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ABSTRACT
Few-shot learning aims to enable machines to recognize unseen novel classes using
limited samples akin to human capabilities. Metric learning is a crucial approach to
addressing this challenge, with its performance primarily dependent on the
effectiveness of feature extraction and prototype computation. This article introduces
an Adaptive Prototype few-shot image classification method based on Feature
Pyramid (APFP). APFP employs a novel feature extraction method called FResNet,
which builds upon the ResNet architecture and leverages a feature pyramid structure
to retain finer details. In the 5-shot scenario, traditional methods for computing
average prototypes exhibit limitations due to the typically diverse and uneven
distribution of samples, where simple means may inadequately reflect such diversity.
To address this issue, APFP proposes an Adaptive Prototype method (AP) that
dynamically computes class prototypes of the support set based on the similarity
between support set samples and query samples. Experimental results demonstrate
that APFP achieves 67.98% and 85.32% accuracy in the 5-way 1-shot and 5-way 5-
shot scenarios on the MiniImageNet dataset, respectively, and 84.02% and 94.44%
accuracy on the CUB dataset. These results indicate that the proposed APFP method
addresses the few-shot learning problem.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Neural
Networks
Keywords Few-shot learning, Metric learning, Prototype network, Image classification

INTRODUCTION
Supervised image classification has achieved high accuracy thanks to vast amounts of data
and advancements in deep learning. However, acquiring large-scale annotated datasets
remains challenging, leading to increased attention on few-shot learning. Few-shot image
classification necessitates training classifiers with minimal training data to recognize new
categories. This poses a significant challenge as traditional classifiers typically require more
labeled examples; otherwise they might suffer from underfitting or overfitting.

To address the issue of small sample sizes, the MAML method has been proposed,
which can be trained on a limited number of training samples to obtain models capable of
rapidly adapting to new tasks (Finn, Abbeel & Levine, 2017). Additionally, techniques such
as matching networks, relation networks, and prototype networks have shown remarkable
effectiveness through metric learning strategies (Vinyals et al., 2016; Sung et al., 2018;
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Snell, Swersky & Zemel, 2017). Furthermore, Chen et al. (2021) trained feature extractors
on base-class data and achieved outstanding performance by training specific task
classifiers on labeled samples from novel categories. Li et al. (2020) introduced AFHN,
while Wang et al. (2020) proposed the miner network, both addressing the few-shot
problem through data augmentation methods. Similarly, Baik et al. (2021) introduced the
MeTAL method, and Guo & Cheung (2020) proposed the AWGIM method, employing
optimization-based methods to tackle the few-shot problem. Among these, metric learning
methods stand out for their simplicity and efficacy.

In recent years, metric-based methods have emerged as one of the most prominent
research directions in few-shot image classification. The Feature Reconstructive Network
(FRN) surpasses prior methods in both performance and computational efficiency by
reconstructing query sample features and leveraging relation networks (Wertheimer, Tang
& Hariharan, 2021). DeepEMD introduces an outstanding distance metric, the Earth
Mover’s Distance, and achieves excellent results (Zhang et al., 2020). DeepBDC reaches
state-of-the-art performance across multiple datasets by incorporating deep Brownian
covariance during the learning phase to effectively learn image features, producing
remarkably significant outcomes (Xie et al., 2022). The essence of metric learning methods
in few-shot learning lies in acquiring exemplary feature representations and measuring the
similarity between samples.

Currently, few-shot learning has also demonstrated notable achievements in various
other domains. In the field of remote sensing image classification, Cheng et al. (2021)
introduced a method named SPNet for few-shot image classification, which effectively
enhances the accuracy of remote sensing image classification through prototype self-
calibration and intercalibration. In the realm of few-shot image segmentation tasks, Cheng,
Lang & Han (2022) proposed a Holistic Prototype Activation (HPA) network as a solution
to the challenges of overfitting and imprecise segmentation boundaries encountered in
few-shot segmentation. Furthermore, Lang et al. (2023) proposed a new method called
BAM, which uses base learners to identify basic regions in query images and point clouds
that are easily confused, effectively alleviating the bias issue of the FSS model towards seen
concepts in 2D and 3D scenes, thereby achieving significant results. Additionally, Lang
et al. (2024) introduced the DCP method, which utilizes a divide-and-conquer strategy in
few-shot segmentation tasks. This method divides coarse results into smaller regions and
addresses segmentation failures by utilizing information obtained from support image-
mask pairs (Lang et al., 2024).

This study draws inspiration from the Feature Pyramid Network (FPN) (Li et al., 2020)
to enable the feature extractor to learn an optimal feature representation. It proposes a
novel feature extractor, FResNet, integrating ResNet architecture and feature pyramid
structure. FResNet aims to facilitate learning more diverse sample features. The method
combines the strengths of ResNet architecture and feature pyramid structure, enabling
simultaneous extraction of image features and better capturing local and global object
information, thereby enhancing target classification performance. Additionally, addressing
inaccuracies stemming from the traditional method’s use of a fixed class prototype to
represent the support set, this article introduces an Adaptive Prototype method (AP). This
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approach extensively leverages information from query samples when computing class
prototypes for the support set, allowing for the computation of optimal support set class
prototypes based on the current query sample. This method aids in more accurately
selecting representative samples for class prototypes and calculating their similarity.

This article introduces an Adaptive Prototype few-shot image classification method
based on the Feature Pyramid (APFP) to facilitate optimal feature representation learning
by the feature extractor. The APFP comprises the FResNet network and the Adaptive
Prototype method. The FResNet method amalgamates the advantages of the ResNet
architecture and the feature pyramid structure. It enables the concurrent extraction of
image features and better capture of both local and global object information, thereby
enhancing target classification performance. The Adaptive Prototype method extensively
utilizes information from query samples when computing class prototypes for the support
set. This allows for the computation of optimal class prototypes based on the current query
sample. This method enables a more accurate selection of class prototypes for the support
set than the standard Mean Prototype (MP) method.

This article’s contributions can be summarized as follows:

. The article introduces a novel feature extractor utilizing an improved feature pyramid
structure, termed FResNet. Results demonstrate a significant enhancement in
performance for similarity measurement in few-shot image classification when
employing the designed feature extractor.

. The article proposes an Adaptive Prototype method within the prototype network
framework. This method adaptively selects corresponding prototype samples for
similarity measurement based on different query samples. Experimental results show
substantial improvements on multiple few-shot learning benchmark datasets using the
proposed method.

. The article conducted extensive experiments on the few-shot classification datasets
MiniImageNet and CUB to demonstrate the effectiveness of the proposed APFPmethod.
Experimental results indicate that the APFP method demonstrates outstanding
performance.

RELATED WORKS
Few-shot learning
In the domain of few-shot learning tasks, each category is represented by a finite number of
training samples, collectively referred to as the support set. Classification of the query set is
achieved by training models on this limited support set. However, employing a sparse set
of samples for model training may lead to overfitting issues, resulting in suboptimal
performance. Presently, few-shot learning tasks can be roughly categorized into four
distinct types: data augmentation, metric learning, parameter optimization, and other
methods. Among them, metric learning methods address the problem of learning reliable
classification models with limited sample sizes by training models capable of effectively
comparing distances between samples. The primary concept underlying metric learning
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methods is to classify samples by calculating the distances between samples and different
classes using a specific metric. Specifically, this involves computing the Euclidean distance
between query samples and support set samples or employing nonlinear methods such as
neural networks to calculate the similarity between query samples and support set samples,
thereby obtaining classification results.

In metric learning within few-shot learning, the primary objective is to construct a
feature extractor capable of mapping input images into a feature space while defining a
distance or similarity function. The design of this function aims to minimize the distance
between samples with the same label in the feature space, thereby promoting their
similarity while maximizing the distance between samples with different labels, facilitating
better discrimination among them. The advantage of this metric learning approach lies in
its ability to effectively utilize a small number of samples to establish meaningful category
boundaries, thus demonstrating robust generalization capabilities when faced with new
categories. For example, classical prototype networks utilize neural networks to map each
sample into a shared space, where the mean of samples from each class serves as the
prototype for that class. Subsequently, the Euclidean distance between query samples and
each prototype is computed as a similarity score (Snell, Swersky & Zemel, 2017). Similarly,
relation networks employ a neural network as the metric module to compute the similarity
between query samples and support set samples (Sung et al., 2018). Such learning processes
facilitate better discrimination and inference of the similarities and differences between
different categories. Many recent state-of-the-art methods have also achieved outstanding
results by adopting the principles of metric learning. For example, DeepEMD (Zhang et al.,
2020) utilizes the Earth Mover’s Distance as a metric, while DeepBDC (Xie et al., 2022) also
employs the metric-based method of prototype networks. For metric learning, the key lies
in designing an excellent feature extractor to learn the optimal feature representation of
input samples. Another crucial aspect is selecting a representative class prototype for
metric computation.

Feature pyramid
The feature pyramid is a crucial technique for image feature extraction, capable of
capturing features at multiple scales to adapt to objects and scenes of different sizes.
Particularly noteworthy in this field is the FPN (Feature Pyramid Network), introduced by
Lin et al. (2017), which integrates feature pyramids from different levels to obtain multi-
scale feature representations within a single network. Specifically, FPN leverages top-down
feedback to combine high-level semantic information with low-level detailed information,
achieving rich and accurate feature representations at different scales. This effective
extraction of multi-scale features has led to the widespread application of FPN in
computer vision tasks such as object detection and semantic segmentation, resulting in
significant performance improvements. In recent work on few-shot image classification,
SetFeat utilizes feature pyramids to propose a feature set extraction and matching
method, achieving excellent results (Afrasiyabi, Lalonde & Gagné, 2020). Inspired by the
FPN network structure, this article proposes the FResNet algorithm for obtaining
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multi-scale feature representations of images and integrating them during the feature
extraction stage.

Prototype network
The prototype network is a classic model in few-shot learning, which computes class
prototypes from support set samples for classification. During training, the prototype
network takes the support set as input and calculates prototype vectors for each class,
typically using the mean of class samples as the prototype. During inference, the similarity
between query samples and each class prototype is computed using Euclidean distance. As
a classic method in metric learning, the prototype network has provided essential insights
for many subsequent methods. However, it has limitations; sample distributions are often
uneven, and using the mean of class samples as prototypes may not effectively represent
class prototypes. To address this, Zhou & Yu (2023) proposed WPN, which utilizes graph
neural networks to measure the contribution of same-class samples to their prototypes.
Liu, Song & Qin (2020) proposed BD-CSPN, which eliminates the difference between
prototype estimates and ground truth through two bias-eliminating mechanisms. Zhang &
Huang (2022) proposed DSFN, which reduces bias induced by intra-class variations
through spectral filtering. This article proposes a lightweight Adaptive Prototype method,
which adaptively computes prototypes for each class based on information from query
samples and support set samples, achieving excellent results.

METHODS
In few-shot learning tasks, the N-way K-shot paradigm represents the task type, wherein
the query set comprises N classes, each with K samples. This article considers two datasets:
a support set S ¼ fðxi; yiÞgN�Ki¼0 and a query set Q ¼ fðxjÞgMj¼0. The support set S contains
labeled samples representing known categories. In contrast, the query set Q comprises
unlabeled samples for which the labels need to be inferred using the support set S. Here, xi
and yi denote samples and their corresponding labels for the known categories,
respectively, while xj represents samples with unknown labels sampled from the query set.
N signifies the presence of N distinct categories in the support set S, K denotes the number
of samples per category in the support set S, and M represents the number of samples in
the query set Q. The objective of this article is to utilize the support set S under the N-way
K-shot framework to predict the category of a given query sample xq 2 Q.

This article adopts the prototype network paradigm to address the task of few-shot
image classification. Initially, the support set S and query set Q of the few-shot
classification task are separately fed into a feature extractor. In this regard, the selected
feature extractor is FResNet—an embedding network designed in this article that
combines the FPN structure to capture local and global objects’ information more
effectively. Subsequently, an Adaptive Prototype algorithm is used to compute prototypes
for the sample features obtained from the feature extractor. Then, the Euclidean distances
from the query vectors to the prototypes of each class are calculated, and classification
results are derived based on these distances. The overall network architecture of this article
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is illustrated in Fig. 1. Subsequent sections will provide a detailed exposition of the
methodology adopted in this article.

FResNet extractor
ResNet (He et al., 2016) is often the preferred choice as a feature extractor in metric
learning tasks. DeepBDC (Xie et al., 2022) employs ResNet-12 (Tian et al., 2020) and
ResNet-18 (Liu et al., 2020), while FRN (Wertheimer, Tang & Hariharan, 2021) opts for
ResNet-12 as its feature extractor. ResNet and its variations are better suited for learning
features on limited datasets due to their improved gradient propagation. Despite ResNet’s
effectiveness in learning dataset features, it fails to capture rich, fine-grained details within
images in few-shot scenarios. To address this issue, the present study enhances the original
ResNet architecture by introducing FResNet as an augmentation to ResNet. Drawing
inspiration from the feature pyramid structure in FPN (Lin et al., 2017), an innovative
backbone network structure named FResNet is introduced. The approach presented in this
article builds upon the ResNet architecture and is enhanced accordingly. Specifically, a
feature pyramid is constructed at the output of the last residual block in each stage of
ResNet to obtain outputs containing features at different levels. In the design of the feature
pyramid, this article opts to utilize the feature vectors from the lowest level as the final
output of the proposed feature extractor, FResNet. This decision is driven by the
understanding that the feature vectors from the lowest level typically preserve more

Figure 1 The overall structure of the method. This study’s 5-shot image classification framework consists of the following steps: employing
FResNet to extract image features and obtain feature vectors for support set samples and a query sample. The Adaptive Prototype module calculates
the distances, denoted as di, between support set samples and the query sample, generating class prototypes accordingly. Finally, the Euclidean
distance is utilized to measure the distance between the support set class prototypes and the query sample, facilitating the classification process.
Figure source credit: CUB dataset. Full-size DOI: 10.7717/peerj-cs.2322/fig-1
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detailed information and exhibit superior capability in capturing both local and global
features of objects in images. Ultimately, the feature vectors output by the FResNet
extractor are utilized for subsequent similarity measurement and classification tasks. The
specific implementation of FResNet is detailed below.

In Fig. 2, the computational path of the proposed FResNet is illustrated. This path
comprises two stages: initially, the bottom-up computation of sample feature maps,
followed by the top-down computation of the feature pyramid’s output. During the
bottom-up feature extraction phase, ResNet is employed for forward computations. The
feature pyramid is constructed using the output feature maps of the last three residual
blocks C1;C2;C3f g from the ResNet. These features typically encompass more abstract
and high-level information, with C3 representing the topmost level of the pyramid,
carrying the most robust semantic features, followed by C2 and C1.

C1;C2;C3f g ¼ fresnet xð Þ (1)

Initially, in computing the feature pyramid output from top to bottom, each output
feature map undergoes processing through an attention module, capturing correlations
between different positions or channels and emphasizing critical elements while
attenuating irrelevant features. Subsequently, for higher-level features, a straightforward
and effective nearest-neighbor upsampling method is employed to match the scale,
expanding the feature map dimensions to enhance resolution and retain original
information, thereby providing a more nuanced feature representation for the pyramid.
Lastly, the high and low-level features are concatenated across channels, integrating
advanced semantic information with high-resolution local details to generate a more
comprehensive and enriched feature representation.

P1 ¼ fnearestðfSAM�3ðC3ÞÞ (2)

P2 ¼ concatðfSAM�2ðC2Þ;P1Þ (3)

P3 ¼ concatðfSAM�3ðC1Þ; fnearestðP2ÞÞ (4)

The process of constructing the feature pyramid in this article is depicted by Eqs. (2)–
(4). Eventually, three distinct-scale, different-level features P1;P2; P3 are obtained. By
fusing features from different levels, the feature map P3 encompasses more detailed and
semantic information from the image. This study designates P3 as the output of FResNet,
representing an aggregation of multi-level feature representations. Subsequently, P3 is fed
into the metric module for similarity comparison and classification purposes.

Adaptive prototype
Most current methods follow the methodology of prototype networks (Snell, Swersky &
Zemel, 2017), using the mean of individual samples as class prototypes. This method
assumes that samples are based on Bregman divergences, where the points in the feature
space closest to the mean of these samples are considered mean points. However, a singular
mean is highly sensitive to outliers or noisy samples in few-shot learning. This sensitivity
might lead to inaccurate class prototypes influenced by outliers, while sample distributions
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tend to be more diverse and uneven. Using a simple mean as a class prototype might not
sufficiently capture this diversity. Therefore, this article introduces an innovative method
to determine class prototypes, aiming to model them more accurately. Class prototypes are
dynamically calculated by considering the correlation, diversity between samples, and
uncertainty of the underlying distribution, which can represent categories more
comprehensively and accurately. The method proposed in this article provides an
innovative solution to the metric learning task in few-shot learning. The comparison
between the adaptive prototype method and the mean prototype method is shown in
Fig. 3. The Adaptive Prototype method proposed in this article is detailed as follows.

Di ¼ ðsi � xqÞ2 (5)

This article acknowledges the diverse and uneven characteristics present within support
set samples in few-shot learning. It asserts that directly using the mean of samples as class
prototypes for all query samples is inaccurate. The process of computing class prototypes
via sample means risks losing the diversity within the class. Consequently, the
classification performance is significantly compromised if the features specific to a class
present in query samples are lost in the class prototype. Hence, this article introduces a
novel method that adaptively computes class prototypes based on the features of the

C1C1C1CC1 C2C2C2CC2 C3C3C3CC3

P3P3P3P3P3P3

Input

Output

AM-X : Attention module

Nearest :

Concat  :

Nearest Neighbor interpolation

Concat feature

Conv layer Resblock1 Resblock2 Resblock3

Nearest

Nearest

ConcatConcat

P1P1P1PP1P2P2P2P2

AM-1AM-1AM-1 AM-2AM-2AM-2 AM-3AM-3AM-3

Figure 2 Computational diagram of FResNet. It records the intermediate features obtained from different residual blocks in the ResNet network,
enhances these intermediate features through an attention module, resizes the scales using the nearest method, and integrates features from different
levels using the concatenation method. Figure source credit: CUB dataset. Full-size DOI: 10.7717/peerj-cs.2322/fig-2
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current query sample. The proposed method selects more relevant support set samples by
the features of the query sample, assigning higher weights to these samples while assigning
lower weights to the remaining ones, thus deriving the class prototype. This article initially
computes the Euclidean distance between the query sample xq 2 Q and each support set
sample si 2 S, representing the similarity between the query sample and each support
sample. The calculation formula is depicted in Eq. (5). Then, employing the softmax
function, this study computes the weights for each sample as depicted in Eq. (6).

wj ¼ expð�Dj � hÞ
Pk

i¼1 expð�Di � hÞ : (6)

In Eq. (6), wj represents the weight of the support set sample si relative to the current
query sample xq. Due to the potential presence of samples in the support set that deviate
from the typical class prototype, referred to as outlier samples, these samples may lead to
deviations in the computed class prototype. To address this issue, a hyperparameter h is
introduced during the computation process to mitigate the influence of outlier samples on
the class prototype. The parameter h in Eq. (6) can reduce the weights of outlier samples.
By adjusting the value of h, the influence of these outliers on the class prototypes can be
effectively mitigated. Multiple experiments determined that the optimal value of h for the
mini-ImageNet dataset is 0.008, while for the CUB dataset, the optimal value is 0.072.
Consequently, these values are set for subsequent calculations to 0.008 and 0.072,

Figure 3 Comparison between mean prototype and adaptive prototype. This article proposes an
Adaptive Prototype method that dynamically calculates class prototypes based on the similarity between
support and query samples. Different query samples generate different prototypes for the same class of
support samples rather than using a single prototype for all query samples. In contrast, the Mean Pro-
totype method only calculates the mean of the support samples and does not customize the class pro-
totype to fit the query samples. Full-size DOI: 10.7717/peerj-cs.2322/fig-3
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respectively. Finally, this study utilizes the weights obtained for each sample to compute
the class prototypes.

Xproto ¼
Xk

j¼1 ðsj � wjÞ: (7)

In Eq. (7), Xproto represents the class prototypes obtained from the support set. This
article uses the Euclidean distance to measure the similarity between the query sample and
each class prototype. This captures the core idea of the proposed Adaptive Prototype
method in this article.

EXPERIMENTS
Dataset
MiniImageNet.MiniImageNet was first introduced in Vinyals et al. (2016). It is a popular
dataset used in few-shot learning research based on the ImageNet dataset. Comprising a
collection of images, MiniImageNet categorizes these images into 100 different classes. To
conduct few-shot learning tasks, MiniImageNet divides its image data into various subsets,
including sets designated for model training, validation, and testing. This dataset has
emerged as a critical resource in the field of few-shot learning, extensively employed for
evaluating and comparing the performance of various learning algorithms.

CUB-200-2011. The CUB dataset is a crucial dataset employed in few-shot learning
tasks, initially designed for fine-grained image classification purposes (Wah et al., 2011).
Originally utilized for fine-grained bird classification, it encompasses approximately
11,788 images originating from 200 distinct bird species. These images typically exhibit
high resolution and come annotated with detailed information, such as species of the birds.
In the realm of few-shot learning, the CUB dataset presents challenges due to subtle
differences between each category. Following the partitioning outlined in Vinyals et al.
(2016), this article divides the 200 categories into 100, 50, and 50 for meta-training, meta-
validation, and meta-testing purposes. The CUB dataset is pivotal in advancing research
within the domain of few-shot learning.

Implementation setting
Architecture. This article adopts DeepBDC as the baseline. Employing DeepBDC’s
fundamental structure, this study utilizes FResNet based on ResNet-12 for feature
extraction on the MiniImageNet dataset and ResNet-18-based FResNet on the CUB
dataset. Consistent with typical tasks, image input resolutions are set to 84� 84 and 224�
224, respectively. When computing class prototypes, the article replaces the previous
method with its Adaptive Prototype method.

Training. The model in this article undergoes episodic training within a meta-learning
framework. Initially, the model is pre-trained with initialized weights. Subsequently, each
episode (task) involves standard 5-way 1-shot and 5-way 5-shot classification training. The
embedding model network is then trained on the entire meta-training set, encompassing
all categories, using cross-entropy loss.
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Experimental results
This article evaluates the accuracy of the proposed FResNet and Adaptive Prototype on the
MiniImageNet and CUB datasets. Meta-DeepBDC is chosen as the baseline for
comparison against recent popular few-shot classification methods, most of which fall
under metric-based methods. Two commonly used benchmarks, namely 5-way 5-shot and
5-way 1-shot, were selected for evaluation in this study. Experimental results on the
MiniImageNet dataset are presented in Table 1, while results on the CUB dataset are
shown in Table 2.

As shown in Table 1, the approach presented in this article demonstrates outstanding
performance on the MiniImageNet dataset. Leveraging ResNet-12 as the backbone
network, the article compared the APFP method against several common few-shot
learning approaches. Under the evaluation metric of 5-way 1-shot, the method proposed in
this article achieves outstanding results, ranking second only to SetFeat. It outperformed
Meta-DeepBDC and DMF by 0.54% and 0.22%, respectively. Additionally, under the
5-way 5-shot evaluation metric, the APFP method surpassed all other approaches,
exhibiting a 0.86% improvement over Meta-DeepBDC. The exceptional performance of
the APFP method can be attributed to the introduced FResNet and Adaptive Prototype,
which enhance the model’s representational and generalization capabilities while deriving

Algorithm 1 Calculate similarity.

Input: Support set S ¼ fs1; s2; . . . ; sng, Query sample xq

Output: Similarity score Score

1: n size of S ⊳ Get the size of support set S

2: W  0 ⊳ Initialize total weight W

3: h 0:008 ⊳ Set hyperparameter θ

4: Xproto  0 ⊳ Initialize prototype vector Xproto

5: if n > 1 then ⊳ If support set contains more than one sample

6: for i 1 to n do ⊳ Loop over each sample in the support set

7: Di  ðsi � xqÞ2 ⊳ Compute Euclidean distance Di

8: W  W þ expðh� DiÞ ⊳ Calculate total weight W

9: end for

10: for i 1 to n do ⊳ Loop over each sample in the support set again

11: wi  expðh� DiÞ=W ⊳ Compute weight wi

12: Xproto  Xproto þ wi � si ⊳ Update prototype vector Xproto

13: end for

14: Score ðXproto � qiÞ2 ⊳ Calculate similarity score

15: else ⊳ If support set contains only one sample

16: Score ðs1 � qiÞ ⊳ Calculate similarity score for single sample

17: end if
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class prototypes that better align with sample features. Particularly noteworthy is the
remarkable performance improvement of the APFP method under the 5-way 5-shot
scenario, highlighting the significance of excellent prototype selection and embedding
network construction for model performance.

As shown in Table 2, the proposed method in this article performs equally
outstandingly on the CUB dataset. Comparative analyses were conducted between the
APFP method and various popular methods. In the 5-way 1-shot scenario, the method
proposed in this article falls slightly behind the BD-CSPN method, surpassing other
methods, and achieves a 0.47% improvement over the baseline. In the 5-way 5-shot
scenario, the APFP method proposed in this article outperforms all other methods,
achieving a 0.62% improvement in accuracy compared to the baseline. Experiments on the
CUB dataset demonstrate that the proposed method effectively enhances model accuracy
in fine-grained dataset classification tasks, particularly excelling in the 5-shot scenario.

Tables 1 and 2 show that in the 5-shot scenario, the APFP method proposed in this
article is significantly better than other prototype optimization methods, such as WPN,
BD-CSPN, and DSFN. Firstly, the FResNet used in this article can more effectively extract

Table 1 Experimental results of the proposed APFP method on the MiniImageNet dataset are
presented. Bold indicates the best experimental results, while italic indicates the second best.
§ denotes results reproduced using the settings outlined in this article.

Method Backbone 5-way 1-shot 5-way 5-shot

PPA (Qiao et al., 2018) WRN-28-10 59.60 � 0.41 73.74 � 0.19

wDAE-GNN (Gidaris & Komodakis, 2019) WRN-28-10 62.96 � 0.15 78.85 � 0.11

LEO (Rusu et al., 2019) WRN-28-10 61.76 � 0.08 77.59 � 0.12

SetFeat (Afrasiyabi et al., 2022) SF-12 68.32 � 0.62 82.71 � 0.46

ProtoNet§ (Snell, Swersky & Zemel, 2017) ResNet-12 61.83 � 0.44 80.05 � 0.31

FEAT (Ye et al., 2020) ResNet-12 66.78 � 0.20 82.05 � 0.14

Meta-Baseline (Chen et al., 2021) ResNet-12 63.17 � 0.23 79.26 � 0.17

WPN (Zhou & Yu, 2023) ResNet-12 – 70.37 � 0.64

BD-CSPN (Liu, Song & Qin, 2020) ResNet-12 65.94 79.23

DSFN (Zhang & Huang, 2022) ResNet-12 61.27 � 0.71 80.13 � 0.17

MELR (Fei et al., 2021) ResNet-12 67.40 � 0.43 83.40 � 0.28

FRN (Wertheimer, Tang & Hariharan, 2021) ResNet-12 66.45 � 0.19 82.83 � 0.13

IEPT (Zhang et al., 2021) ResNet-12 67.05 � 0.44 82.90 � 0.30

BML (Zhou et al., 2021) ResNet-12 67.04 � 0.63 83.63 � 0.29

DeepEMD (Zhang et al., 2020) ResNet-12 65.91 � 0.82 82.41 � 0.56

Distill (Tian et al., 2020) ResNet-12 64.82 � 0.60 82.14 � 0.43

DMF (Xu et al., 2021) ResNet-12 67.76 � 0.46 82.71 � 0.31

APP2S (Ma et al., 2022) ResNet-12 66.25 � 0.20 83.42 � 0.15

MLCN (Dang et al., 2023) ResNet-12 65.54 � 0.43 81.63 � 0.31

TAPR (Zhang & Gu, 2023) ResNet-12 66.04 � 0.64 82.23 � 0.40

Meta-DeepBDC (Xie et al., 2022) ResNet-12 67.34 � 0.43 84.46 � 0.28

APFP (ours) ResNet-12 67.98 � 0.44 85.32 � 0.28
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sample features. Secondly, the Adpative Prototype method proposed in this article can
dynamically calculate class prototypes based on query samples, effectively reducing the
impact of biased samples on prototypes. In contrast, other methods use only a fixed class
prototype and cannot adjust dynamically. Another advantage of the Adaptive Prototype
method in this article is its lightweight nature, as it only needs to calculate the optimized
class prototype based on the relationship between query samples and support samples. In
contrast, many other methods require introducing new networks or modules. In summary,
the APFP method in this article has more advantages.

Table 3 shows a detailed comparison between the APFP method proposed in this article
and the baseline method DeepBDC regarding memory usage and runtime. Although the
APFPmethod significantly outperforms the DeepBDCmethod in classification accuracy, it
exhibits a disadvantage in memory usage and runtime. The memory usage and runtime of
the APFP method are higher than those of the DeepBDC method, mainly due to its
complex feature pyramid structure. While this structure helps extract richer features, it
also increases the complexity of the model, leading to increased memory and time
requirements. Additionally, the Adaptive Prototype method requires more complex
calculations than the Mean Prototype when computing prototypes, further increasing the
runtime. The DeepBDC method is suitable for applications with strict memory and time
requirements. In contrast, the APFP method is undoubtedly a more appropriate choice for

Table 2 Experimental results of the APFP method proposed in this article on the CUB dataset are
presented. Bold indicates the best experimental results, while italic indicates the second best.
§ denotes results reproduced using the settings outlined in this article. * taken from Tang, Huang &
Zhang (2020).

Method Backbone 5-way 1-shot 5-way 5-shot

ProtoNet (Snell, Swersky & Zemel, 2017) Conv4 64.42 � 0.48 81.82 � 0.35

FEAT (Ye et al., 2020) Conv4 68.87 � 0.22 82.90 � 0.15

MELR (Fei et al., 2021) Conv4 70.26 � 0.50 85.01 � 0.32

WPN (Zhou & Yu, 2023) Conv4 – 87.03 � 0.65

SetFeat (Afrasiyabi et al., 2022) SF-12 79.60 � 0.80 90.48 � 0.44

MatchNet (Vinyals et al., 2016) ResNet-12 71.87 � 0.85 85.08 � 0.57

BD-CSPN (Liu, Song & Qin, 2020) ResNet-12 84.90 90.22

MLCN (Dang et al., 2023) ResNet-12 77.96 � 0.44 91.20 � 0.24

AA (Afrasiyabi, Lalonde & Gagné, 2020) ResNet-18 74.22 � 1.09 88.65 � 0.55

ProtoNet§ (Snell, Swersky & Zemel, 2017) ResNet-18 80.85 � 0.43 89.95 � 0.23

MAML* (Finn, Abbeel & Levine, 2017) ResNet-18 68.42 � 1.07 83.47 � 0.62

Neg-Cosine (Liu et al., 2020) ResNet-18 72.66 � 0.85 89.40 � 0.43

LaplacianShot (Ziko et al., 2020) ResNet-18 80.96 88.68

Baseline++ (Chen et al., 2019) ResNet-18 67.02 � 0.90 83.58 � 0.54

FRN (Wertheimer, Tang & Hariharan, 2021) ResNet-18 82.55 � 0.19 92.98 � 0.10

AAP2S (Ma et al., 2022) ResNet-18 77.64 � 0.19 90.43 � 0.18

Meta-DeepBDC (Xie et al., 2022) ResNet-18 83.55 � 0.40 93.82 � 0.17

APFP (ours) ResNet-18 84.02 � 0.40 94.44 � 0.17
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applications that demand higher classification accuracy despite its higher memory and
time costs, as the improvement in accuracy may be worth it.

By changing the parameter h, a curve graph was generated to show the variation of
classification accuracy with h (Fig. 4). It was observed that the best classification accuracy
was achieved when h was set to 0.72. This indicates that at this parameter value, the
calculation of class prototypes is more accurate, enabling a more effective differentiation of
different categories in the dataset, thereby significantly improving overall classification
performance. Additionally, the article conducted a visualization experiment on the
FResNet feature extractor using the CUB dataset, as shown in Fig. 5. The distribution of
data points was observed by mapping high-dimensional features to a two-dimensional
space using a scatter plot. The experimental results show that the feature extractor can
effectively separate features of different categories, demonstrating a clear clustering trend.

Ablation study
In order to demonstrate the effectiveness of the two proposed methods in this article, the
results of Meta-DeepBDC were reproduced in the experimental environment of this study
using the source code and parameters provided by the authors of Meta-DeepBDC. Meta-
DeepBDC was utilized as a baseline in further ablation studies to validate the efficacy of the
proposed FResNet architecture and Adaptive Prototype method on the MiniImageNet
dataset. Notably, disparities exist between the results reproduced in this article and those
reported in the original study due to differences in experimental environments. The
findings of the ablation experiments conducted in this study are presented in Table 4.

Effectiveness of FResNet. In this ablation study, the feature extractors of the original
ResNet-12 architecture were contrasted with those derived from the ResNet-12-based
FResNet. Upon substituting ResNet-12 with the FResNet method, the FResNet integrates
features from different hierarchical levels during feature extraction, thereby retaining more
detailed features and yielding feature maps with richer information content. As evident
from Table 4, within the framework of Meta-DeepBDC, replacing ResNet with the
FResNet proposed in this article resulted in a 1.17% enhancement in 5-way 1-shot
classification by extracting additional information. Furthermore, under the 5-way 5-shot
scenario utilizing Mean Prototype as the prototype calculation method, the efficacy of the
FResNet proposed in this article was augmented by 0.65%. Substituting the Mean
Prototype with the Adaptive Prototype proposed in this article as the prototype calculation
method under the 5-way 5-shot scenario improved accuracy by 1.08%. This series of

Table 3 Performance comparison on mini-ImageNet and CUB datasets.

Method Mini-imagenet CUB

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

Memory Time Memory Time Memory Time Memory Time

DeepBDC 47.5 M 95 s 47.5 M 118 s 39.6 M 86 s 39.6 M 101 s

APFP 66.9 M 160 s 66.9 M 221 s 45.6 M 113 s 45.6 M 142 s
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experimental findings distinctly underscores the substantial advantage of the FResNet
structure proposed in this article in feature extraction, rendering it more effective than the
conventional ResNet. Additionally, in the 5-shot scenario, the combination of FResNet
with the Adaptive Prototype method yields even more outstanding performance. These

Figure 4 Classification accuracy on the CUB dataset with varying hyperparameter h. Accuracy of the
5-way 5-shot scenario on the CUB dataset as a function of the hyperparameter h. The current hyper-
parameter h value of 0.72 yields the best classification performance, with an accuracy of 94.44%.

Full-size DOI: 10.7717/peerj-cs.2322/fig-4

Figure 5 Visualization of FResNet feature extraction. Full-size DOI: 10.7717/peerj-cs.2322/fig-5
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experimental results comprehensively validate the effectiveness of the FResNet method
proposed in this article and underscore its immense potential in the realm of few-shot
learning.

Effectiveness of Adaptive Prototype. In this ablation study, the commonly used Mean
Prototype method is contrasted with the Adaptive Prototype method proposed in this
article. The Mean Prototype and Adaptive Prototype methods are utilized when the
support set sample size exceeds one for computing class prototypes. Consequently, this
experiment primarily focuses on comparing their efficacy under the 5-way 5-shot scenario,
while the 5-way 1-shot scenario directly utilizes the respective sample as the class
prototype and does not need further discussion. Within the Meta-DeepBDC framework,
this article replaces the original Mean Prototype method with the Adaptive Prototype
method. The Adaptive Prototype method computes more representative class prototypes
based on query samples. As evident from Table 4, employing the Adaptive Prototype
method proposed in this article resulted in a 0.15% improvement in 5-way 5-shot
classification when the backbone network employs the ResNet-12 architecture and a 0.43%
improvement when utilizing the FResNet structure. The experimental results in Table 3
demonstrate that the proposed Adaptive Prototype method can compute more
representative class prototypes.

CONCLUSION
The APFP method, through the innovative FResNet feature extractor and Adaptive
Prototype calculation method, effectively addresses the few-shot learning problem.
FResNet combines the ResNet architecture with a feature pyramid structure, enhancing
extracting local and global features from images to generate information-rich feature
representations. The Adaptive Prototype method dynamically calculates class
prototypes from the support set based on the query samples, overcoming the limitations of
using simple sample means as prototypes and capturing class characteristics more
accurately. These two innovations enable the APFP method to improve
performance significantly across multiple few-shot learning benchmark datasets.
Evaluations of the MiniImagenet and CUB datasets demonstrate that the proposed APFP
method significantly outperforms previous approaches, achieving state-of-the-art
performance on both datasets. The article provides an effective solution to the few-shot
learning problem.

Table 4 Effectiveness of different modules on MiniImageNet. It is noteworthy that the Adaptive
Prototype method only applies in the 5-shot scenario, and is not discussed in the 1-shot scenario.

FResNet Adaptive prototype 5-way 1-shot 5-way 5-shot

× × 66.82 ± 0.44 84.24 ± 0.28

✓ × 68.09 ± 0.44 84.89 ± 0.27

× ✓ — 84.39 ± 0.28

✓ ✓ 68.09 ± 0.44 85.32 ± 0.28
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The CUB (Caltech-UCSD Birds 200) dataset was jointly created by Caltech and UC San
Diego to promote research in bird identification and classification. The dataset contains
images of 200 bird species and is suitable for image classification and fine-grained
classification tasks. It is available at Wah, C., Branson, S., Welinder, P., Perona, P., &
Belongie, S. (2022). CUB-200-2011 (1.0) [Data set]. CaltechDATA. https://doi.org/10.
22002/D1.20098.

The MiniImageNet dataset was created by the Google DeepMind team in 2016 to
support research on few-shot learning and meta-learning. This dataset is extracted from
the large ImageNet dataset and contains diverse image samples, which is suitable for few-
shot classification tasks. This dataset is currently the most commonly used dataset in the
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figshare: feng, xiang (2024). miniImageNet.zip. figshare. Dataset. https://doi.org/10.6084/
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The code is available at GitHub and Zenodo:
- https://github.com/fengxiang521/APFP
- Xiang, F. (2024). The code of APFP. Zenodo. https://doi.org/10.5281/zenodo.

12799367.
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