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ABSTRACT
Traffic data imputation is crucial for the reliability and efficiency of intelligent
transportation systems (ITSs), forming the foundation for downstream tasks like
traffic prediction and management. However, existing deep learning-based
imputation methods struggle with two significant challenges: poor performance
under high missing data rates and the limited incorporation of external traffic-related
factors. To address these challenges, we propose a novel knowledge graph-enhanced
generative adversarial network (KG-GAN) for traffic data imputation. Our approach
uniquely integrates external knowledge with traffic spatiotemporal dependencies to
improve data imputation quality. Specifically, we construct a fine-grained knowledge
graph (KG) that differentiates attributes and relationships of external factors such as
points of interest (POI) and weather conditions, facilitating more robust knowledge
representation learning. We then introduce a knowledge-aware embedding cell (EM-
cell) that merges traffic data with these learned external representations, providing
richer inputs for the spatiotemporal GAN. Extensive experiments on a large-scale
real-world traffic dataset demonstrate that KG-GAN significantly outperforms state-
of-the-art methods under various missing data scenarios. Additionally, ablation
studies confirm the superior performance gained from incorporating external
knowledge, underscoring the importance of this approach in addressing complex
missing data patterns.

Subjects Artificial Intelligence, Data Mining and Machine Learning
Keywords Traffic data imputation, Generative adversarial networks, Knowledge graph

INTRODUCTION
Traffic detection data collected in intelligent transport systems (ITSs) often suffer from
missing data due to various technical and management issues, including software failures,
power outages, transmission errors, or storage failures (Tan et al., 2014), as shown in Fig. 1.
For example, the Caltrans performance measurement system (PEMS) can be used to
collect traffic data, calculate highway usage and congestion delays, predict travel time,
evaluate ramp metering methods, and validate traffic theories. However, the data samples
received by PEMS are often incomplete. According to the statistics, the ITS in Beijing,
China was still under development in 2008, the daily traffic flow data had a general loss rate
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of around 10% (4% due to detector failure, 6% due to other reasons), and some loop
detectors even generated a missing rate as high as 20–25% (Qu et al., 2009). Some extreme
missing scenarios were reported in Alberta, Canada. Jianrui, Xingyi & Yi (2010) pointed
out that nearly 50% of traffic data was missing in 7 years. Missing data seriously affects the
accuracy and reliability of traffic forecasting (Olayode et al., 2024), management, and
control systems (Kong et al., 2024; Pamuła, 2018). To address the missing data problem,
data imputation is crucial to reconstruct the dataset by filling in the missing values with
robust estimates.

Most previous imputation methods for traffic data fall into three categories: 1)
Traditional statistical methods, such as support vector regression (SVR) (Wu, Ho & Lee,
2004), autoregressive integrated moving average model (ARIMA) (Cetin & Comert, 2006),
mean imputation, median imputation (Kaiser, 2014) and other algorithms (Bania &
Halder, 2020; Caillault, Lefebvre & Bigand, 2020). These methods rely on smoothness and
periodicity to interpolate missing values. However, there is uncertain variation in real life,
which leads to the unsatisfactory results of these methods; 2) Tensor decomposition
methods (new machine learning-based methods) (Chen, He & Sun, 2019; Zhang et al.,
2021; Chen et al., 2023, 2024). This category of methods estimates the missing values in the
traffic flow by obtaining a suitable low-rank approximation of the incomplete matrix. 3)

Observations

Missing values

Observations

Missing values

Figure 1 Road network sensors with missing data. Map data © 2024 Google.
Full-size DOI: 10.7717/peerj-cs.2408/fig-1
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Deep learning methods (Kong et al., 2023; Ni & Cao, 2022; Shen et al., 2023; Tan et al.,
2020; Tian et al., 2018). They interpolate data by learning the temporal and spatial
correlation of data or the distribution of data.

However, deep learning methods achieve inferior performance compared to the tensor
decomposition methods under high data missing rate. In addition, these methods are only
limited to imputing data with traffic data itself. In addition to being influenced by the
quality of road detectors and the distribution of spatiotemporal features, traffic
information may also be affected by various external factors, which is the efficient
promotion of knowledge-driven data imputation. For example, weather conditions, the
existence of traffic stations, emergencies, holidays, and the distribution of nearby Points of
Interest (POIs) (Lana et al., 2018; Liu et al., 2024; Xu et al., 2022). These external factors
may affect urban traffic data directly or indirectly. For example, the traffic volume under
different weather conditions may have different states as the weather changes over time.
What’s more, traffic data is not only influenced by a single factor but also by various
factors. For example, under the same heavy rain conditions, the traffic volume around
schools is more affected than on less popular roads nearby. Integrating the semantic
correlation of multi-source data information is the key to improving the ability to impute
traffic data. Fortunately, knowledge graphs (KGs) (Li et al., 2023; Peng et al., 2023) that
contain rich semantics about entities and relations provide a way to integrate different
external factors and represent them in a unified manner.

In light of the above limitations and challenges, we propose a knowledge graph-
enhanced generative adversarial network (KG-GAN) for spatiotemporal traffic data
imputation. This approach is designed to address the complex nature of traffic data, which
is influenced not only by temporal and spatial dependencies but also by various
external factors such as points of interest (POI), weather conditions, and other
contextual information. To tackle the challenge of effectively incorporating external factors,
we use a traffic-specific KG construction approach that distinguishes the attributes and
relationships of external entities. This allows the model to capture fine-grained semantic
correlations that are often overlooked in traditional methods. The constructed KG serves as
a rich source of prior knowledge, enhancing the representation learning process. After
learning these knowledge representations, we introduce a knowledge-aware embedding cell
(EM-cell). This component is specifically designed to seamlessly integrate the learned KG
representations with traffic data, enriching the traffic embeddings with semantic
information. These enriched embeddings are then fed into a spatiotemporal generative
adversarial network, which is capable of generating high-quality imputed data by effectively
modeling both the spatiotemporal dependencies and the complex external correlations.
Compared to tensor decomposition methods that primarily focus on reducing the
dimensionality of high-dimensional data, our KG-GAN approach benefits from the
integration of prior knowledge in the form of KGs. This not only compensates for the
limitations of purely data-driven deep learning methods but also enhances the model’s
adaptability to complex and diverse missing data patterns, ultimately leading to more
robust and accurate imputation results.
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The following are our summarized contributions:

. To improve the performance of the deep learning imputation model while considering
the complex influence of external factors on traffic interpolation, we propose a KG-
enhanced approach (namely KG-GAN), in which traffic spatio-temporal characteristics
and external knowledge graph are jointly learned.

. We design a knowledge-aware embedding cell (EM-cell) to enrich model inputs by
integrating traffic data with external knowledge, in which we construct implicit
knowledge representations of external factors with a fine-grained KG construction
approach that distinguishes the attributes and relations of external entities.

. To demonstrate the effectiveness of KG-GAN, we conduct extensive experiments on a
large-scale real-world traffic dataset showing that our method significantly outperforms
existing imputation models and enhances performance across various missing data
patterns. Further ablation experiments are performed to highlight the superiority of
incorporating external knowledge learning.

The rest of this article is organized as follows. “Related Work” provides a systematic
review of related works. “Methodology” describes the architecture and details of the
proposed KG-GAN model. “Experiments” discusses the results of the experiment. Finally,
the article is summarized in “Conclusion”.

RELATED WORK
Data imputation methods based on deep learning
Deep learning has been successfully applied in the field of data imputation. Che et al.
(2018) proposed a deep model (GRU-D) based on learning gated recurrent units (GRU)
(Cho et al., 2014). GRU-D employs two distinct representations of missing patterns,
namely masking and time interval. Where the masking representation simulates the
location of missing data, while the time interval representation represents the time range
from the last observed value. GRU-D effectively integrates them into the deep model
architecture. As a result, it can capture long-term temporal dependencies in time series.
Furthermore, Cao et al. (2018) proposed a recurrent neural network (RNN) based model
for the imputation of missing data in time series (BRITS). BRITS is used to interpolate
missing values in time series data and can learn missing values directly in a bidirectional
RNN without any specific preprocessing. It treats the interpolated values as variables of the
RNN and can be efficiently updated during backpropagation. Both GRU-D and BRITS
models are based on RNN, but they only consider the temporal correlation of data and do
not consider the effect of spatial information on the imputed road network data.
Generative adversarial networks (GANs) have been widely used in image processing (Xu
et al., 2018; Yi, Walia & Babyn, 2019), and in recent years, they have been found to have
good performance in data imputation. Yoon, Jordon & Schaar (2018) proposed a GAN-
based GAIN model where they used generator and discriminator adversarial learning to
model the distribution of the original data and then achieve the effect of imputing the
missing data.Wang et al. (2021) proposed a PC-GAIN model which added a GAIN-based
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pre-training process. However, these GAN-based models do not take into account the
spatial and temporal correlation of the data, resulting in unsatisfactory imputation of the
traffic data. Ye, Zhang & Yu (2021) proposed a graph attention network model (GACN) for
traffic missing data imputation, which follows an encoder-decoder structure and
introduces a graph attention mechanism to learn the traffic graph. It allows higher-quality
traffic data to be estimated by extracting typical spatiotemporal features. Different from
previous works, we use a multi-perspective spatiotemporal generative adversarial network
to analyze and extract traffic features from three perspectives: temporal, spatial, and
spatiotemporal (Li et al., 2018; Shen et al., 2022).

Knowledge representation of traffic data
The generation of multi-source data is a natural consequence of a complex hybrid urban
transport system. The relationships in multi-source data are mainly presented as networks,
and mining the structural and relational information contained in the networks through
representation vectors becomes the main method to capture the network information. In
general, networks can be classified into homogeneous and heterogeneous networks based
on the type of nodes. Most realistic traffic states are heterogeneous network structures, but
the traditional HEBE (Gui et al., 2017) embedding framework for handling heterogeneous
networks is only adapted to specific network architectures due to the limitation of meta-
path accuracy. In recent years the application of knowledge graphs has gradually entered
the public domain, and they are used in the traffic field for their excellent ability to handle
graph structures and information (Muppalla et al., 2017; Xu et al., 2016). Typical
knowledge graph representation learning methods include TransE (Bordes et al., 2013),
TransH (Wang et al., 2014), and TransR (Lin et al., 2015). Compared to TransE and
TransH, TransR constructs a projection matrix to model entities and relationships in both
entity space and relationship space, and performs translation in the relationship space,
breaking the limitation of the same space. Therefore, we choose TransR to model our
constructed entities, relationships, and attributes.

METHODOLOGY
Overall framework
Our proposed KG-GAN model perceives the semantic information of the external
knowledge graph and the spatiotemporal relevance of the traffic features through
adversarial learning, thus effectively improving the accuracy of traffic data imputation. The
model architecture diagram is shown in Fig. 2. The architecture takes in road network data,
traffic speed data, and knowledge graphs to facilitate the learning of semantic knowledge
and spatiotemporal dependencies, ultimately generating imputed data. In particular,
following Lin, Liu & Sun (2016), we first divide the knowledge triad into a relation triad
and an attribute triad to realize the refinement of the knowledge attribute and relationship.
Then, we use the knowledge representation model with entities, attributes and relations
(KR-EAR) to train the triad to generate the relational representation matrix to characterize
the implicit knowledge. In addition, we propose a knowledge-aware embedding cell
(EM-Cell) to fuse the implicit representation of the knowledge graph with traffic features
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for nonlinear self-learning, and input the learned-well traffic embedding with rich
semantic information into our previously proposed multi-perspective spatiotemporal
generative adversarial network (MST-GAN) (Shen et al., 2022) to guide the convergence
and optimization of the model. Ultimately, it enables the model to interpolate data with
complex correlations between traffic spatiotemporal features and external factors.

Given the incomplete traffic observed data X, the traffic imputation problem can be
considered to learn an imputation function Func, which can calculate an appropriate value
for each missing component in X based on the traffic network structure matrix A and the
knowledge graph (KG) as follows:

Ximputed ¼ FuncðA;X;KGÞ: (1)

Combined with the adversarial training of the MST-GAN model, the final min-max
objective for the overall model optimization is:

min
GT ;GS

max
D

E�X;M½M � logDð�XÞ þ ð1�MÞ � logð1� Dð�XÞ�; (2)

where GT characterizes the temporal generator, GS characterizes the spatial generator,
D characterizes the discriminator, �X denotes the road network data simulated by the
temporal and spatial generator, M characterizes the masking matrix, and logð�Þ
characterizes the logarithmic calculation of the elements.

The design and learning of knowledge graph
KG is a semantic network-based knowledge base that uses a directed graph structure to
organize data such as entities, relationships, and attributes. The advantages of KG, such as
their ability to integrate diverse information sources and preserve both semantic and

Figure 2 The KG-GAN model framework. Full-size DOI: 10.7717/peerj-cs.2408/fig-2
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structural relationships, are particularly beneficial for traffic data imputation. In handling
incomplete traffic data, KG can effectively model the complex, multi-relational
dependencies inherent in traffic networks. By representing heterogeneous nodes and
multi-relationship information, KG can construct hierarchical and semantic relationships
between various traffic-related entities (e.g., road segments, sensors, events) (Ning et al.,
2024). This hierarchical and semantic structuring allows for more accurate imputation by
leveraging the rich contextual and relational information within the graph, which is critical
in capturing the dynamic and interdependent nature of traffic systems.

Distributed knowledge representation (KR) encodes entities and relations in a low-
dimensional semantic space, significantly improving the performance of relation
extraction and knowledge inference. In many KGs, some relations represent attributes of
entities (properties), while others represent relationships between entities (relations).
Traditional KR methods treat all relations equally and usually have poor accuracy in
modeling one-to-many and many-to-one relations (consisting mainly of attributes). In
principle, a knowledge graph representation that distinguishes between attribute and
relationship information is more suitable for capturing semantic information and
relevance in this context. Therefore, we use the knowledge graph representation method
knowledge representation learning with entities, attributes and relations (KR-EAR) (Lin,
Liu & Sun, 2016) based on entity-attribute and entity-relationship to capture knowledge
structure and semantic information between road parts and external factors. The KR-EAR
and the traditional KRmethod are shown specifically in Fig. 3, where A1 and A2 are the two
attributes. The value set of attribute A1ðV1Þ contains e6 and e7 which are squares (also
colored in blue), while A2ðV2) contains e8 and e9 which are hexagonal (also colored in
grey). In the traditional KR representation method (left), attributes A1 and A2 are treated
as relations ra and rb. In contrast, KR-EAR encodes the relational triples using the
traditional KR representation method and treats attribute prediction as a classification
problem.

In this article, roads, attributes, and the relationships between them are represented as a
triad of KG = {R,ATT, Relations}. Specifically, the triads are divided into three categories:
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Figure 3 The KR-EAR (right) and traditional KR method (left).
Full-size DOI: 10.7717/peerj-cs.2408/fig-3
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1) Road adjacency triple R (head entity, relationship, tail entity)

R ¼ fðvi; adj; vjÞg; i; j 2 f1; 2;…; ng; (3)

where R is a relational triplet representing the adjacency relationship adj between segments
vi and vj, and n is the number of segments.

2) Attribute triple ATT (entity, attribute, attribute value)

ATT ¼ fðvi; al; avalÞg; l 2 f1; 2;…; Lg; (4)

where al is the l-th class of attributes, aval is the corresponding attribute value (e.g., weather
overcast), and L is the number of attribute classes.

3) Attribute co-occurrence triple Relations (attribute 1, attribute 2, co-occurrence
probability)

Relations ¼ fðal1 ; al2 ; pÞg; l1; l2 2 f1; 2;…; Lg; (5)

where al1 and al2 denote two different attributes of an entity, p is their co-occurrence
probability and the attribute co-occurrence probability describes the probability that two
attributes exist in the same section.

Given a KG, the objective of KR-EAR is to learn the representations XE of entities,
relations, and attributes. The objective function is defined as maximizing the joint
conditional probability of the relationship triple and the attribute triple, which is
formalized as:

PðR;ATTjXEÞ ¼ PðRjXEÞPðATTjXEÞ;
¼

Y
ðvi;adj;vjÞ2R

Pððvi; adj; vjÞjXEÞ
Y

ðvi;al;aval Þ2ATT
Pððvi; al; avalÞjXEÞ; (6)

where Pððvi; adj; vjÞjXEÞ denotes the conditional probability of the relation triple
ðvi; adj; vjÞ and Pððvi; al; avalÞjXEÞ is the conditional probability of the attribute triple

ðvi; al; avalÞ. Pððvi; adj; vjÞjXEÞ is generated by an energy function e following TransR (Lin

et al., 2015):

Pððvi;adj; vjÞjXEÞ ¼ expðeðvi;adj; vjÞÞP
v̂i2V expðeðbvi;adj; vjÞÞ ; eðh; r; tÞ ¼ � jhMr þ r� tMrj jjL1=L2 þ br; (7)

where Mr denote the projection matrix which may projects entities from entity space to
relation space. br is a bias constant and V is a set of road section entities. Pððvi;al;avalÞjXEÞ
is captured by a scoring function (Lin, Liu & Sun, 2016):

Pððvi; al; avalÞjXEÞ ¼ expðsðvi; al; avalÞÞP
abval2AVal

expðsðvi; al; abvalÞÞ ; (8)

where sðÞ is the scoring function for each attribute value of a given entity and AVal is the
attribute value set. In this way, KR-EAR generates representations of relations and
attributes while strengthening the correlations between attributes.
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The fusion of knowledge representations and GAN
In order to better model the spatiotemporal dependencies of traffic data and perceive the
influences of external factors from multiple perspectives, as well as the correlations
between factors, this study proposes a knowledge-aware embedding method, namely EM-
Cell. The design of EM-Cell is based on a deep analysis of traffic data and the mining of
multi-source knowledge relationships, which can effectively fuse the complex knowledge
representations of spatiotemporal changes of traffic data and external factors. The details
of EM-Cell are shown in Fig. 4, where the input consists of two parts: the knowledge
representation matrix XE constructed by KR-EAR and the road segment feature Xt

observed at time t. Due to the diversity of external factors, this article divides them into two
categories: static factors and dynamic factors. Specifically, Es and Ed in Fig. 4 represent the
embeddings of road segments with respect to static external factors (such as shopping mall
information, hospital information) and dynamic external factors (such as weather
changes), respectively, processed by KR-EAR. Therefore, the fusion operation formula
between the traffic feature matrix and the knowledge representation matrix designed in
this study is as follows:

X0t ¼ Concat½rðfsðEs;XtÞÞ; rðfdðEd;XtÞÞ�; where f ðx; yÞ ¼ xyW þ b; f ¼ ffs; fdg: (9)

BothW ¼ fWs;Wdg and b ¼ fbs; bdg denote the learnable parameters. r is the sigmoid
function.

To model the spatiotemporal dependence of traffic data based on knowledge
representation, we use the updated road segment features X0t and the adjacency matrix A as
the input to the spatiotemporal generative adversarial network. We use the MST-GAN

Knowledge
representa�on XE

Traffic
speed Xt

Es EdXt Xt

+ +

Ws Wd

bs bd

Knowledge
graph

Sta�c factors Dynamic factors

Sigmoid Sigmoid

.* *
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speed Xt'

Knowledge
representa�on XE
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speed Xt

Es EdXt Xt

+ +

Ws Wd

bs bd
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.* *
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speed Xt'

Figure 4 Structure of EM-cell. Full-size DOI: 10.7717/peerj-cs.2408/fig-4
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model for data imputation because it considers advanced multi-view spatiotemporal fusion
through chain generator adversarial learning. To achieve multi-view feature fusion, MST-
GAN uses an adversarial between a chain generator and a discriminator to achieve a high-
level fusion of temporal and spatial information. The generator learns different enhanced
features flexibly at different stages using independent parameters. In summary, MST-GAN
captures the temporal and spatial correlation of traffic data through a bidirectional
recurrent network and a graph convolutional network. In addition, it introduces an
attention layer to compute dynamic weights between different time points to focus on key
temporal features.

Specifically, the temporal generator GT uses a bi-directional long and short-term
memory network based on the attention mechanism (BiLSTM ATT) as the kernel, and the
final output value of the temporal generator X̂ is denoted as:

XBiLSTM ATT ¼ AttentionðBiLSTMðX0tÞÞ; (10)

X̂ ¼ X0t �M þ XBiLSTM ATT � ð1�MÞ; (11)

where � means multiplying by elements and M represents the mask matrix. The spatial
generator GS kernel consists of a graph convolutional network (GCN), containing two
convolutional layers and a fully connected layer. As the depth of the network increases, it
brings many problems such as gradient dissipation. Therefore, the model uses skip connect
to improve the gradient dissipation problem during backpropagation. The output of the
spatial generator is expressed as:

�X ¼ X0t �M þ GSðX̂Þ � ð1�MÞ: (12)

Both time and spatial generators use MSE as the loss function and Adam as the
optimization function, the loss gradually decreases to stability during the cyclic iteration of
the model. Eventually it generates interpolated data with higher quality.

The discriminator D is used to distinguish the data as true or false. The generator tries
hard to make the simulated data closer to the true value, while the discriminator tries hard
to identify the data as true or false. The core structure of the discriminator network consists
of GCN and BiLSTM ATT . The loss function of the discriminator can be expressed as:

LD ¼ � 1
n

Xn
i¼1
ðM � logDð�XÞ þ ð1�MÞ � logð1� Dð�XÞÞ; (13)

where n is the sample number.

KG-GAN training for missing data imputation
The detailed training procedure of KG-GAN is presented in Algorithm 1. Firstly, refine
entity attributes and entity relationships using the KR-EAR method to construct triples of
correlated knowledge and derive knowledge representation matrix XE. Then, through the
EM-Cell module, fuse the spatiotemporal traffic data Xt (which may contain missing data)
with the dynamic and static matrices of the knowledge representation matrix to obtain
integral embedding of rich traffic information. Finally, at each training time step, the fused
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input X0t is subjected to adversarial optimization in the MST-GAN network. During the
training phase of the MST-GAN model, the discriminator is pre-trained to learn the
characteristics of the generated data and observed data. Then, the discriminator and two
generators are trained adversarially. In detail, the MST-GAN model uses the temporal
generator to train hyperparameter hGT from a temporal perspective. Next, we use the
spatial generator to train hyperparameter hGS from a spatial perspective. The learning of
hGT and hGS allows us to refine the extraction of spatiotemporal features in stages.

EXPERIMENTS
Dataset
The dataset contains road network data, weather data, POI data and traffic speed data for
each street in Luohu District, Shenzhen, where the time span is from January 1, 2015 to
January 31, 2015 (Zhu et al., 2022). Weather data is divided into five categories: sunny,
light rain, heavy rain, cloudy and foggy. POI data is divided into nine categories: business,
transportation, medical, living, accommodation, education, food, shopping and others.
Due to the limitations of experimental data collection, it is difficult to have existing

Algorithm 1 KG-GAN model training for data imputation.

Input: Original complete traffic dataset Xtðm� nÞ; road adjacency triplet R; attribute triplet ATT; attribute
co-occurrence triplet Relations; loss hyperparameters a; masking matrix M; indicator matrix H; the
number of epochs N and the initialized parameters: generator hGT , generator hGS , and discriminator hD

1: Construct a KG = {R, ATT, Relations} triplet.

2: By maximizing the PðR;ATTjXEÞ obtain the knowledge representation matrix XE .

3: Integrating Xt and XE : X0t ¼ EM-CellðXt ;XEÞ
4: for epoch=1,2,…,N

5: (1) Discriminator optimization:

6: Obtain discriminator loss LD via Eqs. (10–13)

7: Back-propagate LD to update hD

8: (2) Generator optimization:

9: Obtain the output of GTX̂ via Eqs. (10), (11)

10: LR1 ¼ 1
n

Pn
i¼1 jjðX0t � X̂Þ �Mjj22

11: LGT  �DðX̂;HÞ þ aLR1

12: Obtain the output of GS�X via Eq. (12)

13: LR2 ¼ 1
n

Pn
i¼1 jjðX0t � �XÞ �Mjj22

14: LGS  �Dð�X;HÞ þ aLR2

15: Back propagate LGT , LGS to update hGT , hGS

16: end for

17: Impute the missing values:

18: Obtain imputed data Ximputed via Eqs. (10–12)

Output: Trained parameters hGT , hGS , and hD; imputed data Ximputed
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publicly available datasets that collect traffic speed data, road network data, and external
correlates (Weather, POI, etc.,) at the same time, so only one regional dataset from
Shenzhen is used in this experiment. Nevertheless, as our model is universal and
transferable, researchers can validate it in any city that gives a relevant dataset.

Knowledge representation
The inputs to the knowledge representation model include attribute triple, road adjacency
triple, and attribute co-occurrence triple. Based on the composition of the Shenzhen
dataset, we construct POI attribute triples using road section number, POI category, and
numbers of POI. We also use time, weather, and relevance to construct weather attribute
triples, resulting in the construction of a knowledge graph of the Luohu District in
Shenzhen. Specific examples are as follows: (road 123, enterprise, 3) indicates that there are
three enterprises located around road section 123; (road 100, hospital, 1) indicates that a
hospital exists around road section 100; (road 100, weather conditions, moment t) and
(moment t, weather, clear) indicate that road 100 has clear weather condition at moment t.

Experimental design
In this article, 80% of the dataset is used as training data and the rest of the data was used as
test data. We choose T = 288 time steps (i.e., 15 min � 288 = 72 h) as the imputation
window. During training, we use the sliding window method to impute [t, t + T], [t + T,
t + 2T], [t + 2T, t + 3T], etc. We initialize all weight values uniformly and normalize the
input data to [0,1]. Both GCN and BiLSTM_ATT networks contain two layers whose sizes
are 128. The model is trained using the Adam optimizer with an initial learning rate of
0.01. As displayed in Fig. 5, we validate the performance of the model under three missing
modes (Li et al., 2018; Liang, Zhao & Sun, 2021): 1) Random missing (RM), where missing
values are completely independent of each other and displayed as randomly scattered
points for each sensor (or road); 2) Temporal correlated missing (TCM), where missing
values are dependent in the time dimension and appear as a consecutive time interval for
each sensor (or road); 3) Spatially correlated missing (SCM), where missing values are
dependent in the spatial dimension and appear at neighboring sensors or connected road
links for each time slot. The performance of the model is compared with other baseline

Figure 5 Patterns of missing data. Full-size DOI: 10.7717/peerj-cs.2408/fig-5
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methods at different deletion rates from 30% to 80%. The model proposed in this study has
an important hyperparameter, namely the knowledge embedding dimension, which has a
significant impact on the data imputation results. After conducting multiple experiments,
TransE and TransR models are used to learn the knowledge graph, and their performances
are compared using embedding dimensions of 20 and 15 for TransE, and 15, 20, and 50 for
TransR, as shown in Table 1. The comparison is performed in the typical scenario of 50%
missing data, and the RMSE and MAE loss metrics are used to evaluate the models with
different embedding dimensions. Based on the results, an embedding dimension of 15 is
chosen to achieve the best final imputation results. Fig. 6 shows the traffic speed data
imputation results under a missing rate of 50%, a knowledge embedding dimension of 15, a
random missing pattern, and an RMSE evaluation metric.
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Figure 6 The visualization of data imputation results. Full-size DOI: 10.7717/peerj-cs.2408/fig-6

Table 1 Embedded dimension selection effect value.

Dimensions Missing patterns

RM TCM RCM

MAE RMSE MAE RMSE MAE RMSE

TransE(20) 0.0265 0.0485 0.0284 0.0477 0.0278 0.0509

TransE(50) 0.0260 0.0461 0.0275 0.0507 0.0274 0.0546

TransR(15) 0.0270 0.0454 0.0264 0.0445 0.0265 0.0457

TransR(20) 0.0370 0.0463 0.0265 0.0505 0.0325 0.0521

TransR(50) 0.0279 0.0613 0.0333 0.0521 0.0269 0.0556

Note:
Values in bold indicate the best result.
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Baselines
To demonstrate the effectiveness of our model in all aspects, we compared several baseline
experiments. These include the machine learning methods: MEAN and SVR (Wu, Ho &
Lee, 2004); the vector decomposition method: BGCP (Chen, He & Sun, 2019); the deep
learning methods: GRU-D (Che et al., 2018), BRITS (Cao et al., 2018), GAIN (Yoon, Jordon
& Schaar, 2018), PC-GAIN (Wang et al., 2021), GACN (Ye, Zhang & Yu, 2021), DGCRIN
(Kong et al., 2023).

. MEAN: The missing elements are interpolated with the means of all relevant features.

. SVR: We choose support vector machines as the representative of regression-based
machine learning imputation methods.

. GRU-D: GRU-D is a deep learning model architecture represented by two missing
modes of masking and time interval, which improves model imputation performance
through the application of the decay mechanism.

. BRITS: BRITS is a missing value imputation method for time series data based on RNN,
which can directly learn missing values in a bidirectional recursive dynamical system
without the need for any specific assumptions.

. GAIN:GAIN is a GAN-based method for unsupervised missing data imputation. It adds
an indicator matrix to the GAN, which is to ensure that the generator generates samples
according to the true underlying data distribution.

. PC-GAIN: PC-GAIN is a method of unsupervised missing data imputation. It proposes
a kind of potential category information contained in a subset of low-missing rate data
during pre-training while using synthetic pseudo-labels to identify auxiliary classifiers
and then combines classifiers into GAN to help generators produce higher-quality
prediction results.

. BGCP: BGCP extends the Bayesian probability matrix decomposition model to higher
order tensor and applies it to the task of spatiotemporal traffic data. They focus not only
on the configuration of the model, but also on the data representation (i.e., matrix, third-
order and fourth-order tensor).

. GACN: GACN is a graph attention convolutional network model for missing data
imputation, which follows an encoder-decoder structure. As a typical spatiotemporal
imputation model, GACN introduces a graph attention mechanism to learn the spatial
correlation of adjacent sensors. In addition, it superimposes temporal convolutional
layers to extract relationships in time series.

. DGCRIN:DGCRIN is also an imputation model based on dynamic graph convolutional
networks and realizes state-of-the-art performance. It develops a graph generator to
model dynamic spatial correlations and uses a dynamic graph convolutional gated
recurrent unit to capture spatiotemporal relevances.

Evaluation metrics. We choose mean absolute error (MAE), root mean square error
(RMSE) and mean absolute percentage error (MAPE) as evaluation indicators. Here’s how
the evaluation metrics are calculated:
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MAE ¼ 1
n

Xn
i¼1
jjbyi � yijj (14)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1
ðbyi � yiÞ2

s
(15)

MAPE ¼ 1
n

Xn
i¼1

ŷi � yi
yi

���� ����� 100% (16)

where n represents the number of missing data, byi represents the prediction of missing
value, and yi represents the observed value.

Comparison experiment
Table 2 shows the error values of the KG-GAN and several baseline models under different
missing rates and evaluation metrics. The data is the statistical result under RM missing
pattern and we draw the following analyses: (1) Traditional imputation methods MEAN
and SVR perform poorly compared to most deep learning methods, especially when the
missing rate is higher than 50%; (2) compared to the traditional methods, RNN-based
methods GRU-D and BRITS consider the time series correlation of data and have smaller
imputation errors. However, the imputation performance of GRU-D is slightly lower than
that of the BRITS algorithm, which is probably because GRU-D is more suitable for
imputing medical data than traffic data; (3) GAIN and PC-GAIN are data imputation
models based on data distribution. These GAN-based methods only adapt to low missing
rate situations from the perspective of data distribution; (4) even at higher missing rates,
the GACN model achieves a MAE of less than 6% and a RMSE of under 8%. Meanwhile,
DGCRIN demonstrates even better performance. This highlights the significance of
incorporating spatiotemporal correlations for traffic data imputation, which outperforms
algorithms that only take temporal correlations and data distribution into account. (5) The

Table 2 Experimental results of a data imputation method in RM pattern.

Models Missing rate

30% 40% 50% 60% 70% 80%

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

MEAN 0.0321 0.0868 2.16% 0.0476 0.1100 3.28% 0.0671 0.1361 5.16% 0.0911 0.1650 7.86% 0.1206 0.1973 9.45% 0.1540 0.2306 10.98%

SVR 0.0761 0.0880 5.67% 0.0783 0.0909 5.95% 0.0789 0.0921 6.13% 0.0831 0.0965 6.87% 0.0874 0.1035 7.03% 0.0951 0.1108 7.84%

GRU-D 0.0763 0.0944 5.88% 0.0822 0.1010 6.07% 0.0908 0.1113 7.16% 0.0917 0.1120 7.05% 0.1009 0.1222 8.20% 0.1044 0.1263 8.39%

BRITS 0.0526 0.0794 3.00% 0.0550 0.0818 3.73% 0.0580 0.0849 4.07% 0.0603 0.0867 4.54% 0.0624 0.0884 4.22% 0.0660 0.0923 4.51%

GAIN 0.0361 0.0547 2.07% 0.0399 0.0613 2.19% 0.0491 0.0734 2.84% 0.0617 0.1088 4.97% 0.0948 0.1716 8.14% 0.1173 0.1881 9.48%

PC-GAIN 0.0841 0.1417 6.85% 0.0875 0.1474 7.33% 0.0926 0.1524 8.21% 0.0955 0.1543 8.59% 0.1000 0.1582 9.13% 0.1080 0.1670 10.25%

BGCP 0.0573 0.0794 3.88% 0.0572 0.0794 3.97% 0.0574 0.0795 4.10% 0.0580 0.0801 4.54% 0.0584 0.0805 4.95% 0.0592 0.0817 5.05%

GACN 0.0534 0.0768 3.26% 0.0549 0.0771 3.39% 0.0557 0.0775 3.77% 0.0562 0.0782 3.56% 0.0575 0.0789 4.17% 0.0584 0.0800 4.35%

DGCRIN 0.0463 0.0711 1.75% 0.0469 0.0715 2.47% 0.0480 0.0723 2.61% 0.0503 0.0746 2.89% 0.0517 0.0757 3.59% 0.0523 0.0761 3.35%

KG-GAN 0.0244 0.0427 1.44% 0.0254 0.0444 1.77% 0.0270 0.0454 2.22% 0.0291 0.0488 2.05% 0.0292 0.0523 2.58% 0.0309 0.0535 2.85%

Note:
Values in bold indicate the best result.
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MAE, RMSE and MAPE of KG-GAN are lower than the best baseline DGCRIN and
superior to other baselines, which fully illustrates the effectiveness of our model.

From the perspective of robustness analysis, Fig. 7 shows the performance comparison
of various baseline models under SCM and TCM. The horizontal axis in the figure
represents different data missing rates, and the vertical axis is used to visualize the loss
results of different models under different evaluation metrics. Based on the experimental
results, the following conclusions can be drawn: (1) The traditional MEAN method is
basically unaffected by the missing pattern, and the loss value steadily increases with the
increase of the missing rate in different evaluation metrics. When the missing rate is
greater than 60%, its RMSE metric is higher than all other baseline models, indicating poor
robustness; (2) the robustness of the SVR algorithm is superior to the MEAN method, and
its performance under SCM is better than under TCM; (3) the GRU-D model mainly
focuses on capturing time dependencies rather than spatial dependencies, so its
performance under the time-continuous missing pattern is lower than under the space-
continuous missing pattern. Moreover, as the missing rate increases, the loss value of
GRU-D continues to rise, indicating that the robustness of the GRU-D model for different
missing patterns and missing rates is not ideal; (4) intuitively, it can be found that the
robustness of the GAIN model is only better than the traditional MEAN method. When

Figure 7 (A–F) Performance comparison in two missing patterns. Full-size DOI: 10.7717/peerj-cs.2408/fig-7
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the missing rate is greater than 40%, the loss curve of GAIN suddenly rises. This is because
when the missing rate gradually increases, it is difficult for GAN to learn from historical
data; (5) under different missing patterns and evaluation metrics, the robustness of BGCP,
BRITS, GACN, DGCRIN and our KG-GAN are all very superior.

In general, since KG-GAN not only considers data distribution and spatiotemporal
correlation dependencies but also introduces knowledge embedding of external related
factors, the imputation performance of our model is the best.

Ablation experiments
To verify the gain effect of knowledge representation on the performance of generating
adversarial network imputation data, this study compares KG-GAN with the MST-GAN
model (i.e., KG-GAN w/o EM-Cell), which differs in that KG-GAN introduces a
knowledge learning module to model and process knowledge representation of multi-
source traffic information. This study conducted ablation experiments under SCM and
TCM in terms of MAE, RMSE andMAPE as shown in Fig. 8. The results intuitively suggest
that as the rate of missing data increases, the accuracy of both models decreases. This is
attributed to the fact that the increasing amount of missing data negatively impacts the
models’ learning ability. The study also indicates that in the case of missing data, it is

Figure 8 (A–F) Ablation experiment in SCM and TCM missing patterns. Full-size DOI: 10.7717/peerj-cs.2408/fig-8
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necessary to use models with better robustness to handle data, and KG-GAN’s robustness
is significantly better than MST-GAN’s. In terms of model accuracy, KG-GAN’s three
indicators are better than MST-GAN’s, especially in the MAE evaluation indicator,
highlighting KG-GAN’s superior imputation performance.

In addition, in order to verify that the convergence speed of the KG-GAN is better than
that of the MST-GAN, an ablation experiment is also designed to measure the trend of the
loss under RM missing pattern, with a data missing rate of 50% and a knowledge
embedding dimension of 15, as shown in Fig. 9. The horizontal axis represents the training
batch (epoch) of the model, and every 100 epochs takes an average of 5 s. One can see that
the KG-GAN model converges faster than the MST-GAN model since the KG-GAN
model learns the spatiotemporal features of the dataset faster during training, and can
better capture the missing patterns in the data.

In summary, the results of the ablation experiments prove that external factors (such as
weather, POI, etc.) and the complex correlations between external factors are of great
significance to the imputation of traffic data. By using knowledge graphs as prior
knowledge to guide the training of the model, the convergence speed, efficiency, and
accuracy of the model can be improved, ultimately achieving high-quality imputation of
traffic data.

CONCLUSION
In this article, we propose KG-GAN, a knowledge graph-enhanced model for
spatiotemporal traffic data imputation, designed to improve deep learning-based
imputation models’ performance under high data scarcity and account for complex
external factors. Our extensive experiments on a real-world traffic dataset validate KG-
GAN’s effectiveness in traffic data imputation. Specifically, we first construct an implicit
knowledge representation of external factors using a fine-grained knowledge graph, which

Figure 9 Convergence rate in RM missing patterns. Full-size DOI: 10.7717/peerj-cs.2408/fig-9
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accurately distinguishes between attributes and relationships. Next, we introduce a
knowledge-aware embedding cell that integrates traffic data with the external knowledge
representation, resulting in a refined traffic embedding. This embedding is then input into
the MST-GANmodel, facilitating effective convergence to the real traffic data distribution.
Our approach achieves superior results by combining spatiotemporal feature learning with
external knowledge, leading to more accurate imputation. The implications of our research
are significant for traffic data imputation and intelligent transportation systems. By
addressing data scarcity and incorporating external factors, our model offers a more robust
solution for real-world applications, potentially improving traffic management and
decision-making. Future work will focus on refining the knowledge graph to reduce noise,
such as irrelevant connections between items and entities, which can impact model
performance (Yang et al., 2023). We also plan to explore the application of KG-GAN to
other domains and datasets to further validate its generalizability and robustness.
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