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ABSTRACT
Extracting the essential features and learning the appropriate patterns are the two
core character traits of a convolution neural network (CNN). Leveraging the two
traits, this research proposes a novel feature extraction framework code-named
‘HierbaNetV1’ that retrieves and learns effective features from an input image.
Originality is brought by addressing the problem of varying-sized region of interest
(ROI) in an image by extracting features using diversified filters. For every input
sample, 3,872 feature maps are generated with multiple levels of complexity. The
proposed method integrates low-level and high-level features thus allowing the
model to learn intensive and diversified features. As a follow-up of this research, a
crop-weed research dataset termed ‘SorghumWeedDataset_Classification’ is
acquired and created. This dataset is tested on HierbaNetV1 which is compared
against pre-trained models and state-of-the-art (SOTA) architectures. Experimental
results show HierbaNetV1 outperforms other architectures with an accuracy of
98.06%. An ablation study and component analysis are conducted to demonstrate the
effectiveness of HierbaNetV1. Validated against benchmark weed datasets, the study
also exhibits that our suggested approach performs well in terms of generalization
across a wide variety of crops and weeds. To facilitate further research, HierbaNetV1
weights and implementation are made accessible to the research community on
GitHub. To extend the research to practicality, the proposed method is incorporated
with a real-time application named HierbaApp that assists farmers in differentiating
crops from weeds. Future enhancements for this research are outlined in this article
and are currently underway.

Subjects Artificial Intelligence, Computer Vision, Neural Networks
Keywords HierbaNetV1, SorghumWeedDataset_Classification, Convolutional Neural Network
(CNN), Classification, Crop-weed identification, Precision agriculture, Feature extraction, Low level
feature extraction, High level feature extraction, Feature integration

INTRODUCTION
Feature extraction and pattern recognition are the salient characteristics of convolutional
neural networks (CNN or ConvNet). The effectiveness of a feature extraction technique
differs from one architecture to another. Conventional classification algorithms such as
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Visual Geometry Group (VGGs) extract generalized features from deep networks
(Simonyan & Zisserman, 2014), inceptions extract multi-scale features from deep and wide
networks (Szegedy et al., 2015), Residual networks (ResNets) extract features from skip
connection networks (He et al., 2016), densely connected convolutional networks
(DenseNets) extract discriminative features from deep networks with feature reuse
capability (Huang et al., 2017), and MobileNets extract features from light-weight
networks suitable for all applications (Howard et al., 2017).

HierbaNetV1, our novel feature extraction technique is intended to extract intensive
and diverse features at multiple levels of complexity, using varying-sized kernels. Unlike
traditional architectures, it maintains high effectiveness across inputs, regardless of the
Region of Interest (ROI) size. By balancing both depth and width in the network,
HierbaNetV1 avoids the drawbacks of overly deep networks. The architecture enables
feature propagation thus avoiding the problem of vanishing gradient. Additionally, the use
of the LeakyReLU activation function (Dubey & Jain, 2019) addresses the common “dying
ReLU” issue seen in other models, ensuring robust pattern recognition across varying
input complexities.

CNN through its feature extraction demonstrates promising results in various aspects of
crop-weed management including crop-weed identification (Calderara-Cea et al., 2024),
crop-weed detection (Asad, Anwar & Bais, 2023), weed mapping (Wang et al., 2023), and
weed segmentation (Celikkan et al., 2023). CNN-based weed architectures and networks
(Xu et al., 2023) are specifically designed to differentiate weeds from crops, facilitating
autonomous weed removal for agriculturalists. Weeds must be effectively managed as they
contribute significantly to crop yield loss, with studies indicating that weeds account for
approximately 45% of such losses, followed by insects (30%), diseases (20%), and other
factors (5%). Crop yield losses attributed to weeds can range from a minimum of 15% to as
high as 76% (Gharde et al., 2018). Beyond impacting productivity, weeds also lead to
substantial economic losses for farmers.

Motivation and significance
Artificial intelligence (AI) is making significant strides across various sectors; however, its
application in agriculture, particularly in countries like India, is still in its early stages. A
significant challenge in farming is the labor-intensive process of weeding, especially since
early-stage weeds often closely resemble crops. Although AI-driven weed removal
techniques have demonstrated considerable promise in tackling this issue, their practical
adoption on a wider scale is still limited.

This research aims to support weed scientists and the agricultural community by
developing a robust AI-based weed identification system for the precise early detection of
weeds. Furthermore, this research enables real-time weed detection by incorporating the
proposed model into an Android mobile application capable of distinguishing crops from
weeds. By reducing or eliminating weed growth, this system enhances crop yield and
supports healthier plant growth, ultimately contributing to the economic growth of the
country.
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Contributions
The contribution of the article is summarized as follows:

1. Novel framework: This research designs and develops a novel feature extraction
framework code named HierbaNetV1, that retrieves and learns effective features
from an input image.

2. Own dataset: To encourage weed research, a crop-weed dataset termed
SorghumWeedDataset_Classification is created and is publicly available in the
Mendeley Data repository at https://data.mendeley.com/datasets/4gkcyxjyss/1. To the
best of our knowledge, the above-mentioned dataset is the first open-access crop-weed
research dataset from the Indian field to deal with crop-weed classification.

3. Releases model weights: Trained model weights of HierbaNetV1 are publicly available
to the research community to encourage further extensions in the architecture. It is
available in GitHub at https://github.com/JustinaMichael/HierbaNetV1-A-Novel-
CNN-Architecture in Hierarchical Data Format version 5 (HDF5) data file format.

4. Releases source code: The proposed architecture is implemented in Python and the
code is released on the reproducibility platform CodeOcean at https://codeocean.
com/capsule/5579071/tree/v1.

5. Real-time application: To bring weed research into practicality, this research employs
the proposed HierbaNetV1 with a specially designed user-friendly Android mobile
application named HierbaApp leveraging CNNs for on-the-spot weed identification by
farmers. The application can be accessible in the Google Play Store at https://play.
google.com/store/apps/details?id=com.hierba.app

The rest of the article is organized as follows: ‘Related Works’ presents a summary of
current weed detection architectures, outlining their methodologies and highlighting the
research gaps addressed by these existing approaches. It also discusses the problem
addressed in this research. In ‘Materials and Methods’ data acquisition, dataset creation,
data pre-processing pipeline, and the novel feature extraction technique HierbaNetV1 are
discussed. ‘Implementation of HIERBANETV1’ explains the implementation of
HierbaNetV1 with a sequential algorithm, model parameters, and tuned hyper-
parameters. The generated feature maps are portrayed for better understanding. ‘Results
and Discussions’ depicts and discusses the model performance through various result
analysis, ablation studies, component analysis, and real-time inference. Eventually, future
improvements are explored along with the conclusion in ‘Conclusions and Future
Enhancements’.

RELATED WORKS
Recent studies have demonstrated the effectiveness of CNNs, contributing to
advancements in various aspects of crop-weed classification. This section reviews the
state-of-the-art (SOTA) architectures for crop-weed identification, with a summary of key
models presented in Table 1.
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Recent research has shifted focus toward crop identification rather than focusing on
several categories of weeds, thus introducing a novel approach for weed detection (Mckay
et al., 2024). The performance of a CNN model is primarily based on its data. Therefore,
studies increasingly emphasize data augmentation techniques such as random image
cropping and patching (RICAP) to improve model robustness under varying lighting and
environmental conditions (Su et al., 2021; Fawakherji et al., 2024). A balanced dataset
prevents the model from becoming biased towards one class. To address this, researchers
have employed advanced methods like SWFormer and Conditional Random Fields (Jiang
et al., 2024; Sahin et al., 2023). When dealing with small and complex datasets, traditional
CNNs often struggle to generalize effectively. To address this, research highlights the
integration of CNNs with other machine learning techniques to improve the classification
of crop-weed features, while also enhancing model interpretability (Urmashev et al., 2021;
Tao & Wei, 2022).

Alongside, transfer learning with pre-trained CNNs has proven effective in developing
multi-class models that successfully classify various crop and weed species, addressing the
challenge of biodiversity in agricultural settings (Li et al., 2024;Gao et al., 2024). In parallel,
significant work has been devoted to hyper-parameter optimization, recognizing its critical
role in controlling the performance of CNN-based models for crop-weed classification
(Thiagarajan, Vijayalakshmi & Grace, 2024; Ajayi, Ibrahim & Adegboyega, 2024).

Table 1 State-Of-The-Art methodologies for crop-weed identification.

Reference Dataset (D), methodology (M) and research gap addressed (RGA) Task and result

Xu, Jin & Guo (2024) D: Cotton seedlings dataset M: Cotton seedling identification model RGA: Accuracy
and timeliness

Segmentation with 95.75% ACCa

Mckay et al. (2024) D: T1_miling, T2_miling, YC datasets M: U-Net with ResNet18, ResNet34, VGG16
RGA: Focuses on crop than weeds

Semantic segmentation with 0.84
APa

Jiang et al. (2024) D: Cropandweed, Sugar Beet 2020 datasets M: SWFormer RGA: Class imbalance Semantic segmentation with
mAPa of 76.54% and 61.24%

Naik & Chaubey (2024) D: Crop and weed detection and Plant Seedling datasets M: Region-Based
Convolutional Neural Networks RGA: Manual detection and categorization of weeds

Classification with an ACCa of
95.88% and 97.29%

Thiagarajan,
Vijayalakshmi & Grace
(2024)

D: Beans dataset M: SegNet, ResUNet, UNet RGA: Hyperparameter optimization in
focal loss

Semantic segmentation with
0.8444 IOUa

Modi et al. (2023) D: Sugarcane dataset; M: DarkNet53 RGA: High-cost weed detection systems Classification with 96.6% ACCa

Sahin et al. (2023) D: Sunflower dataset M: Conditional Random Field with U-Net RGA: Class imbalance
(Few positive class)

Semantic segmentation with a
maximum IOUa of 0.990

Jiang, Afzaal & Lee
(2022)

D: 1006 weed dataset M: Swin Transformer, SegFormer, Segmenter RGA: Localization
and classification

Semantic segmentation with
mAcca of 75.18%

Zhang (2023) D: Deepweeds dataset M: Hybrid CNN-Transformer model RGA: Network
computation and time efficiency

Classification with 96.08% ACCa

Su et al. (2021) D: Narrabri and Bonn dataset M: Random Image Cropping And Patching (RICAP)
RGA: Data augmentation for semantic segmentation

Semantic segmentation with
mAcca of 94.02% and 98.51%

Note:
aMetrics: ACC (Accuracy), AP (Average precision), mAcc (Mean Accuracy), mAP (Mean Average Precision), IOU (Intersection Over Union score).
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Further research has focused on weed detection and segmentation to achieve precise
weeding through improved object localization. In these techniques, CNN serves as the
backbone feature extractor for models such as region-based CNN (R-CNN), Fast R-CNN,
Faster R-CNN, Mask R-CNN (MRCNN), and YOLO (Naik & Chaubey, 2024; Zhang et al.,
2023; Zheng et al., 2024). Also, hybrid models combining CNNs with transformer
architectures, such as Swin Transformer, SegFormer, Segmenter, and other hybrid CNN-
Transformer models, have been introduced to enhance computational efficiency and speed
in complex agricultural scenarios (Zhang, 2023; Jiang, Afzaal & Lee, 2022; Kala et al.,
2024).

Research has also focused on real-time weed detection in field environments, achieving
improvements in accuracy, processing speed, and time efficiency, with direct applications
in agricultural practices (Xu, Jin & Guo, 2024; Naik & Chaubey, 2024; Goyal, Nath &
Niranjan, 2024). Furthermore, CNN integration with drone technology has enabled aerial
surveillance for real-time weed detection across expansive agricultural fields (Mesías-Ruiz
et al., 2024; Seiche, Wittstruck & Jarmer, 2024). Comprehensive reviews on crop-weed
identification have further synthesized findings from various studies, underscoring CNNs’
potential to revolutionize precision agriculture by enabling effective weed management
(Qu & Su, 2024; Adhinata, Wahyono & Sumiharto, 2024; Hu et al., 2024).

Highlights and limitations of prior work: Research in the field of weed identification
evolves with greater advancements and has shown significant contributions as observed
from the literature. This survey highlights that architectures developed for crop-weed
classification and segmentation perform tremendous tasks resulting in high performance.
Weed research is advanced as contemporary studies focus on precisely locating the ROIs
with considerably high accuracies. As a result, systems become more scalable and efficient.
However, limitations arise in feature extraction methods when they fail to precisely
identify different-sized ROIs. Smaller ROIs are more challenging to identify accurately and
call for a sophisticated feature extraction strategy that is lacking from the existing
approaches. There are more contributions in the technical environment, but fewer in the
actual application of these promising discoveries. By using the same in real fields, it may be
possible to enable autonomous weeding, which will enhance crop and soil health and result
in higher crop yields with lower costs and labor optimization.

Research gaps and challenges addressed: The focus of current feature extraction
techniques is on a particular level of complexity, which makes it difficult to recognize ROIs
of different sizes. The proposed method fills the research gap by addressing the problem of
varying-sized ROIs by introducing four diversified filters that generate a rich set of
features. This makes it possible to recognize weeds and crops in both early and later stages
thus facilitating early weed removal. Additionally, our method places a strong emphasis on
low-level feature propagation to avoid the vanishing gradient problem. This enables deep
learning of the basic features, which is crucial to distinguish one class from the other.
Furthermore, the model overcomes the problem of over-fitting by adding a drop-out layer
and integrates early stopping to address the Bias-Variance trade-off issue.
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MATERIALS AND METHODS
Dataset: from acquisition to pre-processing
As a part of this research, crop-weed images are acquired. The research objects focused on
data acquisition are the early growth stages of sorghum (Class_0), grass (Class_1), and
broadleaf weed (Class_2) which are depicted in Fig. 1. The data is acquired during April
and May 2023 from Sri Ramaswamy Memorial (SRM) Care Farm, Chengalpattu district,
Tamil Nadu, India. Data is captured in the form of red, green, and blue (RGB) images
using Canon Electro-Optical system (EOS) 80 D–a digital single lens reflex (DSLR) camera
with a sensor type of 22.3 mm × 14.9 mm Complementary Metal Oxide Semiconductor
(CMOS). Three different weather conditions such as sun, strong wind, and light rain are
used to collect data samples in the morning and afternoon light conditions. The entire data
acquisition process and detailed description of the datasets are briefed in the data article
(Michael & Manivasagam, 2023c).

SorghumWeedDataset_Classification, a crop-weed research dataset is framed
from the acquired images and is publicly available in the Mendeley Data repository

Figure 1 Sample research objects from SorghumWeedDataset_Classification: (A–C) Sorghum
samples, (D–F) grass weed samples, and (G–I) Broadleaf weed samples.

Full-size DOI: 10.7717/peerj-cs.2518/fig-1
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(Michael & Manivasagam, 2023b). This dataset solves the crop-weed classification
problem in smart weeding. The SorghumWeedDataset_Classification dataset contains
4,312 data samples, which are used for crop-weed image classification in deep learning. To
ease the classification task, the dataset is split into Train: Validate: Test (TVT) with a ratio
of 7:2:1 which is detailed in Table 2. All data samples are in RGB and JPG format.

In the preprocessing pipeline, the samples undergo resizing, augmentation, and
normalization through the following steps; The original size of an acquired data sample is
6,000� 4,000 pixels. HierbaNetV1 accepts an input image of size 224� 224� 3 to reduce
the computational complexity. Hence, all classification data samples are re-sized to
224� 224 pixels without information loss. During the learning process, the training
samples are augmented with 45-degree rotation, 25% zoom, 25% slant, horizontal and
vertical flip, 30% width and height shift, and brightness adjustment in the range of 0.2 to
0.9 to avoid the problem of under-fitting. The parameter values are assigned to every
augmentation method after carrying out an experimental study that generates effective
variants of an original sample (Michael & Manivasagam, 2023a). The data samples are
normalized between 0 and 1 with a factor of 1/255 to handle the complexity.

Feature extraction with HierbaNetV1
Purpose of invention: “Hierba” is a Spanish word that means “weed”–a plant that grows
in an unwanted place. HierbaNetV1 is thus named because the primary reason for building
this architecture is to extract effective crop and weed features and thus address the crop-
weed identification problem in precision agriculture. However, HierbaNetV1 extracts
intensive features in other computer vision projects as well.

Ideation behind HierbaNetV1: The idea behind HierbaNetV1 is to perform intensive
feature extraction from each data sample focusing on multiple levels of complexity,
irrespective of the ROI size, and emphasize low-level features consistently. In contrast to
the majority of current methods, HierbaNetV1 employs diversified filters to produce rich
feature maps while concentrating on lowering the number of convolutional layers to
simplify the model with fewer parameters. This novel architecture is patented at the Indian
Patent Office (Patent application no. 202441050194) (Michael & Manivasagam, 2024a).
The workflow of the proposed architecture is briefed in the research video article (Michael
& Manivasagam, 2024c).

Principle of HierbaNetV1: The novelty and key characteristic of HierbaNetV1 is its
three-step intensive feature extraction technique. Firstly, the four diversified filters with

Table 2 SorghumWeedDataset_Classification TVT split.

Class ID Class name Train (70%) Val (20%) Test (10%) Total (100%)

Class 0 Sorghum 983 281 140 1,404

Class 1 Grass 1,027 293 147 1,467

Class 2 Broadleaf weed 1,009 288 144 1,441

Total 3,019 862 431 4,312
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kernel sizes 1� 1, 3� 3, 5� 5, and 7� 7 extract distinct features to form a set of high-
level features (FHL), which is denoted in Eq. (1).

FHL ¼ fFHL1; FHL2; FHL3;…:FHLng (1)

Secondly, the conventional filters with kernel size 3� 3 extract basic features to form a
set of low-level features (FLL) denotes Eq. (2).

FLL ¼ fFLL1; FLL2; FLL3;…:FLLng (2)

Thirdly, FHL and FLL integrate to form a union of high-level and low-level features,
described as F in Eq. (3).

F ¼ fFHL þ FLLg (3)

F generated at Block I is denoted as FB1, and the one from Block II is denoted as FB2. FB1
and FB2 are F variants formed at two intermediate input scales.

Design framework of HierbaNetV1
HierbaNetV1 receives an image of size 224� 224� 3 and predicts the respective class as
the output. Figure 2 depicts the base architecture of HierbaNetV1 with abstracted
connecting blocks. The connecting blocks HierbaNetV1_BLOCK I and
HierbaNetV1_BLOCK II are illustrated elaborately in Figs. 3 and 4 respectively.

Figure 2 Architecture of HierbaNetV1. Our model, firstly resizes each input image to 224 � 224 � 3,
convolves, batch-normalizes, and activates neurons with LeakyReLU followed by downsampling. Sec-
ondly, runs a two-block feature extraction technique with two modules. Module I extracts high-level
features (FHL) using four diversified filters of multiple levels of complexity. Module II extracts low-level
features (FHL). Progressively, feature set F is formed by integrating FHL and FLL, with which the model is
trained. Thirdly, the generated features are flattened, and 20% of its neurons are dropped followed by
three-way softmax activation. Lastly, the trained model predicts the class of the input sample.

Full-size DOI: 10.7717/peerj-cs.2518/fig-2
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HierbaNetV1_Base: As the first step, the model receives one input sample from the
training set and splits it into three channels (red, green, and blue) as described in Eq. (4).

s ¼ fsr; sg ; sbg (4)

Figure 4 Architecture of HierbaNetV1_Block II: Block II extracts the features similar to Block I, but
with downsampled input samples. Full-size DOI: 10.7717/peerj-cs.2518/fig-4

Figure 3 Architecture of HierbaNetV1_Block I: Block I and Block II define the novelty and key
characteristics of our proposed model. Each block follows three crucial steps: Firstly, the four diver-
sified filters with kernel sizes 1� 1, 3� 3, 5� 5, and 7� 7 extract high-level features ðFHLÞ. Secondly,
low-level features ðFLLÞ are extracted by filters of kernel sizes 3� 3. Thirdly, FHL and FLL are integrated to
form F thus producing a rich set of features with multiple levels of complexity.

Full-size DOI: 10.7717/peerj-cs.2518/fig-3
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The input sample convolves with the kernel (LeCun & Bengio, 1995), batch-normalizes
the inter-layer’s output (Ioffe & Szegedy, 2015), and activates neurons using LeakyReLU
(Xu et al., 2020), followed by downsampling with Max-Pooling (Riesenhuber & Poggio,
1999). Equation (5) defines the relation between the input sample s, its respective filter f ,
and the convolved output sc.

sc ¼ s � f (5)

The convolved output sc is batch normalized with batch mean bm, batch variance b2v ,
scale parameter p1, shift parameter p2, and c ¼ 0:001 a constant to produce a batch
normalized output sbn defined in Eq. (6).

sbn ¼ p1 � sc � bmffiffiffiffiffiffiffiffiffiffiffiffi
b2v þ c

p þ p2 (6)

The batch normalized values are activated for all positive values accordingly, whereas
the negative values are multiplied with 0.001 before activation, thus producing f ðsbnÞ
defined in Eq. (7).

f ðsbnÞ ¼ sbn; if sbn > 0:
0:001sbn; otherwise:

�
(7)

Equation (8) reduces the dimension of feature maps using Max-Pooling to minimize the
computational complexity and also to produce deep features. M, N, and Ch represent the
width, height, and channels respectively. Fmp denotes the downsampled feature maps,
which are passed as input to the first connecting block, HierbaNet_Block I.

Fmp 2 F
M
2 � N

2 �Ch (8)

HierbaNetV1_Block I: Feature maps are fed to HierbaNetV1_Block I from
HierbaNetV1_Base. New features are extracted parallelly in two modules as
illustrated in Fig. 3. Module I extracts high-level features using four diversified filters with
kernel sizes 1� 1, 3� 3, 5� 5, and 7� 7 as described in Eq. (9) and integrates the features
as a single unit. Sequentially, the combined features convolve with the kernel, batch-
normalize, and activate neurons thrice. This workflow is exhibited at the left hand side
(LHS) of Fig. 3.

FHL 2 fX1� 1� 3;X3� 3� 3;X5� 5� 3;X7� 7� 3g (9)

Module II extracts low-level features using the conventional filter with kernel size 3� 3
which is portrayed at the right hand side (RHS) of Fig. 3 and described in Eq. (10).

FLL 2 X3� 3� 3 (10)

Concatenated feature maps from Module I and Module II are given as input to
Base_Conv2. Progressively, HierbaNetV1_Base convolves, batch-normalizes, and activates
neurons using LeakyReLU, followed by downsampling as pictured in Fig. 2.
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HierbaNetV1_Block II: Feature maps from Base_MaxPool2 are fed to
HierbaNetV1_Block II which performs similar operations as HierbaNetV1_Block I, but
with down-sampled feature maps. Figure 4 portrays the particulars of HierbaNetV1_Block
II with respective dimensions.

Equations (11) and (12) represent that each block generates 64 low-level feature maps
and 1,280 high-level feature maps. A total sum of 3,872 feature maps is generated by
HierbaNetV1 for a sample.

FLL ¼ fF1; F2; F3;…:; F64g (11)

FHL ¼ fF1; F2; F3;…:; F1280g (12)

HierbaNetV1_Base: Block II outputs 576 feature maps with a 7� 7 dimension each.
Global average pooling flattens these multi-dimensional features into one-dimensional
features by extracting one feature from each feature map, thus making 576 features.
Neurons are dropped with a probability of 0.2 to avoid over-fitting (Kromer-Edwards,
Castanheira & Oliveira, 2023). Three-way softmax in the dense layer distributes the output
among the three class labels (Bridle, 1990). Ultimately, the model predicts the input class of
the given input sample.

IMPLEMENTATION OF HIERBANETV1
Training platform
The development of HierbaNetV1 was carried out using the following hardware and
software configurations. Google Colaboratory (Bisong, 2019), an online cloud platform
with a Colab Pro subscription, is used for training the models. The runtime allotted an
NVIDIA-SMI Driver version 525.85.12 with CUDA Toolkit version 12.0 and 89.6
gigabytes of high RAMwith NVIDIA A100. The model training took 2.00 h, consuming 45
compute units to complete the training, validation, and testing process. Model training,
testing, and result visualization are done in Python 3.10.12. Libraries that supported the
implementation are keras 2.12.0 for deep learning, tensorflow 2.12.0 for creating machine
learning frameworks, scikit-learn 1.2.2 for machine learning, pillow 9.4.0 for Imaging,
numpy 1.22.4 for array computing, matplotlib 3.7.1 for Python plotting package, seaborn
0.12.2 for statistical data visualization, and pandas 1.5.3 for data analysis.

Sequential algorithm design
The comprehensive pseudocode of the layers in HierbaNetV1 and its workflow is briefed in
Algorithm 1, which is related to Fig. 2. User-defined Feature_Integration method extracts
and integrates the low-level and high-level features, which are detailed in Algorithm 2,
which is related to Figs. 3 and 4. In this, Module I-FeatureExtraction_HighLevel generates
the high-level features, Module II-FeatureExtraction_LowLevel generates the low-level
features, and FeatureIntegration integrates the features generated from Module I and
Module II. The details of 19 convolutional layers along with the growth rate of feature
maps are illustrated in Table 3. HierbaNetV1 has 72 layers in total. Model hyper-
parameters that are fine-tuned after several experiments are tabulated in Table 4 (Kingma
& Ba, 2014; Srivastava et al., 2014).
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Algorithm 1 Pseudocode for HierbaNetV1

function HierbaNetV1(Instance of an input image)

input_image = inputImage(224, 224, 3)

model = conv_Bn_Act(input_image, 32, 3, 3)

model = MaxPooling((2, 2), (2, 2), “same”)(model) 8 HierbaNetV1_Block I

model = feature_Integration(model)

model = conv_Bn_Act(model, 576, 3, 3)

model = MaxPooling((2, 2), (2, 2), “same”)(model) 8 HierbaNetV1_Block II

model = feature_Integration(model)

model = conv_Bn_Act(model, 576, 3, 3)

model = MaxPooling((2, 2), (2, 2), “same”)(model)

model = GlobalAveragePooling(“channels_last”)(model)

model = Dropout(0.2, None)(model)

model = Dense(number_of_classes, “softmax”, “glorot_uniform”, “zeros”)(model)

HierbaNetV1 = Model(input_image, model, “HierbaNetV1”)

end function

Algorithm 2 Pseudocode for feature integration

function EXTRACT_INTEGRATE(output_high, output_low, output)

highlevel_features = featureExtraction_HighLevel(output)

lowlevel_features = featureExtraction_LowLevel(output)

output = Concatenate([highlevel_features, lowlevel_features], axis = 3)

8High-level and Low-level Feature Concatenation

return output

end function

function FEATUREEXTRACTION_LOWLEVEL(output_low)

output_low = conv_Bn_Act(output_low, 64, 3, 3)

output_low = MaxPooling((2, 2), (2, 2), “same”)(output_low)

8Dimensionality Reduction

return output_low

end function

function FEATUREEXTRACTION_HIGHLEVEL(output_high)

kernel_1 × 1 = conv_Bn_Act(output_high, 64, 1, 1)

kernel_3 × 3 = conv_Bn_Act(output_high, 64, 3, 3)

kernel_5 × 5 = conv_Bn_Act(output_high, 64, 5, 5)

kernel_7 × 7 = conv_Bn_Act(output_high, 64, 7, 7)

output_high = Concatenate([kernel_1 × 1, kernel_3 × 3, kernel_5 × 5, kernel_7 × 7],

axis = 3) 8Feature Concatenation
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Details of learning
Initial weights of HierbaNetV1 are initialized using Glorot Uniform (Glorot & Bengio,
2010). The model uses stratified 10-fold cross-validation with 50 training epochs for each
fold, thus generalizing the model. However, the model calls for early stopping at each fold
by monitoring the validation accuracy, with a patience value of five, to regularize the

Algorithm 2 (continued)

output_high = conv_Bn_Act(output_high, 256, 3, 3)

output_high = conv_Bn_Act(output_high, 256, 3, 3)

output_high = conv_Bn_Act(output_high, 512, 3, 3)

output_high = MaxPooling((2, 2), (2, 2), “same”)(output_high)

8Dimensionality Reduction

return output_high

end function

Table 3 HierbaNetV1 model summary of convolutional layers.

Layer# Layer name Output shape Parameters KernelSize Filters Growthrate of featuremaps

1 Base_Conv1 (Conv2D) (None, 224, 224, 32) 896 3 × 3 32 32

5 B1_HL_Conv1 (Conv2D) (None, 112, 112, 64) 2,112 1 × 1 64 96

6 B1_HL_Conv2 (Conv2D) (None, 112, 112, 64) 18,496 3 × 3 64 160

7 B1_HL_Conv3 (Conv2D) (None, 112, 112, 64) 51,264 5 × 5 64 224

8 B1_HL_Conv4 (Conv2D) (None, 112, 112, 64) 100,416 7 × 7 64 288

18 B1_HL_Conv5 (Conv2D) (None, 112, 112, 256) 590,080 3 × 3 256 544

21 B1_HL_Conv6 (Conv2D) (None, 112, 112, 256) 590,080 3 × 3 256 800

24 B1_HL_Conv7 (Conv2D) (None, 112, 112, 512) 1,180,160 3 × 3 512 1,312

25 B1_LL_Conv1 (Conv2D) (None, 112, 112, 64) 18,496 3 × 3 64 1,376

33 Base_Conv2 (Conv2D) (None, 56, 56, 576) 2,986,560 3 × 3 576 1,952

37 B2_HL_Conv1 (Conv2D) (None, 28, 28, 64) 36,928 1 × 1 64 2,016

38 B2_HL_Conv2 (Conv2D) (None, 28, 28, 64) 331,840 3 × 3 64 2,080

39 B2_HL_Conv3 (Conv2D) (None, 28, 28, 64) 921,664 5 × 5 64 2,144

40 B2_HL_Conv4 (Conv2D) (None, 28, 28, 64) 1,806,400 7 × 7 64 2,208

50 B2_HL_Conv5 (Conv2D) (None, 28, 28, 256) 590,080 3 × 3 256 2,464

53 B2_HL_Conv6 (Conv2D) (None, 28, 28, 256) 590,080 3 × 3 256 2,720

56 B2_HL_Conv7 (Conv2D) (None, 28, 28, 512) 1,180,160 3 × 3 512 3,232

57 B2_LL_Conv1 (Conv2D) (None, 28, 28, 64) 331,840 3 × 3 64 3,296

65 Base_Conv3 (Conv2D) (None, 14, 14, 576) 2,986,560 3 × 3 576 3,872

Parametric details of the 72 layers in HierbaNetV1

Total params: 14,331,331

Trainable params: 14,323,587

Non-trainable params: 7,744

Total feature maps generated: 3,872
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model. The maximum and minimum number of epochs where early stopping is triggered
is 10 epochs for fold 1, fold 5, fold 6, and six epochs for fold 4, and fold 8, respectively, thus
avoiding over-fitting. Thirty-two training samples are present in a single batch causing 218
iterations to complete one training epoch. Best model weights from each fold are carried
over to the subsequent folds to resume training. All these factors contributed to the better
convergence of the model.

Stratified 10-fold cross-validation is used for training and validating HierbaNetV1 on
the SorghumWeedDataset_Classification. The highest and lowest training accuracy is
observed to be 0.9843 and 0.8857 in folds 10 and 1 respectively. Similarly, the highest and
lowest training loss is 0.3193 and 0.0442 in folds 1 and 10. The training and validation
accuracies and losses for the 10 folds are graphed in Fig. 5. HierbaNetV1 generates 3,872
feature maps from the 19 convolutional layers. One sample feature map from each
convolutional layer is illustrated in Fig. 6.

RESULTS AND DISCUSSIONS
Extensive experimental research is performed on the proposed architecture and the results
prove that HierbaNetV1 has outperformed other techniques.

Model testing
Testing on own dataset
HierbaNetV1 is tested on the 431 test images from SorghumWeedDataset_Classification.
It produces an accuracy of 0.9860 and a loss of 0.07. The confusion matrix depicted in

Table 4 Hyperparameter tuning results for HierbaNetV1.

Hyper-parameters Optimized values

Input_shape 224, 224, 3

Optimizer Adam

Optimizer-learning_rate 0.001

Optimizer-epsilon 1e-07

Convolution-filters 32, 64, 256, 512, and 576

Convolution-kernel_size 1� 1, 3� 3, 5� 5, and 7� 7

Convolution-padding Same

Convolution-strides 1� 1

Dimensionality reduction MaxPool

MaxPooling-pool_size 2� 2

MaxPooling-padding same

MaxPooling-strides 2� 2

Hidden layer activation LeakyReLU

Dropout rate 0.2

Dense layer activation SoftMax

‘k’ in Stratified k-fold cross validation 10

Epochs in model training 50

Batch_size in model training 32
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Figs. 7A–7C illustrates the confusion matrices for class0, class1, and class2 respectively.
HierbaNetV1 has a significant reduction in the false negatives (FN) with a sum of six. It
misclassifies two sorghum crops as broadleaf weeds and four grass weeds as sorghum

Figure 5 Accuracy and loss graphs of the stratified 10-fold cross-validation of HierbaNetV1 on SorghumWeedDataset_Classification.
(A) Training and validation accuracies, (B) training and validation losses, (C) zoomed-in view of training and validation accuracies,
(D) zoomed-in view of training and validation losses. Full-size DOI: 10.7717/peerj-cs.2518/fig-5
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crops. Figures 7D–7F portrays the receiver operating characteristic-area under curve
(ROC-AUC) for class0, class1, and class2 as 0.9960, 0.9975, and 1.0 respectively. The ROC-
AUC for class 2 is at its maximum as no broadleaf weeds are misclassified for grass or
sorghum crops. Figures 7G–7I illustrates the precision recall-area under curve (PR-AUC)
for class0, class1, and class2 as 0.9893, 0.9961, and 0.9999 respectively. As can be observed
from the confusion matrix there are zero misclassifications in class 2 and two
misclassifications in class 2 which is considerably lesser. This results in a greater PR-AUC
value for the class (0.9999) than for classes 0 and 1. Results produced by our proposed
method are validated manually by agronomists and stated to be accurate. Using stratified
10-fold cross-validation and 3,881 images with a resolution of 224� 224, the training and
validation of HierbaNetV1 required 2 h. Time complexity analysis shows HierbaNetV1
takes 0.07 ms for testing a 224� 224 sample image.

Testing on benchmark dataset

To further assess the capability of HierbaNetV1, we have evaluated it against three crop-
weed datasets, and the results are compared against existing pre-trained models. This
analysis validates its generalizability and robustness across different crop types and
environmental conditions.

(a) Soybean weed dataset: The soybean weed dataset (Alessandro et al., 2017) has
15,336 images belonging to four classes such as soil (3,249), soybean (7,376), grass (3,520),
and broadleaf weeds (1,191). In this work, we have considered a balanced Soybean weed
dataset by choosing the first 1,191 images from each class. HierbaNetV1 is evaluated
against other pre-trained models using this dataset. According to the results, among
various pre-trained models, our suggested method yields the best accuracy of 98.75%,

Figure 6 Illustration of feature maps from the 19 consecutive convolutional layers in HierbaNetV1
on the test image “SorghumTest(1).jpeg” from the SorghumWeedDataset_Classification dataset.

Full-size DOI: 10.7717/peerj-cs.2518/fig-6
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while ResNet152V2 yields the next highest accuracy of 96.64%. Confusion matrices of the
soybean weed dataset using HierbaNetV1 and ResNet152V2 are portrayed in Fig. 8.

(b) Deepweeds dataset: The Deepweeds dataset has 17,509 images belonging to nine
classes (Olsen et al., 2019). Classes from one to eight contain images in the range of 1,009 to
1,125, whereas the ninth is a negative class with 9,106 images. To consider a balanced

Figure 7 Confusion matrix, ROC curve and PR curve of SorghumWeedDataset_Classification with HierbaNetV1 for individual classes.
(A) Confusion matrix of class0, (B) confusion matrix of class1, (C) confusion matrix of class2, (D) ROC curve of class0, (E) ROC curve of
class1, (F) ROC curve of class2, (G) PR curve of class0, (H) PR curve of class1, and (I) PR curve of class2.

Full-size DOI: 10.7717/peerj-cs.2518/fig-7
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dataset, the first eight classes are considered ignoring the ninth class. Using this dataset, we
compare HierbaNetV1 with other pre-trained models. The two models with the highest
accuracy, HierbaNetV1, and DenseNet201, respectively, are 93.99% and 81.84%.
Confusion matrices of the Deepweeds dataset using HierbaNetV1 and DesNet201 are
illustrated in Fig. 9.

(c) CottonWeedID15: The CottonWeedID15 dataset (Chen et al., 2022) has 5,187
images belonging to 15 classes. The work considers a balanced dataset with 61 images in
each class. This dataset is utilized to assess HierbaNetV1 in comparison to other pre-
trained models. With an accuracy of 82.22%, HierbaNetV1 has the best accuracy, followed
by InceptionV3 with 77.78%. Confusion matrices of the CottonWeedID15 dataset using
HierbaNetV1 and InceptionV3 are depicted in Fig. 10.

Real-time inference
HierbaNetV1 is employed with HierbaApp (Michael & Manivasagam, 2024b), an Android
mobile application that distinguishes sorghum crops from its associated weeds. We have
used four different equipments of varying types and resolutions to capture and detect real-
time crops and weeds using HierbaApp. Field images captured using Canon 80 D, Canon
600 D, Nixon CoolPix, and Samsung Galaxy M31 are tested in HierbaApp, which employs
HierbaNetV1 for prediction at its backend. Test results with their respective image, ground
truth, and prediction are depicted in Fig. 11. Real-time inference using HierbaApp with the
application’s live prediction results are illustrated in Fig. 12. We tested 16 real-time images
among which 15 are true positives and one is false negative. As HierbaNetV1 predicts
research objects with high true positives irrespective of the equipment used, we state that
our novel architecture is generalized and is suitable for weed detection in real-world
agricultural settings. Nowadays Android devices are most commonly used among farmers

Figure 8 Confusion matrix of soybean weeds dataset using (A) HierbaNetV1 and (B) ResNet152V2.
Full-size DOI: 10.7717/peerj-cs.2518/fig-8
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Figure 9 Confusion Matrix of Deepweeds dataset using (A) HierbaNetV1, and (B) DenseNet201.
Full-size DOI: 10.7717/peerj-cs.2518/fig-9
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Figure 10 Confusion matrix of cotton weeds dataset using (A) HierbaNetV1, and (B) InceptionV3.
Full-size DOI: 10.7717/peerj-cs.2518/fig-10
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Figure 11 Real-time in-field images using four equipments for detection: (A–C) using Canon 80 D;
(D–F) using Canon 600 D; (G–I) using Nixon CoolPix; and (J–l) using Samsung Galaxy M31 along
with their respective ground truth and prediction. Full-size DOI: 10.7717/peerj-cs.2518/fig-11

Figure 12 Real-time inference using HierbaApp, which employs our novel architecture ‘HierbaNetV1’ for crop-weed detection. (A–L) The
detection results of the respective images in Fig. 11. Full-size DOI: 10.7717/peerj-cs.2518/fig-12
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and hence we consider mobile-based crop-weed detection is a good choice for manual
detection with a minimum computational requirement and low-cost deployment.

Comparative analysis with pre-trained and SOTA models
Besides HierbaNetV1, five pre-trained architectures namely, InceptionV3, ResNet152V2,
VGG19, DenseNet201, and MobileNetV2 are also trained, validated, and tested on the
“SorghumWeedDataset_Classification”. Among the pre-trained models, the highest
accuracy of 0.9791 is produced by InceptionV3, and the lowest loss of 0.1444 by VGG19.
Confusion matrices on HierbaNetV1 and InceptionV3 are depicted in Figs. 13B and 13D
for comparison. The test analysis is further extended to perform a thorough examination
using other metrics such as precision, recall, and F1-score which are shown in Table 5.
Results once again prove our proposed architecture surpasses other pre-trained models.

To definitively prove HierbaNetV1’s advantage over SOTA techniques, the
experimental findings are contrasted with methods of varying capacities and architectures.
Three SOTA weed classification methods such as RCNN, DarkNet53, and Hybrid CNN-
Transformer are evaluated under the same conditions as HierbaNetV1. The results
conclusively demonstrate the superiority of HierbaNetV1 over SOTA approaches and are
also given in Table 5.

Figure 13 Confusion matrix of SorghumWeedDataset_Classification with: (A) HierbaNetV1 one
block, (B) HierbaNetV1 two blocks, (C) HierbaNetV1 three blocks, and (D) InceptionV3.

Full-size DOI: 10.7717/peerj-cs.2518/fig-13
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Ablation study
The impact of each BLOCK in HierbaNetV1 is investigated through an ablation study
utilizing the following architecture variations. To determine the best and most effective
model, the three variants are trained, validated, and tested on SorghumWeedDataset_
Classification. Figures 13A–13C portray the confusion matrices of HierbaNetV1 with one
block, two blocks, and three blocks respectively. This shows the architecture with two
blocks yields the best performance in contradiction with one block and three blocks.
Additionally, we have examined the feature maps generated at different layers to
understand the details of features in each block. Feature maps illustrated in Fig. 14 make
abundantly evident that block 1 and block 2 generate rich information with low-level and
high-level features which enables effective learning. In contrast, block 3 has a low spatial
dimension with high information loss and is not taken into consideration. We can hereby
conclude that HierbaNetV1 performs better when two-block feature extraction is used.

Component analysis
One input layer, 19 convolutional layers, 19 batch-normalization layers, 19 activation
layers, seven dimensionality reduction layers, four feature integration layers, one global
average pooling layer, one dropout layer, and one dense layer make up the total of 72 layers
in HierbaNetV1.

With a significantly lower parametric complexity of 14.3 M, the model is less complex
due to the significantly lower number of convolutional layers. The architecture is designed
carefully while increasing the depth and width of the network parallelly thus avoiding a
very deep neural network. The 14 convolutional layers in the series ‘B1_HL_ConvX
(Conv2D)’ and ‘B2_HL_ConvX(Conv2D)’ utilizes four diversified filters with kernel sizes
1� 1, 3� 3, 5� 5, and 7� 7 thus creating a rich content feature irrespective of the ROI
size. B1_LL_Conv1(Conv2D) and B2_LL_Conv1(Conv2D) propagate the low-level

Table 5 Performance evaluation of HierbaNetV1 against pre-trained models on SorghumWeedDataset_
Classification using accuracy, precision, recall, F1-score, and loss.

Model Accuracya Precision Recall F1-score Loss

HierbaNetV1 (Proposed model) 0.9861 0.9860 0.9862 0.9860 0.0700

Pre-trained models

InceptionV3 0.9791 0.9795 0.9795 0.9792 1.5472

VGG19 0.9698 0.9704 0.9702 0.9698 0.1444

ResNet152V2 0.9675 0.9685 0.9681 0.9676 1.4649

DenseNet201 0.9582 0.9601 0.9590 0.9583 1.0096

MobileNetV2 0.9327 0.9336 0.9321 0.9323 2.2053

SOTA architectures

Hybrid CNN-Transformer 0.9606 0.9604 0.9605 0.9605 1.1503

DarkNet53 0.9397 0.9395 0.9397 0.9395 2.5037

RCNN 0.9142 0.9140 0.9142 0.9140 3.0356

Note:
a The table is organized based on accuracy within each section.
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Figure 14 Ablation study conducted on HierbaNetV1 with three blocks to comprehend each block’s contribution: feature maps generated by
(A) Layer 1-Base_Conv1 (Conv2D), (B) Layer 25-B1_LL_Conv1 (Conv2D), (C) Layer 33-Base_Conv2 (Conv2D), (D) Layer 57-B2_LL_Conv1
(Conv2D), (E) Layer 65-Base_Conv3 (Conv2D), (F) Layer 89-B3_LL_Conv1 (Conv2D), and (G) Layer 97-Base_Conv4 (Conv2D).

Full-size DOI: 10.7717/peerj-cs.2518/fig-14
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features thus enabling basic features of crops and weeds. This propagation also avoids the
vanishing gradient problem.

The 19 batch normalization layers succeed the 19 convolutional layers to provide a firm
convergence and reduce the necessity for other regularization techniques in the
architecture. The LeakyReLU activation function addresses the dying ReLU problem in the
proposed method (Dubey & Jain, 2019). Drop-out acts as a model regularizer and thus
solves the problem of overfitting.

In addition, early stopping helps to find the perfect balance between the bias and
variance, thus solving the ‘Bias-Variance trade-off’ and avoiding over-fitting in the
proposed model (Yang et al., 2020). The implementation of stratified 10-fold cross-
validation is used for model training and validation to allow model generalization for
unknown test data. Furthermore, the Glorot Uniform weight initializer solves the problem
of vanishing gradients and exploding gradients, thus helping HierbaNetV1 to converge
faster.

CONCLUSIONS AND FUTURE ENHANCEMENTS
Dataset scarcity is a big challenge in today’s research community. Consequently, This
research contributes an open-access crop-weed classification dataset termed
SorghumWeedDataset_Classification to solve the crop-weed classification problem using
Computer Vision techniques. This research also contributes a novel feature extraction
framework code-named HierbaNetV1 for intensive and diversified feature extraction.
Furthermore, encouraging weed research the trained weights, and the Python
implementation of HierbaNetV1 are made publicly available. Subsequently, HierbaNetV1
can be used as a pre-trained architecture to address the AI-based classification problems of
all categories. HierbaNetV1 gives an overall Top-1 testing accuracy of 0.986 for
SorghumWeedDataset_Classification. After performing extensive experiments on our
proposed architecture, HierbaNetV1 proved to be an effective feature extractor.

HierbaNetV1 requires devices with powerful GPUs and high RAM, which is not
available easily. Training and validating the model with such system specifications are
expensive. Consequently, in the near future, an enhanced version of the proposed
architecture which is lightweight and utilizes fewer resources will be built. Furthermore,
HierbaNetV1 is currently expanding as “HierbaNetV1_MRCNN” that locates smaller
ROIs precisely in weed detection, localization, and segmentation tasks. The
HierbaNetV1_FPN feature pyramid network (FPN), which is built on HierbaNetV1, is
enforced in this extended study to locate the ROIs. Furthermore, HierbaApp will be
enhanced to support agriculturalists. Steps are taken to design HierbaRobo-a smart weed-
removing robot for small-scale agricultural lands. This work is also left open to the
research community and appreciate novel ideas.
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