Table 3. HierbaNetV1 model summary of convolutional layers.
Layer# | Layer name | Output shape | Parameters | KernelSize | Filters | Growthrate of featuremaps |
---|---|---|---|---|---|---|
1 | Base_Conv1 (Conv2D) | (None, 224, 224, 32) | 896 | 3 × 3 | 32 | 32 |
5 | B1_HL_Conv1 (Conv2D) | (None, 112, 112, 64) | 2,112 | 1 × 1 | 64 | 96 |
6 | B1_HL_Conv2 (Conv2D) | (None, 112, 112, 64) | 18,496 | 3 × 3 | 64 | 160 |
7 | B1_HL_Conv3 (Conv2D) | (None, 112, 112, 64) | 51,264 | 5 × 5 | 64 | 224 |
8 | B1_HL_Conv4 (Conv2D) | (None, 112, 112, 64) | 100,416 | 7 × 7 | 64 | 288 |
18 | B1_HL_Conv5 (Conv2D) | (None, 112, 112, 256) | 590,080 | 3 × 3 | 256 | 544 |
21 | B1_HL_Conv6 (Conv2D) | (None, 112, 112, 256) | 590,080 | 3 × 3 | 256 | 800 |
24 | B1_HL_Conv7 (Conv2D) | (None, 112, 112, 512) | 1,180,160 | 3 × 3 | 512 | 1,312 |
25 | B1_LL_Conv1 (Conv2D) | (None, 112, 112, 64) | 18,496 | 3 × 3 | 64 | 1,376 |
33 | Base_Conv2 (Conv2D) | (None, 56, 56, 576) | 2,986,560 | 3 × 3 | 576 | 1,952 |
37 | B2_HL_Conv1 (Conv2D) | (None, 28, 28, 64) | 36,928 | 1 × 1 | 64 | 2,016 |
38 | B2_HL_Conv2 (Conv2D) | (None, 28, 28, 64) | 331,840 | 3 × 3 | 64 | 2,080 |
39 | B2_HL_Conv3 (Conv2D) | (None, 28, 28, 64) | 921,664 | 5 × 5 | 64 | 2,144 |
40 | B2_HL_Conv4 (Conv2D) | (None, 28, 28, 64) | 1,806,400 | 7 × 7 | 64 | 2,208 |
50 | B2_HL_Conv5 (Conv2D) | (None, 28, 28, 256) | 590,080 | 3 × 3 | 256 | 2,464 |
53 | B2_HL_Conv6 (Conv2D) | (None, 28, 28, 256) | 590,080 | 3 × 3 | 256 | 2,720 |
56 | B2_HL_Conv7 (Conv2D) | (None, 28, 28, 512) | 1,180,160 | 3 × 3 | 512 | 3,232 |
57 | B2_LL_Conv1 (Conv2D) | (None, 28, 28, 64) | 331,840 | 3 × 3 | 64 | 3,296 |
65 | Base_Conv3 (Conv2D) | (None, 14, 14, 576) | 2,986,560 | 3 × 3 | 576 | 3,872 |
Parametric details of the 72 layers in HierbaNetV1 | ||||||
Total params: 14,331,331 | ||||||
Trainable params: 14,323,587 | ||||||
Non-trainable params: 7,744 | ||||||
Total feature maps generated: 3,872 |