sensi-
tivity, specificity and ROC-AUC score when compared 

to the LR model for RIF and STM, GBC for INH and 
XGBoost for EMB (Fig. 6).

Identification of the top significant features for the best 
model
Figure  7 shows the top ten important features selected 
for each drug by considering the top performing models. 
In addition to the SNP positions, HIV status was iden-
tified among the top 10 important features for RIF and 

Table 7 Performance of the best three ML models on a combined dataset (SNP data and clinical data)
Drug Model Recall (Sensitivity)

(95% CI)
Specificity
(95% CI)

ROC_AUC
(95% CI)

MCC
(95% CI)

RIF XGBoost 0.92 (0.87–0.96) 0.77 (0.67–0.89) 0.93 (0.90–0.97) 0.71 (0.64–0.80)
CatBoost 0.91 (0.87–0.94) 0.72 (0.62–0.82) 0.93 (0.90–0.95) 0.66 (0.60–0.71)
LR 0.88 (0.81–0.95) 0.84 (0.70–0.95) 0.93 (0.89–0.97) 0.73 (0.65–0.81)

INH GBC 0.73 (0.65–0.83) 0.91 (0.83–0.99) 0.89 (0.85–0.93) 0.66 (0.57–0.76)
XGBoost 0.77 (0.70–0.84) 0.82 (0.73–0.91) 0.87 (0.83–0.92) 0.60 (0.44–0.70)
CatBoost 0.68 (0.57–0.79) 0.88 (0.79–0.96) 0.85 (0.80–0.89) 0.57 (0.45–0.72)

EMB CatBoost 0.58 (0.42–0.74) 0.90 (0.83–0.97) 0.84 (0.73–0.94) 0.51 (0.25–0.70)
XGBoost 0.64 (0.51–0.73) 0.87 (0.80–0.94) 0.82 (0.75–0.89) 0.54 (0.36–0.68)
GBC 0.60 (0.47–0.72) 0.84 (0.79–0.89) 0.82 (0.74–0.90) 0.46 (0.33–0.60)

STM XGBoost 0.54 (0.45–0.64) 0.75 (0.67–0.81) 0.71 (0.69–0.73) 0.30 (0.23–0.36)
GBC 0.47 (0.35–0.58) 0.84 (0.77–0.90) 0.70 (0.67–0.74) 0.36 (0.23–0.49)
DT 0.60 (0.53–0.70) 0.75 (0.68–0.82) 0.68 (0.61–0.75) 0.33 (0.24–0.41)

Table 8 Evaluation of the ML models on the up sampled UG dataset
Drug Model Recall

(sensitivity) (95% CI)
Specificity
(95% CI)

ROC_AUC
(95% CI)

MCC
(95% CI)

RIF XGBoost 0.89 (0.83–0.94) 0.91 (0.86–0.95) 0.97 (0.95–0.98) 0.79 (0.72–0.87)
LR 0.90 (0.86–0.92) 0.93 (0.86–0.96) 0.96 (0.95–0.98) 0.83 (0.73–0.86)
GBC 0.83 (0.77–0.93) 0.90 (0.85–0.95) 0.96 (0.93–0.98) 0.73 (0.64–0.85)

INH GBC 0.76 (0.67–0.87) 0.91 (0.81–0.97) 0.91 (0.88–0.96) 0.69 (0.61–0.78)
CatBoost 0.74 (0.62–0.85) 0.85 (0.72–0.96) 0.89 (0.84–0.95) 0.61 (0.49–0.76)
XGBoost 0.76 (0.69–0.84) 0.81 (0.63–0.92) 0.88 (0.83–0.94) 0.59 (0.46–0.72)

EMB XGBoost 0.79 (0.74–0.83) 0.85 (0.76–0.95) 0.90 (0.83–0.96) 0.65 (0.54–0.74)
GBC 0.82 (0.77–0.86) 0.77 (0.69–0.85) 0.88 (0.83–0.92) 0.59 (0.50–0.67)
CatBoost 0.83 (0.71–0.87) 0.80 (0.73–0.91) 0.87 (0.83–0.91) 0.63 (0.46–0.74)

STM XGBoost 0.71 (0.64–0.78) 0.68 (0.57–0.78) 0.82 (0.77–0.85) 0.40 (0.30–0.48)
GBC 0.77 (0.71–0.76) 0.64 (0.61–0.68) 0.80 (0.77–0.84) 0.42 (0.36–0.41)
LR 0.70 (0.59–0.79) 0.73 (0.65–0.83) 0.80 (0.74–0.82) 0.44 (0.27–0.58)

Table 9 Performance of the ML algorithms in predicting DR on the UG dataset (test dataset)
Drug Best ML model Recall (Sensitivity) (95% CI) Specificity (95%CI) ROC AUC (95% CI) MCC (95% CI)
RIF LR 0.75(0.57–0.91) 1.00(1.00–1.00) 0.95(0.87–0.99) 0.72(0.54–0.90)
INH GBC 0.76(0.54–0.94) 0.75(0.55–0.94) 0.82(0.67–0.94) 0.51(0.23–0.78)
EMB XGBoost 0.77(0.53- 1.00) 0.92(0.79- 1.00) 0.89(0.72- 1.00) 0.69(0.43–0.90)
STM LR 0.41(0.15–0.67) 0.77(0.58–0.94) 0.66(0.48–0.84) 0.18(-0.14- 0.48)

Table 10 Performance of the ML algorithms in predicting DR on the SA dataset (validation dataset)
Drug Best ML model Recall (Sensitivity) (95% CI) Specificity (95%CI) ROC AUC (95% CI) MCC (95% CI)
RIF LR 0.94(0.90–0.97) 0.08(0.00- 0.20) 0.63(0.52–0.73) 0.02(-0.09- 0.17)
INH GBC 0.68(0.60–0.74) 0.81(0.71–0.91) 0.73(0.65–0.80) 0.43(0.32–0.54)
EMB XGBoost 0.51(0.42–0.60) 0.83(0.76–0.90) 0.76(0.69–0.81) 0.35(0.23–0.47)
STM LR 0.43(0.35–0.51) 0.45(0.35–0.55) 0.46(0.39–0.53) -0.12(-0.25-0.01)
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STM with best models as LR however it had a negative 
coefficient score value. Some features were shared across 
some drugs such as SNP position 761,155 (gene annota-
tions) (RIF, EMB and INH) and 2,523,205 (gene annota-
tions) (EMB and RIF) (Fig. 7).

Marker genes and mutations associated with drug 
resistance
The ten most important SNPs for each antibiotic as 
shown in (Fig. 7) where annotated and analyzed. The cor-
responding genes and mutations identified are shown in 
the (Table  11). Some of the mutations we identified are 
in well-known genes conferring antibiotic resistance, 
such as rpoB which confers RIF resistance, katG which is 
related to INH resistance and rpsL gene which is associ-
ated with STM resistance.

Discussion
The advent of WGS has increased the availability 
genomic data, necessitating the application of advanced 
analytical approaches, such as ML, to address complex 

challenges in disease diagnosis and prognosis, including 
TB management [44]. The increasing availability of bacte-
rial genome sequences offers an unprecedented opportu-
nity to detect antimicrobial AMR in silico, by identifying 
resistance-conferring patterns [45]. In our study, we iden-
tified lineage L4 and sub lineage as L4.6.1.1 (T2-Uganda 
and Uganda II) from the MTB UG isolates consistent 
with previous studies conducted in the region [8, 46, 47].

We evaluated the predictive performance of ten dif-
ferent ML models (RF, LR, SVM, MLP, CatBoost, GBC, 
AdaBoost, XGBoost, DT, and ETC) to infer resistance 
to four first-line antibiotics in MTB using both WGS 
and clinical data. Comparisons of model performance 
between SNP-only datasets and combined SNP-clinical 
datasets revealed only marginal differences (± 0.01 or 
0.02) in performance across the drugs. This suggests that 
while some clinical features such as age or sex might not 
provide clear insights into drug resistance mechanisms, 
incorporating diverse data sources remains beneficial as 
it could capture interactions between features that may 
not be apparent from a single data type.

Fig. 5 The comparison of the performance of the best ML models and TB profiler in predicting DR on the UG dataset across different drugs. (a) RIF, (b) 
INH, (c) EMB, (d) STM
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Performance varied across the four drugs, with LR out-
performing other models for RIF and STM, GBC excel-
ling for INH and XGBoost for EMB. Our findings of 
the LR and GBC among the best performing models in 
predicting drug resistance are comparable to those from 
published studies [20, 44]. These results likely reflect the 
unique resistance-conferring mutations associated with 
each drug and the varying capabilities of the different ML 
models.

The best performing models particularly LR for RIF 
and STM showed strong predictive performance on the 
Ugandan dataset but didn’t generalize well on South Afri-
can dataset compared to the boosting classifier models, 
GBC for INH and XGBoost for EMB. This observation 
aligns with previous findings from Nsubuga et al. where 
boosting classifiers exhibited strong generalizability on 

an African dataset for AMR prediction in E. coli [17]. 
This result could be due to the different proportions of 
resistant or susceptible isolates in the Uganda test dataset 
and South Africa dataset and lineage-specific genomic 
variations associated with DR.

Benchmarking the best ML models for each drug 
against TB profiler on the UG test dataset and SA data-
set (validation set) showed varied results in terms of 
sensitivity, specificity and ROC-AUC scores. Generally, 
the best ML models achieved a higher ROC-AUC score 
compared to TB profiler on the UG dataset with excep-
tion of the LR model on STM indicating that ML meth-
ods have the ability to discriminate between the resistant 
and susceptible strains of MTB. The LR model for RIF 
achieved a higher sensitivity than TB profiler indicating 
that it successfully identified snp mutations associated 

Fig. 6 The comparison of the performance of the best ML models and TB profiler in predicting DR on the SA dataset across different drugs. (a) RIF, (b) 
INH, (c) EMB, (d) STM
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with rifampicin resistance with a low false negative rate. 
In contrast whereas the XGBoost for EMB is as sensitive 
as TB profiler it achieved a higher specificity as the GBC 
model for INH. In our study we also observed the trade-
off between sensitivity and specificity in the performance 
of the predictive models. For instance, although GBC 
model achieved a higher specificity compared to the TB 
profiler, its sensitivity was low. The high specificity exhib-
ited by the boosting algorithms (GBC and XGBoost) 
makes them to correctly identify susceptible cases 
thereby minimising the false positive cases. This could be 
explained by their serial learning process which enables 
them to capture more complex patterns, enhancing their 
robustness across diverse datasets [48].

Comparatively, TB profiler outperformed all the best 
models in predicting drug resistance on the SA dataset 
as it achieved a higher mean sensitivity. This observa-
tion could be attributed to the fact it uses tbdb mutation 
library which is a combination of the original list of 
mutations associated with resistance from literature and 
WHO catalogue of mutations [36].

Our models identified HIV status as a key feature influ-
encing resistance to RIF and STM albeit with a negative 
coefficient. These findings corroborate previous stud-
ies that suggest while the HIV epidemic amplifies TB 
outbreaks by increasing the pool of susceptible hosts, 

but that HIV co-infection does not directly drive for the 
emergence of resistant MTB strains [49].

In addition to well-known resistance genes such as 
rpoB, katG and rpsL (associated with RIF, INH and 
STM resistance), our study detected novel SNPS within 
Proline-Glutamate (PE) and Proline-Glutamate-Poly-
morphic Guanine-Cytosine Rich Sequence (PE-PGRS) 
and proline-glutamate/ proline-proline-glutamate (PE/
PPE) genes, including PE_PGRS18 associated with INH 
resistance, PE_PGRS7, PPE34 and PPE54 associated with 
RIF resistance, PPE 19 associated with RIF resistance, 
and PPE55 for STM resistance. This family of proteins is 
implicated in host-pathogen interactions, virulence, and 
the development of drug resistance [50–53]. Our findings 
of mutations in PPE19 gene associated with INH resis-
tance and PPE 54 gene associated with RIF resistance 
were consistent with those from other studies [52, 54, 
55].

Additionally, mutations in the pykA gene (Rv1617) 
were identified to be associated with EMB resistance. 
Our findings are in contrast with though from recent 
studies highlighting a potential association between 
mutations in the pykA gene and resistance to cycloser-
ine [56]. We observed mutations in the ureC (Rv1850) 
gene, cyp136 (Rv3059) associated with EMB resistance, 
and also mutations in genes (Rv2059, Rv2082, Rv2828A, 
and Rv2828c), all of which are conserved hypothetical 

Fig. 7 Feature importance scores for the best performing models across different drugs. (a) RIF, (b) INH, (c) EMB, (d) STM

 



Page 13 of 16Babirye et al. BMC Infectious Diseases         (2024) 24:1391 

proteins to be associated with INH and EMB resistance. 
In addition, while we also observed mutations in genes 
in intergenic regions to be associated with resistance to 
INH, EMB and STM, there precise role and mechanisms 
associated with resistance in MTB is not defined. How-
ever our findings were consistent with those from pre-
vious studies that observed genes in intergenic regions 
associated with drug resistance, such as the oxyR-ahpC 
intergenic region for INH resistance [57], and embC-
embA Intergenic Region for EMB resistance [58].

Further research is needed to establish if the novel 
markers identified as associated with resistance in this 
study are causally involved in mediating resistance. The 
substantial drop in performance on the South African 
dataset highlights the challenges of generalizing models 

trained on one dataset to others with distinct characteris-
tics. Future studies should investigate the role of lineage-
specific genomic variations and their impact on model 
performance, which could provide deeper insights into 
the interplay between lineage diversity and resistance 
mechanisms. This will be crucial in establishing their 
robustness and reliability as predictive indicators of drug 
resistance in Mycobacterium tuberculosis. Moreover, our 
approach can also be applied to other biomedical areas, 
e.g. drug repurposing, drug response prediction, for 
cancer resistance prediction etc. More importantly, ML 
approaches have a great promise in systems medicine, 
to improve the diagnosis, targeted therapy and disease 
prevention.

Table 11 SNP mutations and corresponding marker genes associated with drug resistance
Drug SNP Position SNP Annotation Mutation Gene name
INH, RIF 761,155 missense p.Ser450Trp rpoB
INH 761,139 missense p.His445Asp rpoB
INH 3,379,763 intergenic_region n.3379763G > A Rv3020c-Rv3022A
INH 1,533,583 synonymous p.Tyr17Tyr PPE19
INH 888,992 intergenic_region n.888,992 A > C Rv0794c-

Rv0797
INH 2,340,621 missense p.Pro638Arg Rv2082
INH 2,626,149 synonymous p.Gly8Gly esxO
INH 3,594,344 intergenic_region n.3594344G > A Rv3217c-Rv3218
INH 761,110 missense p.Asp435Val rpoB
INH 1,095,364 missense p.Asn363Thr PE_PGRS18
RIF 2,163,790 synonymous p.Pro1174Pro PPE34
RIF 2,523,205 intergenic_region n.2523205_2523206insCGC Rv2248-Rv2249c
RIF 2,155,168 missense p.Ser315Thr katG
RIF 1,533,208 synonymous p.Gly142Gly PPE19
RIF 672,491 synonymous p.Gly1142Gly PE_PGRS7
RIF 3,735,802 synonymous p.Thr378Thr PPE54
EMB 1,789,933 intergenic n.1789933G > A Rv1588c-Rv1589
EMB 791,249 missense p.Ala140Thr Rv0691c
EMB 798,779 intergenic n.798779T > C Rv0697-Rv0698
EMB 1,816,349 missense p.Ala54Val pykA
EMB 1,651,308 missense p.Ala54Val pykA
EMB 1,655,546 intergenic n.1655546T > G Rv1467c-Rv1468c
EMB 2,097,990 synonymous p.Ala10Ala ureC
EMB 2,315,748 missense p.Asp192Ala Rv2059
EMB 3,420,388 synonymous p.Phe299Phe cyp136
STM 3,752,934 missense p.Val84Glu PPE55
STM 3,135,912 missense p.Thr141Arg Rv2828c
STM 781,822 missense p.Lys88Arg rpsL
STM 3,943,019 intergenic n.3,943,019 C > G Rv3511-Rv3512
STM 2,366,768 intergenic n.2,366,768 A > G Rv2104a-Rv2107
STM 55,553 missense p.Pro631Ser Rv0050
STM 580,772 intergenic n.580772_

580,797
delTGGGGGCACCAC
 C C G C T T G C G G G G G A
insAG

Rv0490-Rv0491

STM 104,712 intergenic n.104,712 C > T Rv0094c-Rv0095c
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Our study is not without limitations. First, we used 
SNP data derived from a single reference genome 
(H37Rv reference genome), which may exclude impor-
tant genomic regions related to resistance. Incorporat-
ing a pseudo-pan-genome or selecting more suitable 
reference genomes representing different resistance phe-
notypes could improve feature selection and ML perfor-
mance. Additionally, the limited availability of patient 
clinical data constrained the models’ ability to capture 
complex biological interactions that may underlie resis-
tance mechanisms. Expanding the dataset to include 
additional drugs and clinical factors could enhance the 
predictive power of these models. Multicollinearity was 
not extensively assessed, however, boosting classifiers like 
Gradient Boosting and XGBoost are robust to multicol-
linearity, effectively minimizing the impact of correlated 
features [59]. Future studies with larger datasets and 
more numerical variables should consider explicit collin-
earity assessments.

Conclusion
In summary, our study identified potential markers asso-
ciated with resistance in MTB and demonstrates the 
potential of ML algorithms to predict resistance using 
diverse data types. While our models focused on WGS 
data and clinical data, future efforts could benefit from 
integrating multiple omics layers, such as transcrip-
tomics, proteomics, and metabolomics, alongside com-
prehensive clinical information. Achieving a balance 
between dataset size, class distribution, and model com-
plexity will be critical to avoiding overfitting and ensur-
ing robust model performance.

The observed variation in model performance across 
the Ugandan and South African datasets underscores the 
importance of developing generalizable ML models that 
can be deployed across diverse populations. By building 
more scalable and adaptable models, we can enhance 
their utility in global TB control efforts and inform tar-
geted treatment strategies in the fight against AMR.
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