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ABSTRACT
Detecting people carrying firearms in outdoor or indoor scenes usually identifies (or
avoids) potentially dangerous situations. Nevertheless, the automatic detection of these
weapons can be greatly affected by the scene conditions. Commonly, in real scenes these
firearms can be seen from different perspectives. They also may have different real and
apparent sizes. Moreover, the images containing these targets are usually cluttered,
and firearms can appear as partially occluded. It is also common that the images can
be affected by several types of distortions such as impulse noise, image darkening or
blurring. All these perceived variabilities could significantly degrade the accuracy of
firearm detection. Current deep detection networks offer good classification accuracy,
with high efficiency and under constrained computational resources. However, the
influence of practical conditions in which the objects are to be detected has not
sufficiently been analyzed. Our article describes an experimental study on how a set
of selected image distortions quantitatively degrade the detection performance on test
images when the detection networks have only been trained with images that do not
present the alterations. The analyzed test image distortions include impulse noise,
blurring (or defocus), image darkening, image shrinking and occlusions. In order to
quantify the impact of each individual distortion on the firearm detection problem, we
have used a standard YOLOv5 network. Our experimental results have shown that the
increased addition of impulse salt-and-pepper noise is by far the distortion that affects
the most the performance of the detection network.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning, Neural
Networks
Keywords Artificial image distortions, Firearm detection, Deep learning, YOLO, Object detection
metrics

INTRODUCTION
Weapon detection problem consists in locating and classifying in different environments
the potential threats caused by the presence of firearms, explosives, knives and other
dangerous objects (Paulter, 2015; Xu, 2021). This task can use a variety of sensing methods
such as X-ray scanning, metal detection, and specially images/videos (e.g., visible or
thermal), which in many cases come from Closed Circuit Television (CCTV) systems, in
order to detect and identify those threats. Therefore, weapon detection technology helps
to prevent violent incidents and ensures the safety of individuals specially in different
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urban environments (Debnath & Bhowmik, 2021). For example, in places like stadiums,
government buildings, airports or schools, where large numbers of people gather, the
risk of a violent incident happening is higher. This technology also helps to discourage
individuals from attempting to bring weapons into these places. Overall, weapon detection
is an important tool for keeping safety in high-risk environments.

A significant part of image-based firearm detection technology is represented by the
video surveillance CCTV cameras (Gelana & Yadav, 2019). These cameras are being
installed in many public outdoor places to provide security. In these environments, the
image capture conditions are not controlled at all and images could present distortions
such as: impulse noise due to poor illumination conditions, blurring due to camera defocus
or movements of objects, occlusions due to the variegated complexity of the scenes, and
object shrinking due to long distances between camera and objects, among others. All
these mentioned distortions hinder to varying degrees the corresponding object detection
tasks. In this context, the present study, applied to firearm detection, aims to quantify
the influence of different perceived types of image distortions in the task of detecting
these objects accurately. In our study, the analyzed image degradations correspond to some
common distortions appearing in the context of realistic firearm images, such as occlusions,
including noise, blurring, darkening and shrinking the images that, at certain levels, could
significantly degrade the detection performance. To quantify the specific impact of these
image conditions, we produced altered test images from the original ones by adding to
them the corresponding distortion with different levels or ‘‘strengths’’ (e.g., impulse noise
at 2%). Note that the training images do not include the aforementioned distortions.

Considered distortions are intended to simulate some common realistic conditions that
hinder firearm detection in scenes. In particular, testing image detection models with the
considered distortions is crucial for ensuring their robustness, reliability, and generalization
ability in real-world applications. A use of the present study could be an assessment method
to help to interpret the correctness and accurateness of firearm detections in test images,
after analyzing each distortion type (and its ‘‘strength’’) contained in a given image. An
advantage of using artificial transformations on images is that we can analyze the influence
of the image distortion degree, which is a much more complex task when dealing with
natural distorted images (i.e., ‘‘in-capture’’ distortions).

We conduct a set of comprehensible experiments to quantitatively analyze the influence
of the considered individual image distortion factors in the results of the firearm detection
task itself. For our purpose, we have chosen a well-established one-stage object detection
system, as it is the case for YOLOv5 (Jocher, 2020). This detector is lightweight, effective,
it offers good inference times and it is also capable of achieving very good results for
object detection tasks. Although new versions of YOLO detectors have recently appeared
(e.g., YOLOv8 (Terven & Cordova-Esparza, 2023)), in our experiments we have used
YOLOv5 since it is easier to train and it is also a suitable choice when one needs to deploy
a solution on devices without GPU support.
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Related work
This subsection outlines some relevant works on firearm detection using deep learning, as
well as some studies concerning perceived image distortions.

Firearm detection using deep learning
The problem of detecting weapons in images has been intensively researched in the
last decades (Darker, Gale & Blechko, 2008; Bhatti et al., 2021). First, through traditional
machine learning methods and more recently using deep learning models, specially
convolutional neural networks (Yadav, Gupta & Sharma, 2023).

Most research on weapon detection has been targeted toward knives (Kmiec & Glowacz,
2011; Buckchash & Raman, 2017; Castillo et al., 2019; Glowacz, Kmieć & Dziech, 2015)
and firearms (Tiwari & Verma, 2015; Olmos, Tabik & Herrera, 2018; Bhatti et al., 2021).
Detection of knives and firearms in images has received a growing attention by the scientific
community due to their security implications (Debnath & Bhowmik, 2021). Some works
are focused on the detection of only one of these types of weapons (e.g., Moran, Conci &
Sanchez, 2022) only considers the detection of knives and (Olmos, Tabik & Herrera, 2018)
is solely devoted to handgun firearms, while other consider both detections jointly (Grega
et al., 2016). Weapon detection is generally a challenging task due to variable size and
shapes of objects within the images, possible occlusions and/or cluttered backgrounds of
scenes. A related problem is to detect paired bounding boxes that contain both the weapon
and the human, for a more robust visual identification of gunmen in crowds (Basit et al.,
2020;Mahmood et al., 2024).

Nowadays, deep learning has revolutionized the general object detection problem (Zou et
al., 2019). In particular, deep learning firearm detection has also been recently investigated.
Lai & Maples (2017) used CNN for detecting and classifying weapons in images. These
authors considered around 3,000CCTV images withweapons as training data to cover every
situation and possible orientation of these objects.Olmos, Tabik & Herrera (2018) proposed
a CNN-based system for detecting handguns from CCTV videos with the goal of reducing
false positives. These authors created their own dataset (called DaSCI), and achieved their
best results with a Faster R-CNN model. Salido et al. (2021) compared the performance
of three deep CNN models: Faster R-CNN, RetinaNet and YOLOv3, respectively, in the
detection of guns in videos. The study focuses on how the inclusion of gun grip information
influences the results of each detector. Only a consistent improvement is achieved using
YOLOv3. Khan et al. (2023) used U-Net networks for weapon segmentation in real time
when people pass through a scanner system. For this purpose, the 2D segmentation network
is reformulated and a Gaussian map is used to model the weapons in the feature map.
Their dataset only provides handguns such as pistols or revolvers. Ruiz-Santaquiteria et
al. (2023) recently proposed a combination of a human body pose classifier (OpenPose)
with a deep network that processes images to extract relevant features for gun detection
in video surveillance. After comparing the results obtained with different deep networks
(ResNet-50, EfficientNet-B4, ConvNeXt-Base, Darknet53, DeiT and ViT, respectively) in
combination with and without the pose features and filtering out false positives, the authors
concluded that the best detection results were obtained with the Vision Transformer (ViT)
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model. The detection of firearms orientation can provide insights about the behavior
and intentions of people carrying these weapons, which is critical for identifying potential
threats. Iqbal et al. (2021) propose a weakly supervised deep learning architecture to predict
Oriented Bounding Boxes (OBB) without using OBB annotations while training.

Perceived image distortions
We have not found in the literature any experimental studies aimed at analyzing separately
the influence of synthetic image distortions (i.e., by applying artificially computed blur,
impulse noise and random occlusions) on specific object detection problems with the
approach presented here. For a particular detection problem, our approach consists in
using a set of training images without the considered distortions and, after that, using new
distorted test images to quantify the impact that the distortions and their ‘‘degrees’’ have
on the accuracy of the detection task.

The work by Dodge & Karam (2016) used a classification problem to understand how
image quality affects different deep neural networks. These authors trained their networks
with distorted images using different levels of quality distortions. Then, they carried out a
study on the effect of compression, noise blur and contrast.

There are also some studies that, using deep networks, analyze only the impact of other
isolated image variabilities. For instance, the effect that illumination conditions (Sanchez et
al., 2016) have on some specific object detection problems such as face recognition. Other
authors consider the scale of the YOLOv5 model for blood cell detection (Rahaman et al.,
2022) or its application for classification of caries lesions (Salahin et al., 2023). The work
by Venkataramanan et al. (2022) analyzed the detection problem in authentically distorted
images of roadways for quality assessment of detection algorithms.

Contribution and outline of this work
This article describes an experimental study that analyzes individually how each considered
image distortion quantitatively affects the detection performance on test images when the
detector network has not been trained with images presenting these variations. The main
contribution of this work consists in quantifying, analyzing and comparing the effect of
each considered individual image distortion (e.g., occlusion, impulse noise or blurring) in
the detection performance. It should also be noted that that the goal of this study is not
demonstrating the viability of the considered YOLO model itself for our firearm detection
problem, but quantifying how it gets affected by the aforementioned distortions.

The rest of the article is organized as follows: Section ‘Materials andMethods’ introduces
the materials and methods used in this research on detection of firearms. Section ‘Results’
describes the experimental setup, and it also displays and analyzes the results achieved
for the different experiments on the considered firearm detection problem. Section
‘Discussion’ discusses these results and points out the most relevant findings. Finally, in
Section ‘Conclusions’ we summarize the conclusions of the present work.
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MATERIALS AND METHODS
This section first describes the object detection problem in images and the neural detector
model used in the experiments. Then, an overview of the stages in the proposed solution
is presented. The preprocessing and data augmentation applied to the original training
images is later indicated. We continue with the value of hyperparameters of the YOLO
detector employed, and we also provide some details on the training of the network. Finally,
the dataset used for the experiments is described.

Object detection and the YOLO model
Object detection is a challenging task in Computer Vision that has received large attention
in recent years, especially with the development of deep learning (Zou et al., 2019;Wang et
al., 2021). It presents many applications related to video surveillance, automated vehicle
system, robot vision or machine inspection, among many others. The problem consists in
recognizing and localizing some classes of objects present in static images or videos.

Recognizing (or classifying) involves identifying the categories of all object instances in a
scene from a given set of classes, along with their confidence values. Localizing, in contrast,
returns the coordinates of bounding boxes for each detected object in the image. Detection
differs from instance segmentation, which identifies the object instance each pixel belongs
to. Challenges in object detection include geometrical variations (e.g., scale changes, small
object-to-image size ratios), partial occlusions, or varying illumination. Some images may
exhibit multiple variabilities, such as small and partially occluded objects.

The You Only Look Once (YOLO)model, proposed by Redmon et al. (2016), is a state-of-
the-art real-time object detection network. YOLO is a one-stage detector that uses features
from the entire image to predict class probabilities and bounding box coordinates in a single
pass. It formulates object detection as a regression problem, enhancing speed, accuracy,
and generalization. YOLO splits an image into an NxN grid, where each cell predicts
the presence of one object using a fixed number of bounding boxes and a Non-Maxima
Suppression (NMS) algorithm. The YOLO framework has evolved through iterations like
YOLOv8, YOLO-NAS, and YOLO with Transformers. We focused on YOLOv5 for this
study, developed by Ultralytics in 2020 using Python and PyTorch, offering versions from
nano to extra large to suit various hardware requirements. We tested YOLOv5s (small) and
YOLOv5m (medium) configurations.

Figure 1 depicts the simplified network architecture of YOLOv5, comprising three main
components: backbone, neck, and head. A 416 × 416 RGB image is processed through an
input layer to the backbone, a modified CSP Darknet53 CNN, which extracts hierarchical
features at various scales using the Cross Stage Partial (CSP) strategy, enhancing inference
speed by reducing parameters. The neck integrates output features from the backbone at
different resolutions using modules like Fast Spatial Pyramid Pooling (FSPP) and Path
Aggregation Networks (PAN), connecting the backbone to the head. The head, based on
anchors, classifies detected objects with three convolutional layers, predicting bounding
box locations, confidence scores, and classes, displaying this information in the output
image.
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Figure 1 Schematic layer representation of YOLOv5 architecture. (Note: The image within the figure
can be found in the DaSCI Weapon Detection dataset, and it is distributed under the terms of the Creative
Commons Attribution 4.0 International).

Full-size DOI: 10.7717/peerjcs.2381/fig-1

It is worth mentioning that this YOLO model uses data augmentation during each
training batch. The data loader makes three types of augmentations: scaling, colors space
adjustments andmosaic (i.e., a combination of four images into four tiles of random ratio),
respectively.

Experimental setup
Figure 2 shows a UML diagram with the steps followed in the proposed experimental
setup using the considered YOLO model. First, the original set of training images was
preprocessed and augmented to increase both the size and the variability of the dataset.
These two stages will be described in detail during the next subsection. After that, the
chosen YOLO model was trained, tested and evaluated through different experiments
using standard metrics for the object detection problem.

Image preprocessing and data augmentation
The original set of training images was first preprocessed and then augmented to increase
the quality and size of the original training dataset. The Roboflow tool (Dwyer & Hansen,
2022) was used for all preprocessing tasks. These tasks consisted in first applying a contrast
stretching bymeans of an adaptive equalization (using theAuto-Adjust Contrast command)
on the training images. Then, the resulting images were rescaled (using theResize+Fit (Black
Edges) command) from their original dimensions to the YOLOv5 input layer dimension
(416×416). This rescaling keeps the aspect ratio of source images, and in some cases it
creates a black padding image region.

For the augmentation on the training set of images, we used the image Augmentor
software (Bloice, Stocker & Holzinger, 2017). This generated five new images for each
original one in the dataset according to the following transformations:
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Figure 2 Overview of proposed experimental setup for firearms detection. (Note: The image within the
figure can be found in the DaSCI Weapon Detection dataset, and it is distributed under the terms of the
Creative Commons Attribution 4.0 International).

Full-size DOI: 10.7717/peerjcs.2381/fig-2

1. 45◦ clockwise rotation (Rotate45 command) followed by horizontal mirroring (flip-
left–right command)

2. vertical mirroring (flip-top-bottom command)
3. 25◦ clockwise rotation (Rotate25 command)
4. 90◦ clockwise rotation (Rotate90 command) followed by a translation of 40 and 20

pixels respectively in x and y axes (translation-xy(40, 20) command), and
5. vertical mirroring (flip-top-bottom command) followed by 45◦ clockwise rotation

(Rotate45 command)
Figure 3 shows, from top to bottom and from left to right, the application of the five

aforementioned augmentations for an original sample training image (upper left corner).
The choice of these preprocessing and augmentation transformations was made after

multiple experiments.
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Figure 3 Sample firearm image (upper left corner) and its five augmented images. (Note: The original
image within this figure comes fromWikimedia Commons, and it is distributed under the terms of the
Creative Commons Attribution-Share Alike 3.0 Unported license).

Full-size DOI: 10.7717/peerjcs.2381/fig-3

Network parameterization and training details
Training YOLO models need from a large collection of input images as well as their
corresponding output ones with the ground truth boxes for each object instance contained
in them. In our approach, we have used transfer learning, and the pretrained weights of
a YOLOv5 network trained on the Microsoft (MS) COCO dataset (Lin et al., 2014) were
used to boost the training of the model with our images. The MS COCO dataset includes
objects belonging to 80 different classes, but unfortunately, some classes like ‘firearm’ or
‘handgun’ are not included. Nonetheless, the class ‘knife’, that has some resemblance to
the objects being detected, does appear in MS COCO. In our problem we consider two
classes of firearms: ‘handgun’ and ‘long gun’, respectively. Note that the class ‘handgun’
includes ‘pistol’ and ‘revolver’ object instances, while class ‘long gun’ includes ‘machine
gun’, ‘shotgun’ and ‘rifle’ instances.

Table 1 summarizes some important training parameter values used for YOLO model
in the experiments. These values were determined under experimentation.

All ML algorithms and programs were coded in Python using the OpenCV Computer
Vision library and the PyTorch framework for deep learning. These codes and
information about the project can be downloaded from: https://github.com/patriciacs99/
WeaponDetectionYOLOv5.

Regarding the computing infrastructure (operating system, hardware, etc.), all
experiments were performed using the Google Colab environment on a standard Nvidia
T4 Tensor GPU provided by Google Colab. The average test detection time per image,
using the trained YOLOv5m (medium) model, was 0.5 ms (ms).
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Table 1 Training hyperparameter values used for the YOLOv5 networks.

Network hyperparameter Set value

Training epochs 100
Batch size 32
Optimizer SGD
Learning rate ’lr0 (initial)’: (1, 1e−5, 1e−1)

’lrf (final)’: (1, 0.01, 1.0)
Momentum (0.3, 0.6, 0.98)
Decay (1, 0.0, 0.001)

Table 2 Image dataset composition and its distribution.

Class Images Train Validation Test

handgun 2,972 2,080 446 446
long gun 2,953 2,052 452 446
Total 5,924 4,132 898 892

Description of the used datasets
In order to carry out our experiments, it was necessary to build our dataset with images
containing both classes of objects being detected: ‘handguns’ and ‘long guns’, respectively.
The images of ‘handguns’ were taken from the Weapon Detection dataset (Olmos, Tabik
& Herrera, 2018) provided by the Data Science and Computational Intelligence (DaSCI)
Institute, University of Granada (Spain). As the existing image labelling in this dataset does
not match the format required to use our YOLO model, the tool Roboflow has been used
to automatically transform the existing XML tags to the new format.

We increased our dataset with images of the class ‘long gun’ taken from free Google
Images, and websites such as Depositphotos (2009), Shutterstock (2003) and Pixabay (2023).
These images have been properly labeled using Roboflow (Dwyer & Hansen, 2022) in order
to complete our dataset, which is summarized in Table 2. Note that the number of images
per class is nearly 50%-balanced and, approximately, 70% of these images were used for
training, 15% for validation and 15% for tests, respectively. It is interesting to remark
that regarding the number of weapon instances per image in the dataset, 91.8% of images
(5,441) contain only one firearm, while the remaining images (483) have two or three
instances.

Additionally, we included some experimentation using the Localization of Firearm
Carriers (LFC) dataset (Mahmood et al., 2024). It contains 3,128 images, each depicting
at least one human interacting with a firearm in various scenarios. This dataset supports
the training and evaluation of machine learning models for firearm detection, aiding
security and surveillance systems. It encompasses a range of complexities like varying
crowd densities or partially concealed firearms.
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RESULTS
This section first describes the detection performance metrics (Padilla et al., 2021) used
in the experiments. After that, we show and analyze the results achieved by different
experiments, which consider different types of variabilities. The ’medium’ scale YOLOv5m
model has been used as reference for this purpose.

Performance metrics
Model evaluation is the process of assessing how well a machine learning model performs
on unseen data. To define basic accuracy measures over the detections, it is necessary to
consider the following threshold parameters: network confidence loss and IoU (Intersection
over Union) thresholds, respectively. Network confidence loss measures the reliability of
the network concerning the object class of each computed bounding box. IoU (also called
Jaccard Index) measures how accurately an object is detected within a test image. It is
computed as the overlapping area between a predicted detection and its corresponding
ground truth, divided by the area of the union between the predicted detection and the
ground truth. For multi-class detection problems, the mean IoU for an image is calculated
by taking the IoU of each class and averaging them. This can be extended to all the images
of the test dataset to have an average IoU value. A confidence threshold Confth is used to
determine if a network gives a positive answer relative to a detected object in the image.
An IoU threshold IoUth is used to determine whether the overlapping between network
detection and the ground truth is significant or not. In our framework, the values of these
parameters were set to Confth= 0.5 and IoUth= 0.45, respectively.

In our context of firearm detection, we define the true positives (TP), false positives
(FP), true negatives (TN) and false negatives (FN), in relation to the detection produced
on the images, as follows. Let Conf (p) be the confidence loss returned by the network on
the detection of the firearm p present in image i, and IoU (p) the intersection over union
value for the same firearm, then p is considered as a TP, FP, TN or FP when any of the
following conditions holds:

TP(p)= (Conf (p)>=Confth) AND (IoU (p)>= IoUth) (1)

FP(p)= (Conf (p)>=Confth) AND (IoU (p)< IoUth) (2)

TN (p)= (Conf (p)<Confth) AND (IoU (p)< IoUth) (3)

FN (p)=NP(i)−|TP(i)| (4)

where in the last (FN) formula, NP(i) and |TP(i)| represent respectively the number of
firearms present in the image i and the number of TP in the same image, respectively. We
also accumulate the numbers of TP, FP and FN detections for each image i, and also for
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the whole dataset to present our test results for YOLOv5. For simplicity, we also denote
these accumulated values of TP, FP and FN in the whole test dataset in this form.

Using these accumulated values, some metrics such as precision, recall, and F1-score
can be computed as follows:

Precision=
TP

TP+FP
(5)

Recall =
TP

TP+FN
(6)

F1− score= 2
Precision×Recall
Precision+Recall

. (7)

Precision represents the fraction of relevant instances among the retrieved instances (i.e.,
measure of quality), while recall represents the fraction of relevant instances that were
retrieved (i.e.,measure of quantity). F1-score is defined as the harmonic mean of precision
and recall.

Another considered metric is the average precision (AP), that summarizes the Precision-
Recall curve, computed as the weighted mean of precisions achieved at each threshold,
with the increase in recall from the previous threshold used as the weight:

AP =
∑
n

(Recalln−Recalln−1)Precisionn (8)

where Precisionn and Recalln are respectively the precision and recall values at the n-th
threshold. The mean Average Precision (mAP) is computed as the average of APs for each
considered class in the problem, as follows:

mAP =
1
N

N∑
i=1

APi (9)

whereN is the number of classes. In our problem, we have two classes, referred as ‘handgun’
and ‘long gun’, respectively. In some of our experiments, we show the values ofmAP50 (i.e.,
mAP calculated at IOU threshold 0.5) and mAP50−95 (i.e., average mAP over different
IoU thresholds, from 0.5 to 0.95, with a step of 0.05).

Experimental results
Next, we describe each of the experiments and summarize the corresponding results.
First, we present an initial experiment, used as baseline, where global detection results of
firearms are presented (Experiment 1). Next, the following experiments using our dataset
(Experiments 2 to 6) respectively correspond to each considered individual distortion
applied to the test images, namely: impulse noise, occlusions, blurring, image darkening
and image shrinking. Finally, the last experiment (Experiment 7) presents the achieved
detection results using the LFC dataset.
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Table 3 Detection results for classes ‘handguns’ and ‘long guns’, and also for all the firearms using the
medium YOLOv5mmodel.

Class Instances Precision Recall F1-score mAP50 mAP50-95

handgun 522 0.917 0.741 0.820 0.842 0.577
long gun 502 0.994 0.922 0.957 0.959 0.883
All 1,024 0.955 0.832 0.890 0.900 0.730

Experiment 1: Global classification of firearms
This first experiment shows the first detection results produced for each of the two
classes in the problem (‘handgun’ and ‘long gun’, respectively), as well as globally (i.e.,
without distinguishing the classes). These results were produced using a ‘‘medium’’ scale
YOLOv5 model (referred as YOLOv5m). This version is characterized by the following
reported features (Jocher, 2020): 21.2 million parameters, model size of 41 MB (at FP16
half floating-point precision), 8.2 ms inference time per image (on the Nvidia V100 GPU)
and 45.2 mAP based on the original MS COCO dataset (Lin et al., 2014). All these values
were achieved for default image sizes of 640×640.

The model was parameterized and trained as explained in Section ‘Network
Parameterization and Training Details’. The outcomes of this first experiment will be
considered as the ‘‘baseline’’ solution, and they will be useful to characterize and compare
how the different variabilities influence the detection results.

Table 3 illustrates the achieved baseline results using the ‘medium’ YOLOv5m model
on the 892 considered test images (see Table 2).

First, we observe that for both classes (balanced in the number of test instances), the
Precision is very high (above 90%) meaning a very low number of FP in the detections.
However, although the Recall values are high for the two classes (above 74%), this metric
is considerably higher for ‘long gun’ class. It means around a 20% more FN in the class
‘handgun’, which is probably caused by the smaller size and high variability of these
weapons within the test images. Consequently, and due to the Recall differences between
the classes, the value of F1-score is a 14% higher for the ‘long gun’ class.

The higher mAP for IoU threshold value of 0.5 (mAP50) determines that the YOLOv5m
model is very accurate with respect to the detection of both classes (although it performs
better for ‘long gun’), since mAP compares the ground-truth bounding boxes to the
corresponding detected boxes and returns a score. In the case of mAP50-95, a sequence
of IoU threshold between 0.5 and 0.95 the mAP was computed. The obtained metric is
around a 37% higher for ‘long guns’ when compared to ‘handguns’, meaning that the
detection of ‘long guns’ objects is more robust and stable during inference time.

Now, in this same experiment we use a ‘‘small’’ scale YOLOv5 model (called YOLOv5s),
in order to determine how the model scale influences the results. YOLOv5 provides
five scaled versions: YOLOv5n (nano), YOLOv5s (small), YOLOv5m (medium), YOLOv5l
(large), and YOLOv5x (extra large), where the width and depth of the convolutionmodules
vary to suit specific applications and hardware requirements.

The YOLOv5s version is characterized by the following reported features (Jocher, 2020):
7.2 million parameters, model size of 14 MB (at FP16 half floating-point precision), 6.4 ms
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Table 4 Detection results using the small YOLOv5s model.

Class Instances Precision Recall F1-score mAP50 mAP50-95

handgun 522 0.870 0.716 0.785 0.816 0.552
long gun 502 0.973 0.928 0.949 0.961 0.839
All 1,024 0.921 0.822 0.870 0.889 0.695

inference time per image (on the Nvidia V100 GPU) and 37.2 mAP based on the original
MS COCO dataset, where all these values were achieved for default image sizes of 640×640.

Table 4 illustrates the achieved detection results using the ‘small’ YOLOv5s model.
On a global level, as in the previous experiment, using YOLOv5s the class ‘long gun’ is

better detected than ‘handgun’ presenting a 17% higher F1-score. Similarly to the previous
experiment, and using the YOLOv5s model, the Precision values are very high for both
classes (above 87%), with the Recall being a 21% higher for ‘long gun’. Regarding the mAP
metrics, mAP50 and mAP50-95, both are favourable to the class ‘long gun’ with differences
of 15% and 34% for mAP50 and mAP50-95, respectively.

Prior to the comparison of this ‘small’ model with the previous ‘medium’ one, as
YOLOv5s is nearly three times smaller regarding the number of parameters and memory
size, the detection results were expected to be much worse for YOLOv5s. Surprisingly, and
for all the considered detection metrics, the results are only slightly worse for YOLOv5s.
By analyzing the F1-score for all test instances, we only observe a small difference between
both models (0.89 for YOLOv5m vs. 0.87 for YOLOv5s, respectively). Concerning the
computed mAP metric values, and after having analyzed them for all test instances (i.e.,
without separating them into classes), we found that the differences are similar in favour
of YOLOv5m: a 1.1% better and a 4.8% better for mAP50 and mAP50-90, respectively.

Therefore, from this experiment we conclude that the size of the analyzed models
(YOLOv5s vs.YOLOv5m) has very little influence on the firearm detection results.
Consequently, it could also be used for the considered problem a ‘‘smaller’’ YOLO model,
such as YOLOv5s, since it yields similar results using less computational resources.

We observe that the results of this first experiment show the same tendency (when
comparing YOLOv5s with YOLOv5m) as the ones presented by Salahin et al. (2023) and
by Rahaman et al. (2022) for caries lesions and blood cells detection, respectively.

Experiment 2: Influence of the impulse noise level
In the following experiments, we analyze the effect of three types of synthetic image
distortions: impulse noise (i.e., salt-and-pepper), occlusions and blur, respectively. These
have been added to the test images only. The YOLOv5m model has been trained with
firearms images which do not include such distortions, and we want to quantify how the
increase of impulse noise will affect the detection performance of the network. We have
also taken the results from Experiment 1 as a baseline reference for comparison purposes.

The Augmentor software (Bloice, Stocker & Holzinger, 2017) was used to produce the
synthetic salt-and-pepper noise distortions on test images for this experiment. First, we
generated three subsets of test images with 0.01, 0.02 and 0.05 noise levels. Each of these
subsets contains the same test images as in Experiment 1, which are now, respectively,
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Table 5 Detection results for firearm classes and different noise levels.

Noise Class Instances Precision Recall F1-score

Noiseless handgun 522 0.917 0.741 0.820
Noiseless long gun 502 0.994 0.922 0.957
0.01 handgun 522 0.891 0.408 0.560
0.01 long gun 502 0.932 0.715 0.810
0.02 handgun 522 0.902 0.213 0.345
0.02 long gun 502 0.908 0.570 0.700
0.05 handgun 522 0.867 0.050 0.095
0.05 long gun 502 0.888 0.253 0.394

altered with the aforementioned noise distortions. A salt-and-pepper x-level noise, where
0≤ x ≤ 1, means to randomly set a 100 ·x percentage of pixels in the image to completely
white or completely black. In some cases, it is possible to speckle noise (uniformly added),
only as either white (salt) or black pixels (pepper).

Table 5 displays the produced quantitative detection results separated by impulse noise
levels and by classes of firearms. From this table, we observe similar high precision results
for both classes (slightly favourable to ‘long gun’ class), which means a relatively low
number of FP. However, in the particular case of the recall metric the ‘long gun’ class gets
specially favored. In general, the difference in recall between classes increases and the recall
value itself drops as the noise gets increased. In particular, from 0.01 to 0.05 impulse noise
increasing, the recall difference between ‘long gun’ and ‘handgun’ increases from a 42.9%
at a 0.01 noise level to 80.2% at a 0.05 noise level. With this same noise level increasing,
the value of recall decreases a 64.6% for the class ‘long gun’ and a 87.7% for the class
‘handgun’, respectively. The observed reduction in recall for both classes for increasing
noise is reflected in the corresponding drop of the F1-score metric values.

Table 6 shows the detection results separated by noise levels, this time without taking
into account the firearm classes. In this case, we observe that the number of FP is very low
for all noise levels (although this number decreases as the noise level increases). However,
the number of FN (which produces non-detections of weapons) is significantly high for
all noise levels. It raises from 176 to 448 (that is to say, a percentage growth of nearly a
155%) from noiseless images to the equivalent ones with a low (0.01) noise increase. As the
level of noise rises, the number of FN also increases but to a more reduced rate, around a
39% from 0.01 to 0.02 and also from 0.02 to 0.05, respectively. Consequently, the F1-score
metric drops due to the noticeable decrease in recall with growing impulse noise. Regarding
mAP50 values, using the IoUth= 0.5, we observe that the detection quality drops as the
level of noise increases, but not as abruptly as for the F1-score metric.

With this experiment, we prove that for our weapon detection problem the number
of object detections (either correct or erroneous) significantly drops as the level of noise
rises. As the network was trained with noiseless images, we conclude that a noise distortion
increase might drastically affect its detection performance. This effect is also displayed in
Fig. 4, where we illustrate some qualitative detection results for the same test image, which
is affected by the three considered synthetic levels of impulse noise. Note that for the 0.01
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Table 6 Instance noise detection results without separating into firearm classes.

Noise Instances TP FP FN Precision Recall F1-score mAP50

Noiseless 1,024 848 73 176 0.955 0.832 0.890 0.900
0.01 1,024 576 56 448 0.912 0.562 0.680 0.752
0.02 1,024 401 42 623 0.905 0.391 0.520 0.659
0.05 1,024 157 22 867 0.877 0.151 0.240 0.520

Figure 4 Effect of salt-and-pepper noise on the same test image containing two handguns: (left) 0.01-
level, (center) 0.02-level and (right) 0.05-level. (Note: The original image within this figure can be found
in the DaSCI Weapon Detection dataset, and it is distributed under the terms of the Creative Commons
Attribution 4.0 International).

Full-size DOI: 10.7717/peerjcs.2381/fig-4

noise level the two handguns present in this image are correctly detected by YOLOv5m
with high confidence values (0.7 and 0.9, respectively). When doubling the level of noise,
the weapon previously detected with a lower confidence level is now undetected (i.e., a
single FN result). The second weapon is still detected, but this time with a lower confidence
result (from 0.9 to 0.81). Finally, for the case of a 0.05 noise level both handguns remain
undetected (i.e., producing two FN results).

Experiment 3: Influence of the number and the size of occlusions
In this test, we have also included the results of Experiment 1 as a baseline reference
for comparison purposes. The Roboflow tool (Dwyer & Hansen, 2022) has been used to
produce synthetic occlusions on test images for this experiment. In particular, the Cutout
functionality that was introduced for YOLOv4 as a data augmentation technique. The
Cutout operation randomly masks out a given number of square image regions by setting
them to black. It provides two settings for configuration purposes: percent (i.e., size of
the cutout region with respect to the global image) and count (i.e., number of cutouts
per image), respectively. In this experiment, we have considered three occlusion variants:
percent = 30% and count = 1 (referred in our tables as: 1× 30%); percent = 30% and
count = 2(referred as: 2×15%); and percent = 30% and count = 3 (referred as: 3×10%),
respectively. Note that for each of these considered configurations the total occluded area
represents the same percentage of the original image (i.e., 30%).
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Table 7 Detection results for firearm classes and different occlusion degrees.

Degree Class Instances Precision Recall F1-score

No occlusion handgun 522 0.917 0.741 0.820
No occlusion long gun 502 0.994 0.922 0.957
1×30% handgun 522 0.733 0.618 0.671
1×30% long gun 502 0.788 0.820 0.804
2×15% handgun 522 0.759 0.667 0.710
2×15% long gun 502 0.832 0.858 0.845
3×10% handgun 522 0.773 0.901 0.832
3×10% long gun 502 0.849 0.901 0.874

Of course, there are also partial occlusions of firearms that occur when these are being
held by their respective users. Nevertheless, their sizes are very difficult to estimate in
images. Consequently, we pretend to simulate the presence of these partial occlusions in a
more objective way by using different occlusion sizes. We will also place these occlusions
at random positions within the original images, which is expected to affect the detection
of the firearms contained in them.

Table 7 shows the produced quantitative detection results separated by considered
types of Cutout occlusion and by classes of firearms. From this table, we observe similar
high Precision results for both classes (slightly favourable to ‘long gun’ class, as in the
previous experiment), which means a relatively low number of FP. Differently to the
previous experiment, now the Recall values are also high for both classes (although better
for the ‘long gun’ class). As a consequence, the combined F1-score metric will have the
same tendency for both types of firearms. In general, the detection results for the two
considered classes are much better compared to the previous random noise insertion
experiment. Compared to non occluded images, the worst reduction in the F1-score metric
corresponds, for both firearm classes, to the 1× 30% occlusion and it approximately
represents a 20% for each class.

Next, Table 8 shows the detection results separated by occlusion levels, this time without
considering the firearm classes. In this particular case, we observe similar values of FP
and FN for the three considered occlusions. These values get slightly worse when only one
30% occlusion patch is present. Compared to the non-occlusion case, the most significant
percentage increment corresponds to the number of FP that raises nearly a 230% for the
1×30% case. Precision and Recall metrics drop around a 20% and a 14%, respectively when
compared to non-occlusion case. In the worst case (1×30%), with respect to F1-score,
there is only a 17% reduction compared to the case lacking occlusions. Similar results have
been obtained for the mAP50 metric.

From this experiment, we conclude that the effect of random synthetic occlusions
on object detection performance is much less severe for the considered problem than
the addition of random salt-and-pepper noise to the images. Moreover, from the three
occlusion configurations experimented, where all of them together hide the same area of
the image, the worst one in detection results is 1×30%. This case removes a unique larger
portion of the image (and probably a larger portion of the target objects contained on it),

Corral-Sanz et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2381 16/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2381


Table 8 Instance occlusion detection results without separating into firearm classes.

Degree Instances TP FP FN Precision Recall F1-score mAP50

No occl. 1,024 848 73 176 0.955 0.832 0.890 0.900
1×30% 1,024 760 240 264 0.760 0,719 0.740 0.728
2×15% 1,024 791 204 233 0.795 0.763 0.780 0.765
3×10% 1,024 827 193 197 0.811 0.800 0.800 0.795

Figure 5 Effect of synthetic random occlusions on the same test image: (left) one occlusion of 30% im-
age size, (center) two occlusions of 15% and (right) three occlusions of 30%. (Note: The original im-
age within this figure can be found in the DaSCI Weapon Detection dataset, and it is distributed under the
terms of the Creative Commons Attribution 4.0 International).

Full-size DOI: 10.7717/peerjcs.2381/fig-5

which makes more difficult for the YOLOv5m model to locate and classify the involved
firearm(s), since it was trained with images that do not contain these occlusions.

Figure 5 illustrates some qualitative detection results for the same test image, which is
affected by the three considered random synthetic occlusions: one occlusion representing
a 30% of the total image size, two occlusions of 15% size each and three occlusions of
10% size each, respectively. Although the total surface occluded in all these images is the
same, the effect on the quality of the corresponding detections (as well as their network
detection confidences) is worse in the case of one large occlusion than when using several
smaller ones. Note that as the Cutout function of Roboflow randomly chooses the position
of the occlusions, in some images a large portion of the object is occluded (specially when
the selected size of the occlusion is large), while in others the occlusion section is smaller
(specially when the selected size of the occlusion is small). Lastly, it is timely to say that
some images are not even occluded at all.

Experiment 4: Influence of the Gaussian blur
In this experiment, we analyze the effect in firearm detection results when applying a
synthetic Gaussian blur (or Gaussian smoothing) to the test images using different kernel
sizes.

The blur—image software (Pinetools, 2022) was used to produce the synthetic Gaussian
blurred test images for this experiment. First, we generated three subsets of test images with
kernel sizes of 3, 9 and 13 (i.e., by gradually increasing the blur levels), respectively. Each of
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Table 9 Detection results for firearm classes and different levels of blur.

Kernel size Class Instances Precision Recall F1-score

No blur handgun 522 0.917 0.741 0.820
No blur long gun 502 0.994 0.922 0.957
3 handgun 522 0.901 0.713 0.796
3 long gun 502 0.981 0.916 0.947
9 handgun 522 0.894 0.661 0.760
9 long gun 502 0.974 0.886 0.928
13 handgun 522 0.894 0.659 0.759
13 long gun 502 0.971 0.871 0.918

Table 10 Instance blur detection results without separating into firearm classes.

Kernel size Instances TP FP FN Precision Recall F1-score mAP50

No blur 1,024 848 73 176 0.955 0.832 0.890 0.900
3 1,024 843 53 181 0.941 0,814 0.873 0.890
9 1,024 802 57 222 0.934 0.774 0.847 0.867
13 1,024 792 58 232 0.932 0.765 0.840 0.862

these subsets contains the same test images of Experiment 1, which are now, respectively,
altered with the blur distortions.

Table 9 shows the produced quantitative detection results separated by blur levels and
by classes of firearms. From this table, we observe similar high Precision results for both
classes (slightly favourable to the ‘long gun’ class), which means a relatively low number of
FP. However, in the case of recall metric the differences are much higher in favour of the
‘long gun’ class (around 20%). This Recall decreasing for both classes as the noise increases,
is reflected in the corresponding fall of F1-score metric values.

Next, Table 10 shows the detection results separated by blur levels, but this time without
taking into account the firearm classes. In this case, we observe that the number of FP is
low and pretty similar for all noise levels. However, the number of FN (which produces
non-detections of firearms) is significantly higher for all noise levels. Nonetheless, it
only raises from 176 to 232 (that is to say, an increase percentage of nearly a 32%) from
images without blur to the corresponding ones with the higher level of blur analyzed
(13). The respective Precision values are kept very high (i.e., above 0.93 for all the levels
of blur considered, while the decreasing in Recall is not significant as the blur grows.
Consequently, the F1-score metric, is little affected by blur increase. Regarding mAP50
values with IoUth= 0.5, we observe a behavior similar to the one described for the F1-score
metric.

With this experiment, we show that the number of object detections (either correct or
erroneous) is little affected by blur increase in the context of this particular problem. As
the network was trained with images without blur, we conclude that this distortion, along
with its successive increments, has little impact on the network detection performance.
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Figure 6 Effect of Gaussian blur using tested kernel sizes k on the same test image: (left) k =3, (center)
k =9 and (right) k =13. (Note: The original image within this figure can be found in the DaSCI Weapon
Detection dataset, and it is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional).

Full-size DOI: 10.7717/peerjcs.2381/fig-6

This effect is also shown in Fig. 6, where we applied the three considered levels of blur
to the very same test image. Even though we observe that the ‘‘handgun’’ class in the test
image remains detected, the confidence level in the detection decreases by 20% as the
Gaussian kernel size varies from k = 3 to k = 13.

Experiment 5: Influence of image darkening
In this experiment, we analyze the effect in firearm detection results when applying
different levels of darkening on the images. This transformation, which involves reducing
the brightness or exposure of the images, simulates low ambient light conditions that are
typical in surveillance scenarios or medical imaging. The darkening distortion has been
implemented using a simple gamma correction to all image pixels using the formula:

I ′i,j = c · Ii,jγ (10)

where: Ii,j and I ′i,j , respectively, represent all pixels (i,j) of the original and transformed
images, c is a positive constant (in our case, c =1), and γ is a positive power used to
compensate the nonlinear response of display systems (likemonitors) and the human visual
system. The γ values can theoretically range from very small positive values (0<γ < 1)
in order to make an image clearer, to large values (γ > 1) in order to darken an image. In
our experimental setup, we tested three increasing γ values (1.5, 3 and 5, respectively) in
order to determine how this parameter will affect the firearm detection results.

Table 11 shows the achieved quantitative detection results separated by the considered γ
darkening levels and by the classes of firearms. From this table, as in previous experiment,
we observe similar high precision results for both classes (slightly favourable to the ‘long
gun’ class), which means a relatively low number of FP. However, in the case of recall
metric the differences are much higher in favour of the ‘long gun’ class (around 21%) for
all γ values, and there is also a significant drop for γ > 3. This recall decreasing for both
classes as the darkening increases, is reflected in the corresponding fall of F1-score metric
values.
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Table 11 Detection results for firearm classes and different levels of darkening (gamma correction).

Gamma correction Class Instances Precision Recall F1-score

No darkening handgun 522 0.917 0.741 0.820
No darkening long gun 502 0.994 0.922 0.957
1.5 handgun 522 0.912 0.716 0.802
1.5 long gun 502 0.987 0.910 0.947
3 handgun 522 0.887 0.630 0.737
3 long gun 502 0.976 0.807 0.883
5 handgun 522 0.841 0.506 0.632
5 long gun 502 0.959 0.604 0.741

Table 12 Instance darkening results without separating into firearm classes.

Gamma correction Instances TP FP FN Precision Recall F1-score mAP50

No darkening 1,024 848 73 176 0.955 0.832 0.890 0.900
1.5 1,024 833 44 191 0.950 0,813 0.876 0.889
3 1,024 736 55 288 0.931 0.719 0.811 0.837
5 1,024 568 63 456 0.900 0.555 0.687 0.739

Next, Table 12 shows the detection results separated by γ levels but without considering
firearm classes. In this case, we observe that the number of FP is low and relatively similar
for all darkening levels (being minimal for γ = 1.5). However, the number of FN (which
produces non-detections of firearms) is significantly higher and increases as γ does.
Respective precision values are kept very high (i.e., above 0.90 for all the levels of darkening
considered, while the decreasing in recall is significant, especially when γ =5 that drops
to 0.555. Consequently, the F1-score metric, is more affected as darkening increases (note
that when γ = 5, the F1-score value decreases by a 23% when compared to the original
non-darkened image). Regarding mAP50 values with IoUth = 0.5, we observe a better
behavior to the one exhibited by the F1-score metric (i.e., a 18% of worsening).

With this experiment, we show that the number of object detections is relatively affected
as the darkening increases (respectively, around 22% of F1-score decrease for both classes
between no darkening and highest γ tested). As the network was trained with images
without γ correction increments, we conclude that this distortion, along with its successive
increments, has a mid-range impact on the network detection performance.

This effect is also shown in Fig. 7, where we applied the three increasing γ levels
considered (γ = 1.5, 3 and 5, respectively) to darken the same test image. We can notice
that the network misclassifies the type of firearm detection when the γ value doubles from
from 1.5 to 3. Note also that for the case of γ equal to 5 the long gun present in the image
is not detected.

Experiment 6: Influence of image shrinking
This experiment analyzes the effect in firearm detection when applying different shrinking
factors to the images. This transformation (also known as downsampling) that reduces the
spatial image resolution by a factor, which simulates long distances between the camera
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Figure 7 Effect of image darkening using different gamma corrections on the same test image: (left)
γ = 1.5, (center) γ =3 and (right) γ =5. (Note: The original image within this figure comes fromWiki-
media Commons, and it is distributed under the terms of the Creative Commons Attribution 3.0 Un-
ported license).

Full-size DOI: 10.7717/peerjcs.2381/fig-7

and the target objects that is useful for practical applications like surveillance or industrial
automation. In our approach, shrinking has been implemented by first reducing the image
spatial resolution by 2 in rows and columns (i.e., the image contains one quarter of its
original pixels), and then we apply an upsampling on the ‘‘reduced’’ image using different
interpolation algorithms to recover its original spatial resolution. In particular, we apply the
following pixel interpolation methods (Jakhetiya, Kumar & Tiwari, 2010): nearest neighbor
(the simplest and fastest, assigning the value of the nearest pixel to new pixels, but resulting
in blocky images), bilinear (that uses a 2 × 2 pixel neighborhood for smoother results but
lacks fine detail), bicubic (that uses a 4× 4 neighborhood and offers better smoothness and
detail) and Lanczos (that employs larger neighborhoods and the sinc function for providing
the highest quality though it is the most computationally intensive), respectively.

Table 13 shows the quantitative detection results achieved by the considered
interpolation methods applied and the classes of firearms. From this table, we can observe
a similar high precision results for both classes (slightly favourable to the ‘long gun’ class),
despite the interpolation method used, which means a very low number of FP. However,
regarding the recall metric we observe that, as expected, the worst results were achieved
using the nearest neighbor interpolation which produces a worsening of around 44% for
the ‘‘long gun’’ class and 42% for the ‘‘handgun’’ class, respectively. For the remaining
interpolation methods the results are better according to their computational complexity.
The recall effect for both classes is reflected in the corresponding decreasing of F1-score
values.

Next, Table 14 shows the detection results for the different interpolation algorithms
used but without distinguishing between the two firearm classes. In this particular case, we
observe low values of FP for the different types of interpolation. However, the total number
of FN is substantially increased by the complexity of the considered algorithms, varying
from a 42% for bilinear to a 306% for the case nearest neighbor . Note that the increments
produced by bilinear and Lanczos are quite similar to those of bilinear interpolation. By
taking as reference the nearest neighbor interpolation, precisionmetrics only drops by a 4%,
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Table 13 Detection results for firearm classes and different levels of shrinking.

Interpolation Class Instances Precision Recall F1-score

No shrinking handgun 522 0.917 0.741 0.820
No shrinking long gun 502 0.994 0.922 0.957
nearest handgun 522 0.893 0.418 0.569
nearest long gun 502 0.943 0.530 0.679
bilinear handgun 522 0.923 0.669 0.776
bilinear long gun 502 0.948 0.843 0.892
bicubic handgun 522 0.924 0.672 0.778
bicubic long gun 502 0.943 0.827 0.881
Lanczos handgun 522 0.918 0.642 0.756
Lanczos long gun 502 0.935 0.809 0.867

Table 14 Instance shrinking results without separating into firearm classes.

Interpolation Instances TP FP FN Precision Recall F1-score mAP50

No shrinking 1,024 848 73 176 0.955 0.832 0.890 0.900
nearest 1,024 485 43 539 0.918 0,474 0.625 0.707
bilinear 1,024 774 53 250 0.936 0.756 0.836 0.859
bicubic 1,024 768 55 256 0.933 0.750 0.832 0.854
Lanczos 1,024 742 58 282 0.927 0.725 0.814 0.840

while Recall drops ten times more (43%), respectively, when compared to no-shrinking
case. In the worst case (nearest neighbor), with respect to F1-score andmAP50metrics, there
are respective reductions of 30% and 23% when compared to the case of no-shrinking.

This effect is also shown in Fig. 8, where we applied (from left to right) the respective
nearest neighbor, bilinear and bicubic interpolation algorithms as part of the image shrinking
distortions. We can notice that the network misclassifies the weapon present in the image
when using the nearest neighbor interpolation. Also, in this example, using both the bicubic
and bilinear algorithms the network correctly classifies the type of firearm. However, using
the bicubic algorithm the network confidence detection only increases 6% when compared
to the bilinear one (i.e., from 0.81 to 0.86).

Experiment 7: Image shrinking results on the new Localization of Firearm
Carriers dataset
We performed some experimentation using an additional dataset: the Localization of
Firearm Carriers (LFC) standard dataset (Mahmood et al., 2024). In particular, we have
chosen the imageshrinking transformation as this is a quite realistic effect that simulates long
distances between camera and targets, and it special interest for surveillance applications.
The LFC dataset consists of 3,128 images, each depicting at least one human interacting
with a firearm in various scenarios. For our experiments, we have only considered the
ground truth labels corresponding to the firearms (and not the corresponding ones to the
carriers). We performed the same tests as in Experiment 6 and now we randomly choose

Corral-Sanz et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2381 22/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2381


Figure 8 Effect of image shrinking using different interpolation algorithms on the same test image:
(left) nearest neighbor, (center) bilinear and (right) bicubic. (Note: The original image within this figure
comes fromWikimedia Commons, and it is distributed under the terms of a Public Domain license).

Full-size DOI: 10.7717/peerjcs.2381/fig-8

Table 15 Detection results for shrinking, when separating into firearm classes, on the LFC dataset.

Interpolation Class Instances Precision Recall F1-score

No shrinking handgun 54 0.804 0.759 0.781
No shrinking long gun 50 1.000 0.380 0.551
nearest handgun 54 0.899 0.296 0.445
nearest long gun 50 0.000 0.000 0.000
bilinear handgun 54 0.863 0.667 0.752
bilinear long gun 50 0.978 0.400 0.568
bicubic handgun 54 0.878 0.667 0.758
bicubic long gun 50 1.000 0.500 0.667
Lanczos handgun 54 0.875 0.648 0.745
Lanczos long gun 50 1.000 0.420 0.592

100 test images (50 from ‘‘handgun’’ and 50 from ‘‘long gun’’ classed that contained a total
104 firearm instances) from the LFC dataset.

Tables 15 and 16 respectively show the quantitative detection results by the considered
interpolation methods applied with and without considering the classes of firearms. Note
that these achieved results for the image shrinking distortion on LFC dataset are worse
when compared to those achieved using our firearm dataset. This is, in general, due to
the fact that the original images on LFC dataset present much darker backgrounds when
compared to those ones with which we have trained the YOLO models. After applying
the shrinking transformation to the test images, the targets become much more difficult
to detect (even for humans). Note that the corresponding detection capabilities of the
interpolation algorithms used are the same for our dataset and for LFC. The use of a
cross-dataset evaluation (i.e., training with one dataset and testing with another different
dataset) provides a better generalizability and robustness for the achieved results.
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Table 16 Detection results for shrinking, without separating into firearm classes, on the LFC dataset.

Interpolation Instances TP FP FN Precision Recall F1-score mAP50

No shrinking 104 59 6 45 0.902 0.570 0.699 0.765
nearest 104 15 19 89 0.450 0,148 0.223 0.292
bilinear 104 55 5 49 0.921 0.533 0.675 0.739
bicubic 104 61 4 43 0.939 0.583 0.719 0.770
Lanczos 104 56 4 48 0.938 0.534 0.681 0.742

DISCUSSION
A primary objective of this study was to focus on the viability of YOLO when applied to
the firearm detection problem (i.e., localization and specific classification). As usual, this
network was pretrained on a large dataset (MS COCO) and then adapted to our smaller
firearm training database using transfer learning. To enrich our training dataset, we created
five synthetic images from each original one as explained in Section ‘Image Preprocessing
and Data Augmentation’. The considered ‘medium’ YOLOv5mmodel has demonstrated to
be very effective for the considered problem, with respective average F1-score and mAP50
metric values of 0.89 and 0.9.

Due to the differences in detection models, datasets and analyzed variabilities, it was not
possible to fairly compare our results with those presented by other authors. To compensate
for this deficiency we have included additional experimentation using the LFC dataset.
Most images in our dataset are of reasonably good quality. In order to transfer our solution
to real operating environments and determine its feasibility in them, it is necessary to
analyze the effect of these multiple variabilities that hinder the detection of the objects of
interest (i.e., firearms). As pointed out, in this study we aimed to analyze the impact of each
considered individual artificial distortions (i.e., impulse noise, occlusion, blur, darkening
and shrinking, respectively) on the detection results. For such purpose, Experiments 2,
3, 4, 5, 6 and 7 were conducted to determine that the most influential factor to degrade
the detection performance was by far the incremental addition of impulse noise. Next,
image shrinking, synthetic occlusions and image darkening produced an intermediate
degradation in the detection performance. Increasing levels of Gaussian blur produced the
lowest impact on the network detection performance amongst all considered distortions.
To corroborate this, Table 17 shows the worst average value (i.e., without considering
the classes) of F1-score and mAP50 performance degradation for each type of artificial
distortion considered in the specific experiments.

Although the YOLOv5 network has been able to successfully detect most of the test
firearms in images, there were some limiting cases where the weapons were not detected,
wrongly detected or misclassified. We illustrate in Fig. 9 two examples of incorrect
detections. On the left image, an object that is a firearm has not been detected as a ‘handgun’
(i.e., producing a FN), and on the right image a detected weapon has been wrongly classified
as ‘long gun’ instead of ‘handgun’. Note that this happens more frequently under the
presence of a high degree of impulse noise within the images.
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Table 17 Worst F1-score andmAP50 average performance degradation for the corresponding ‘‘worst’’
variability considered in each of the experiments.

Variability Category No. Experiment F1-score Degradation
(%)

mAP50 Degradation
(%)

Impulse noise 0.05 2 270.8 73.1
Shrinking nearest 6 29.8 21.4
Occlusion 1×30% 3 20.3 23.6
Darkening 5 5 22.8 19.9
Blur k= 13 4 5.6 4.2

Figure 9 Two sample examples of incorrectly detected firearms: (left) false positive (FP) detection and
(right) wrongly-classified firearm. (Note: The original image within this figure can be found in the DaSCI
Weapon Detection dataset, and it is distributed under the terms of the Creative Commons Attribution 4.0
International).

Full-size DOI: 10.7717/peerjcs.2381/fig-9

CONCLUSIONS
This work described an experimental study on the individual impact of some considered
artificial image distortions (namely: impulse noise, occlusions, Gaussian blur, image
darkening and image shrinking, respectively) on the firearm detection problem. For such
purpose, we have established a ‘‘reference’’ detector (i.e., the ‘medium’ scale YOLOv5
architecture, referred as YOLOv5m) and two datasets that include annotated firearm
images (classified respectively as ‘handguns’ and ‘long guns’) from different sources.

First, we show that YOLOv5 is a highly effective architecture for the considered detection
problem. Relative to the distortions analyzed, the one that significantly worsens the
detection performance is the incremental synthetic addition of salt-and-pepper impulse
noise to the test images, when the model was trained with noiseless images. Image
shrinking, occlusions and image darkening have amoderate impact on the firearmdetection
performance. For the case of Gaussian blur addition, the impact is not significant.
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As future work, we plan to perform new experiments which include other types of
artificial distortions on the test images. For example, those ones produced by out-of-focus
and motion-blurred conditions. Another interesting analysis is to quantify the detection
impact of several combined variabilities (e.g., impulse noise with occlusions) by creating
test images containing several types of distortions. Finally, we also aim to propose firearm-
specific modifications in the used YOLO architecture model in order to improve accuracy
in detections.
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