Skip to main content
. 2024 Sep 23;10:e2280. doi: 10.7717/peerj-cs.2280

Table 3. Model parameter configurations.

KNN model Decision tree model
v1 n_neighbors = 5, metric = ‘minkowski’, p = 2 v1 max_depth = None, random_state = None
v2 n_neighbors = 5, metric = ‘minkowski’, p = 1 v2 max_depth = 25, random_state = 50
v3 n_neighbors = 5, metric = ‘minkowski’, p = 2 v3 max_depth = 50, random_state = 100
v4 n_neighbors = 10, metric= ‘minkowski’, p = 1 v4 max_depth = 75, random_state = 42
v5 n_neighbors = 10, metric = ‘minkowski’, p = 2 v5 max_depth = 100, random_state = 42
Naive bayes model SVM model
v1 var_smoothing = 1e-8 v1 shrinking = True, random_state = None
v2 var_smoothing = 1e-8 v2 shrinking = False, random_state = 50
v3 var_smoothing = 1e-7 v3 shrinking = False, random_state = 100
v4 var_smoothing = 1e-5 v4 shrinking = False, random_state = 42
v5 var_smoothing = 1e-3 v5 shrinking = True, random_state = 42
Logistic regression model Random forest model
v1 fit_intercept = True, random_state = None v1 n_estimators = 100, random_state = None
v2 fit_intercept = False, random_state = 50 v2 n_estimators = 10, random_state = 50
v3 fit_intercept = False, random_state = 100 v3 n_estimators = 20, random_state = 100
v4 fit_intercept = False, random_state = 42 v4 n_estimators = 25, random_state = 42
v5 fit_intercept = False, random_state = 42 v5 n_estimators = 30, random_state = 42