v1 |
n_neighbors = 5, metric = ‘minkowski’, p = 2 |
v1 |
max_depth = None, random_state = None |
v2 |
n_neighbors = 5, metric = ‘minkowski’, p = 1 |
v2 |
max_depth = 25, random_state = 50 |
v3 |
n_neighbors = 5, metric = ‘minkowski’, p = 2 |
v3 |
max_depth = 50, random_state = 100 |
v4 |
n_neighbors = 10, metric= ‘minkowski’, p = 1 |
v4 |
max_depth = 75, random_state = 42 |
v5 |
n_neighbors = 10, metric = ‘minkowski’, p = 2 |
v5 |
max_depth = 100, random_state = 42 |
Naive bayes model
|
SVM model
|
v1 |
var_smoothing = 1e-8 |
v1 |
shrinking = True, random_state = None |
v2 |
var_smoothing = 1e-8 |
v2 |
shrinking = False, random_state = 50 |
v3 |
var_smoothing = 1e-7 |
v3 |
shrinking = False, random_state = 100 |
v4 |
var_smoothing = 1e-5 |
v4 |
shrinking = False, random_state = 42 |
v5 |
var_smoothing = 1e-3 |
v5 |
shrinking = True, random_state = 42 |
Logistic regression model
|
Random forest model
|
v1 |
fit_intercept = True, random_state = None |
v1 |
n_estimators = 100, random_state = None |
v2 |
fit_intercept = False, random_state = 50 |
v2 |
n_estimators = 10, random_state = 50 |
v3 |
fit_intercept = False, random_state = 100 |
v3 |
n_estimators = 20, random_state = 100 |
v4 |
fit_intercept = False, random_state = 42 |
v4 |
n_estimators = 25, random_state = 42 |
v5 |
fit_intercept = False, random_state = 42 |
v5 |
n_estimators = 30, random_state = 42 |