Skip to main content
. 2024 Nov 22;10:e2518. doi: 10.7717/peerj-cs.2518

Table 5. Performance evaluation of HierbaNetV1 against pre-trained models on SorghumWeedDataset_Classification using accuracy, precision, recall, F1-score, and loss.

Model Accuracya Precision Recall F1-score Loss
HierbaNetV1 (Proposed model) 0.9861 0.9860 0.9862 0.9860 0.0700
Pre-trained models
InceptionV3 0.9791 0.9795 0.9795 0.9792 1.5472
VGG19 0.9698 0.9704 0.9702 0.9698 0.1444
ResNet152V2 0.9675 0.9685 0.9681 0.9676 1.4649
DenseNet201 0.9582 0.9601 0.9590 0.9583 1.0096
MobileNetV2 0.9327 0.9336 0.9321 0.9323 2.2053
SOTA architectures
Hybrid CNN-Transformer 0.9606 0.9604 0.9605 0.9605 1.1503
DarkNet53 0.9397 0.9395 0.9397 0.9395 2.5037
RCNN 0.9142 0.9140 0.9142 0.9140 3.0356

Note:

a

The table is organized based on accuracy within each section.