Skip to main content
. 2024 Nov 22;10:e2518. doi: 10.7717/peerj-cs.2518

Table 3. HierbaNetV1 model summary of convolutional layers.

Layer# Layer name Output shape Parameters KernelSize Filters Growthrate of featuremaps
1 Base_Conv1 (Conv2D) (None, 224, 224, 32) 896 3 × 3 32 32
5 B1_HL_Conv1 (Conv2D) (None, 112, 112, 64) 2,112 1 × 1 64 96
6 B1_HL_Conv2 (Conv2D) (None, 112, 112, 64) 18,496 3 × 3 64 160
7 B1_HL_Conv3 (Conv2D) (None, 112, 112, 64) 51,264 5 × 5 64 224
8 B1_HL_Conv4 (Conv2D) (None, 112, 112, 64) 100,416 7 × 7 64 288
18 B1_HL_Conv5 (Conv2D) (None, 112, 112, 256) 590,080 3 × 3 256 544
21 B1_HL_Conv6 (Conv2D) (None, 112, 112, 256) 590,080 3 × 3 256 800
24 B1_HL_Conv7 (Conv2D) (None, 112, 112, 512) 1,180,160 3 × 3 512 1,312
25 B1_LL_Conv1 (Conv2D) (None, 112, 112, 64) 18,496 3 × 3 64 1,376
33 Base_Conv2 (Conv2D) (None, 56, 56, 576) 2,986,560 3 × 3 576 1,952
37 B2_HL_Conv1 (Conv2D) (None, 28, 28, 64) 36,928 1 × 1 64 2,016
38 B2_HL_Conv2 (Conv2D) (None, 28, 28, 64) 331,840 3 × 3 64 2,080
39 B2_HL_Conv3 (Conv2D) (None, 28, 28, 64) 921,664 5 × 5 64 2,144
40 B2_HL_Conv4 (Conv2D) (None, 28, 28, 64) 1,806,400 7 × 7 64 2,208
50 B2_HL_Conv5 (Conv2D) (None, 28, 28, 256) 590,080 3 × 3 256 2,464
53 B2_HL_Conv6 (Conv2D) (None, 28, 28, 256) 590,080 3 × 3 256 2,720
56 B2_HL_Conv7 (Conv2D) (None, 28, 28, 512) 1,180,160 3 × 3 512 3,232
57 B2_LL_Conv1 (Conv2D) (None, 28, 28, 64) 331,840 3 × 3 64 3,296
65 Base_Conv3 (Conv2D) (None, 14, 14, 576) 2,986,560 3 × 3 576 3,872
Parametric details of the 72 layers in HierbaNetV1
Total params: 14,331,331
Trainable params: 14,323,587
Non-trainable params: 7,744
Total feature maps generated: 3,872