Skip to main content
. 2024 Oct 1;10:e2322. doi: 10.7717/peerj-cs.2322

Table 2. Experimental results of the APFP method proposed in this article on the CUB dataset are presented.

Bold indicates the best experimental results, while italic indicates the second best. § denotes results reproduced using the settings outlined in this article. * taken from Tang, Huang & Zhang (2020).

Method Backbone 5-way 1-shot 5-way 5-shot
ProtoNet (Snell, Swersky & Zemel, 2017) Conv4 64.42 ± 0.48 81.82 ± 0.35
FEAT (Ye et al., 2020) Conv4 68.87 ± 0.22 82.90 ± 0.15
MELR (Fei et al., 2021) Conv4 70.26 ± 0.50 85.01 ± 0.32
WPN (Zhou & Yu, 2023) Conv4 87.03 ± 0.65
SetFeat (Afrasiyabi et al., 2022) SF-12 79.60 ± 0.80 90.48 ± 0.44
MatchNet (Vinyals et al., 2016) ResNet-12 71.87 ± 0.85 85.08 ± 0.57
BD-CSPN (Liu, Song & Qin, 2020) ResNet-12 84.90 90.22
MLCN (Dang et al., 2023) ResNet-12 77.96 ± 0.44 91.20 ± 0.24
AA (Afrasiyabi, Lalonde & Gagné, 2020) ResNet-18 74.22 ± 1.09 88.65 ± 0.55
ProtoNet§ (Snell, Swersky & Zemel, 2017) ResNet-18 80.85 ± 0.43 89.95 ± 0.23
MAML* (Finn, Abbeel & Levine, 2017) ResNet-18 68.42 ± 1.07 83.47 ± 0.62
Neg-Cosine (Liu et al., 2020) ResNet-18 72.66 ± 0.85 89.40 ± 0.43
LaplacianShot (Ziko et al., 2020) ResNet-18 80.96 88.68
Baseline++ (Chen et al., 2019) ResNet-18 67.02 ± 0.90 83.58 ± 0.54
FRN (Wertheimer, Tang & Hariharan, 2021) ResNet-18 82.55 ± 0.19 92.98 ± 0.10
AAP2S (Ma et al., 2022) ResNet-18 77.64 ± 0.19 90.43 ± 0.18
Meta-DeepBDC (Xie et al., 2022) ResNet-18 83.55 ± 0.40 93.82 ± 0.17
APFP (ours) ResNet-18 84.02 ± 0.40 94.44 ± 0.17