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ABSTRACT
Recent advancements in facial expression synthesis using deep learning, particularly
with Cycle-Consistent Adversarial Networks (CycleGAN), have led to impressive
results. However, a critical challenge persists: the generated expressions often lack the
sharpness and fine details of the original face, such as freckles, moles, or birthmarks.
To address this issue, we introduce the Facial Expression Morphing (FEM) algorithm,
a novel post-processing method designed to enhance the visual fidelity of CycleGAN-
based outputs. The FEMmethod blends the input image with the generated expression,
prioritizing the preservation of crucial facial details. We experimented with ourmethod
on the Radboud Faces Database (RafD) and evaluated employing the Fréchet Inception
Distance (FID) standard benchmark for image-to-image translation and introducing
a new metric, FSD (Facial Similarity Distance), to specifically measure the similarity
between translated and real images. Our comprehensive analysis of CycleGAN,
UNet Vision Transformer cycle-consistent GAN versions 1 (UVCGANv1) and 2
(UVCGANv2) reveals a substantial enhancement in image clarity and preservation
of intricate details. The average FID score of 31.92 achieved by our models represents a
remarkable 50% reduction compared to the previous state-of-the-art model’s score of
63.82, showcasing the significant advancements made in this domain. This substantial
enhancement in image quality is further supported by our proposed FSDmetric, which
shows a closer resemblance between FEM-processed images and the original faces.

Subjects Artificial Intelligence, Computer Vision, Neural Networks
Keywords Facial expression synthesis, GANs, Image-to-image, CycleGAN, Image processing,
Image translation

INTRODUCTION
Facial editing (Botezatu et al., 2022) is now commonplace in social media, smartphone,
and camera applications. It leverages an image processing algorithm that allows users to
apply different effects to their images. For enhanced realism, many applications utilize
technology such as generative adversarial networks (GANs) (Goodfellow et al., 2020; Karras
et al., 2017), which utilize convolutional neural networks (CNN).

GANs are amachine learning framework comprising two neural networks, the generator,
and the discriminator, engaged in a continuous feedback loop. The generator generates
realistic data samples, such as images or text, attempting to deceive the discriminator.
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The discriminator, in turn, evaluates whether the data is genuine or fabricated by the
generator. This adversarial training loop pushes both networks to improve, progressively
enabling the generator to produce remarkably authentic data indistinguishable from
real-world examples. GANs have revolutionized fields like image generation, art, and data
augmentation, opening a new frontier of creative possibilities and practical applications.

Facial expression synthesis, a burgeoning field within computer graphics and machine
learning, has experienced significant advancements due to the advent of GANs. This
powerful framework, comprising a generator that crafts realistic facial images with specific
expressions and a discriminator that distinguishes between genuine and synthetic faces,
has proven effective in producing convincing facial expressions. The implications of this
technology are promising to revolutionize various industries. From enhancing the realism
of digital characters in video games and animations to potential applications in mental
health therapies and human–computer interaction (Guo et al., 2020; Lian et al., 2020;
Sun & Lv, 2019; Lou et al., 2019; Wang et al., 2022; Zhang et al., 2021), facial expression
synthesis opens up new avenues for creative expression and communication. However,
challenges such as maintaining identity consistency and avoiding the uncanny valley effect
remain active research areas. As this field continues to evolve, facial expression synthesis is
poised to reshape how we interact with digital faces and potentially even our understanding
of human emotions.

The Latent Diffusion Model (LDM) (Rombach et al., 2022) is a state-of-the-art image
generation technology, often producing better results than its predecessor, GANs. However,
both LDM and GANs have difficulty with a common issue when creating facial expressions:
they are good at making general faces but find it hard to accurately recreate the wide range
of emotions and small details that make each expression unique. This challenge highlights
the need for more research in this area, as being able to create facial expressions accurately

Facial expression synthesis research frequently involves image-to-image (I2I)
translation (Isola et al., 2017), which leverages deep neural networks to modify images.
These I2I models are designed to learn the complex task of transforming an image
from one domain to another. This technology has demonstrated remarkable success in
various applications, including transforming black-and-white images into vibrant color
photographs and altering daytime scenes into evocative nighttime settings.

I2I translation typically requires paired input and output image datasets in the training
process, which can be challenging to acquire in certain scenarios. For instance, image
segmentation tasks require manual labeling or capturing the same scene under varying
conditions. In the realm of facial expression synthesis, this challenge is compounded by the
need for paired images of the same individual displaying different emotions, meticulously
aligned and captured under consistent lighting. The unpaired I2I translation approach (Zhu
et al., 2017; Torbunov et al., 2023b; Torbunov et al., 2023a; Zhao et al., 2022) offers a more
flexible solution, proving particularly advantageous in this domain where achieving perfect
alignment in paired data can be difficult due to the inherent dynamism of facial expressions.

A recent study (Sub-R-Pa & Chen, 2024) revealed that utilizing unpaired I2I
translation with Cycle-Consistent Adversarial Networks (CycleGAN) (Zhu et al., 2017)
and UVCGANv1 (Torbunov et al., 2023b) effectively transforms neutral and contemptuous
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Figure 1 Using UVCGANv1 to transform ‘‘natural’’ to ‘‘happy’’, (Sub-R-Pa & Chen, 2024) (A) full
face, (B) detail in the top right, and (C) detail on the bottom left, with original quality. (A∗), (B∗) and
(C∗) Results from UCVGANv1 from the same portion, where quality is subpar due to unrealistic hair tex-
ture, eye rendering, and blurred jawline. Image source credit: Radboud Faces Database.

Full-size DOI: 10.7717/peerjcs.2438/fig-1

facial expressions into happy ones. However, a notable drawbackwas observed: the resulting
images often lacked crucial details from the original facial image Fig. 1. To address this
issue, we propose a novel post-processing method called Facial Expression Morph (FEM),
which merges the original facial image with the expression-transformed image while
preserving essential features from both. This innovative approach aims to enhance the
quality and realism of facial expression synthesis, ensuring that the resulting images retain
the individuality and nuances of the original subject.

Advances in facial expression synthesis using deep learning, particularly with CycleGAN,
have led to impressive results in generating realistic facial expressions. However, a critical
challenge persists. While state-of-the-art models can effectively translate expressions, they
often compromise the original facial identity. To address this issue, we hypothesize that by
selectively combining the original image with only the expression area from the generated
image, we can restore the facial identity while preserving the translated expression.

Our proposed FEMmethod is a novel approach that, following our hypothesis, combines
image processing techniques with insights from psychology to improve facial expression
synthesis. By selectively merging the original image with an expression-transformed
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image, guided by knowledge of how emotions are expressed in specific facial regions,
FEM aims to create more realistic and accurate facial expressions while preserving the
essential features of the original face. This innovative approach goes beyond simple image
blending, leveraging domain-specific knowledge to enhance the quality and accuracy of
facial expression synthesis results.

This article presents several contributions to the field of facial expression translation as
follows:
1. Comprehensive study: We conducted an in-depth investigation of I2I translation,

specifically for facial expressions, covering various expressions, including anger,
disgust, fear, happiness, sadness, surprise, contempt, and neutrality.

2. Model assessment: We used the Radboud Faces Database (RafD) to evaluate the
effectiveness of CycleGAN-based models (CycleGAN, UVCGANv1, and UVCGANv2)
for this task.

3. Novel method: FEM-We introduced FEM, a new post-processing technique that
enhances the quality and preserves details in facial expression synthesis. FEM specifically
addresses the problem of lost facial information, leading to improved results in
standard benchmarks. Current methods for translating facial expressions have made
significant progress, but they often have difficulty preserving fine facial details and
maintaining consistency across different emotions. Our new method, FEM, addresses
these limitations by blending input images with translated images to produce the final
result. As shown in our comparative results, FEM consistently outperforms existing
methods in standard benchmarks and produces visually appealing and expressive
results.
It is important to note that our current evaluation is based on the RafD dataset, which

contains controlled frontal face images with specific expressions. While FEM shows
promising results in this controlled environment, its performance on more diverse and
unconstrained datasets still needs to be investigated.

This article is structured as follows: ‘Related Work’ reviews related work in facial
expression and image synthesis, and ‘Review of CycleGAN-Based Method’ details the
CycleGAN-based model. ‘Method’ details our approach, while ‘Experimental Setup’
outlines the dataset, training process, and evaluation metrics. ‘Result Analysis and
Discussion’ presents a thorough analysis of our experimental results, highlighting FEM’s
efficacy. ‘Limitations and Future Directions’ discusses Limitations and Future Directions to
acknowledge the limitations of our work. Finally, ‘Conclusion’ concludes with a summary
of our research and potential future directions.

RELATED WORK
Facial expression synthesis, a critical component of facial attribute editing, is a wide area of
research in fields such as computer technology and psychology and has been a challenging
topic. Historically, this complex task has often been simplified to a general I2I translation
problem, where facial expressions are treated as isolated attributes. Existing methods have
focused onmanipulating individual facial features, such as adjusting the mouth’s curvature
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for a smile or opening/closing it (Xia et al., 2021). However, this approach frequently
overlooks the subtle interplay of multiple facial features that contribute to authentic
expressions, leading to results that may appear artificial or unconvincing.

The Facial Action Coding System (FACS) (Paul & Friesen, 1978) is a widely used,
standardized tool formeasuring and describing facial expressions. It offers a comprehensive
framework for analyzing facial movements based on underlying muscle activity (Action
Units), proving invaluable in research fields like psychology, neuroscience, and computer
science. FACS is praised for its objectivity, comprehensiveness, scientific validity, and
wide range of applications. FACS plays a crucial role in facial expression synthesis by
providing a detailed and objective language for defining target expressions and guiding the
development of algorithms that can accurately generate and manipulate facial features.

GAN-based models for facial expression synthesis
GANs have emerged as a powerful tool for image synthesis, offering the potential to generate
realistic and diverse facial expressions. CycleGAN, a prominent GAN-based model, has
been particularly successful in unpaired image-to-image translation tasks, enabling the
transformation of images between different domains without requiring paired training
data. This capability has been leveraged in various facial expression synthesis studies,
demonstrating the effectiveness of CycleGAN in translating expressions while maintaining
identity consistency.

Recent studies (LGP-GAN) (Xia et al., 2021) in facial expression synthesis have
recognized the limitations of traditional approaches that treated it as a mere image-
to-image translation problem, focusing on modifying isolated facial attributes like smiles
or mouth shapes. Researchers are now exploring more sophisticated techniques, often
grounded in physiology and psychology research, that consider the intricate interplay of
multiple facial features. These advancements aim to generate more realistic and expressive
faces by capturing the nuanced details that traditional approaches often miss.

One effective approach for facial expression synthesis is LGP-GAN, which introduces
an innovative end-to-end model with a two-stage cascaded structure: two local and one
global network. In the first stage, the local generators transform the eyes andmouth regions,
learning the specific changes associated with different expressions. The second stage utilizes
the global network to refine the results by perceiving and supplementing facial information
beyond these key areas, resulting in more holistic and realistic facial expressions.

CycleGAN, a cornerstone in computer vision and image processing, is renowned for
transforming images across diverse domains through cycle consistency constraints and
adversarial training. Its versatility, requiring no explicit supervision or paired image
datasets, has been demonstrated through successful applications such as converting photos
into paintings, manipulating day and night scenes, or even transforming horses into zebras.
This makes it an ideal starting point for exploring facial expression manipulation.

Updated versions of the CycleGAN architecture, UVCGANv1, and UVCGANv2,
have been experimented with and evaluated in various image translation tasks.
UVCGANv1, incorporating a UNet generator (Ronneberger, Fischer & Brox, 2015) and
vision transformers (ViT) (Dosovitskiy et al., 2020), has shown promising results in
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tasks such as selfie-to-anime, male-to-female, and glasses removal. UVCGANv2, further
enhanced with a learnable style token, improves upon these results and expands to
additional domains like animal transformations.

However, applying these models to the specific challenge of facial expression translation
remains less explored, particularly in scenarios where paired image datasets are unavailable.
Our research addresses this underexplored area by comprehensively investigating the use of
CycleGAN, UVCGANv1, and UVCGANv2 for translating a wide range of facial expressions
using unpaired data, where images of the same person with different expressions are not
required. We focus on evaluating the core performance of these models in accurately
capturing and generating facial expressions.

While post-processing techniques like GPEN (Tao Yang & Zhang, 2021) could
potentially enhance the quality of the translated images, they are not the primary focus
of this study, as they might not always guarantee the preservation of identity or accurate
expression translation. Moreover, we introduce a novel post-processing step designed
specifically to enhance the translated images’ sharpness while prioritizing the preservation
of facial identity and the accuracy of the target expression. This contribution is significant
as it addresses the limitations of existing GAN-based unpaired I2I translation methods in
the context of facial expression synthesis, offering a potential avenue for generating more
realistic and accurate results.

Beyond GANs for facial expression synthesis
While GANs have had a significant impact on facial expression synthesis, recent
advancements in generative models have opened up new areas for exploration. Diffusion
models, known for their gradual denoising process, have attracted attention due to their
ability to produce high-quality images with improved stability compared to GANs (Ho,
Jain & Abbeel, 2020). Denoising Diffusion Probabilistic Models (DDPMs) (Song, Meng
& Ermon, 2020) have demonstrated promising results in various image synthesis tasks,
including the creation of realistic faces and manipulation of facial attributes. While their
application to targeted facial expression synthesis is still in its early stages, there is potential
for these models to generate even more realistic and diverse facial expressions with finer
control over subtle nuances.

The Brownian Bridge Diffusion Model (BBDM) (Li et al., 2023) is an important
advancement in diffusion models for image-to-image translation. BBDM represents
image-to-image translation as a stochastic Brownian bridge process, learning the translation
between two domains directly through a bidirectional diffusion process instead of relying
on conditional generation. This approach has shown promising results in various image
translation tasks, potentially offering a new perspective for addressing challenges in facial
expression synthesis, such as preserving identity consistency and handling subtle expression
variations.

Moreover, the emergence of text-to-image generation models, such as Stable Diffusion
(Rombach et al., 2022) and Midjourney, has expanded the possibilities for creative control
in facial expression synthesis. These models enable the generation of images from textual
descriptions, providing a new level of flexibility and customization. For example, a user
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Figure 2 CycleGAN Framework.
Full-size DOI: 10.7717/peerjcs.2438/fig-2

could provide a text prompt like ‘‘a surprised face with raised eyebrows and an openmouth’’
to generate a corresponding image. While challenges exist in accurately capturing subtle
nuances and maintaining identity consistency, the potential synergy between text-to-image
generation and facial expression synthesis is an exciting area for future research.

However, it is important to note that our current work primarily focuses on exploring
the capabilities of GAN-based models for facial expression translation. A comprehensive
evaluation of diffusion models and their integration with our proposed FEM method is
beyond the scope of this article and will be addressed in future research.

REVIEW OF CYCLEGAN-BASED METHOD
CycleGAN-based models utilize two generator and discriminator pairs to achieve unpaired
I2I translation, a valuable technique in this context due to the difficulty of obtaining
paired training data. The model connects two generators (GA→B and GB→A) and two
discriminators (DA and DB) to translate images between different domains. As shown in
Fig. 2, generator GA→B converts images from domain A (e.g., neutral) to domain B (e.g.,
happy), while GA→B does the reverse. Discriminators DA and DB ensure the quality and
realism of the generated expressions by distinguishing between real and translated images.

Ldisc=Ex∼pdata(x)[DB→A(x),0]+Ez∼pz (z)[DA(GB→A(z),1)] (1)

LdiscB =Ex∼pdata(x)[DB(x),0]+Ez∼pGAN (z)[DB(GB→A(z)),1] (2)

LGANA =Ex∼pA[LGAN (DA(GA→B(x)),1)] (3)

Lcyc,A=Ex∼ALreg (GB→A(GA→B(x)),x) (4)

Lidt ,A=Ex∼ALreg (GB→A(x),x) (5)
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Lgen,A→B= LGAN ,A+λcycLcyc,A+λidtLidt ,A (6)

Lgen,B→A= LGAN ,B+λcycLcyc,B+λidtLidt ,B. (7)

In Eqs. (1) and (2), the discriminator loss (Ldisc) for domains A and B is defined for each
input image x . For example, if the input image is a neutral expression (domain A), Ldisc
measures how well discriminator DA can distinguish between real neutral expressions from
the dataset (ExA) and fake neutral expressions generated by translating happy expressions
from domain B (GA→B).

LGAN denotes a classification loss function, such as L2, cross-entropy, or Wasserstein
(Arjovsky, Chintala & Bottou, 2017), where translated (fake) images are labeled as 0 and
real images as 1. For instance, if the discriminator correctly identifies a generated neutral
expression as fake, the loss would be lower than misclassifying it as real.

The generator weights are updated through backpropagation using a combination of
three loss components, as shown in Eqs. (6) and (7). These losses are carefully balanced
using λ hyperparameters (λcyc and λidt ), allowing for fine-tuned control over the relative
importance of each component during training. This balancing act ensures that the
generator optimizes for multiple objectives simultaneously:

• GAN loss Eq. (3): This encourages the generator to create indistinguishable images
from real images, focusing on fooling the discriminator. By minimizing this loss, the
generated expressions become increasingly realistic.
• Cycle-consistency loss Eq. (4): This ensures that translating an image from domain A to
B and then back again results in an image similar to the original, preserving the subject’s
identity. For instance, translating a neutral expression to happy and then back to neutral
should ideally result in an image close to the initial neutral expression.
• Identity consistency loss Eq. (5): This encourages the generator to preserve the specific
characteristics of the input image, such as facial features, when translating between
domains. For example, if the original image has a mole on the cheek, the translated
happy expression should ideally retain that mole.

where Lreg refers to any regression loss function, such as L1 or L2, the combination
coefficients, λcyc , and λidt , are used to determine the relative weights of the cycle consistency
loss and identity loss during training, respectively. By carefully balancing these three
components, the generator is guided to produce realistic images that maintain the original
content and style while achieving the desired expression transformation.

In this article, we translate facial expressions using the CycleGAN-based approach.
Our study uses CycleGAN, UVCGANv1, and UVCGANv2 techniques to translate all
facial expressions, including anger, disgust, fear, happiness, sadness, surprise, contempt,
and neutrality. This set of expressions can be divided into 28 pairs: angry-to-contempt,
angry-to-fear, and so on. Additionally, we improve the output of translation by employing
the FEM method as a post-process, which will be explained in detail in the following
section.
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METHOD
When using I2I translation models for facial expression synthesis, minor details from the
original image, such as skin texture or hairline, can sometimes be lost. Researchers have
addressed this issue by proposing a solution in Xia et al. (2021). Their solution involves
generating and merging the input and output images, focusing only on the facial regions
of interest (ROIs) responsible for the expression.

The Facial Action Coding System (FACS) provides a framework for understanding these
ROIs by classifying them and identifying specific action units (AUs) within each section,
as shown in Fig. 3. Most expressions primarily involve the eye and mouth areas, except
for contempt, which is unique to the mouth area. Understanding which facial regions are
most relevant for specific expressions is crucial for developing effective facial expression
synthesis algorithms.

Table 1 provides a detailed breakdown of the relationship between facial expressions and
the specific AUs involved in creating them. Each expression is associatedwith a combination
of AUs, representing the contractions of different facial muscles. For example, a smile
(Happiness/Joy) is characterized by the activation of AU 6 (Cheek Raiser) and AU 12 (Lip
Corner Puller). Understanding this relationship is crucial for accurately synthesizing facial
expressions in digital images.

However, focusing solely on the eye and mouth regions may not capture all facial
expressions, particularly those involving foreheadmovements (AU2 or AU4). To overcome
this limitation and the challenge of accurately segmenting facial expression areas, our
proposed FEM algorithm preserves the original image’s details while changing its facial
expression. This is achieved by generating a new image reflecting the desired expression
and selectively merging it with the original image, preserving important details from both.

To address the challenge of preserving facial identity while accurately translating
expressions, we propose the FEM algorithm. FEM is a novel post-processing method
designed to enhance the visual fidelity of CycleGAN-based outputs by intelligently blending
the input image with the generated expression, prioritizing the preservation of crucial facial
details. Figure 4 presents a visual overview of the FEM framework, outlining the key steps
involved in the process.

Inspired by face swap (Nirkin, Keller & Hassner, 2019) and face morphing techniques
(Venkatesh et al., 2021), the FEM algorithm comprises three main steps: identifying facial
expression key points, performing Delaunay triangulation, and finally, morphing the facial
expressions. The first step involves detecting and adjusting facial landmarks to capture
the unique characteristics of each expression. Next, Delaunay triangulation is employed
to create a mesh of triangles over the face, ensuring accurate coverage of the regions of
interest. Finally, the facial expression morphing step combines the original and translated
images based on the triangulated mesh, resulting in a seamless blend that preserves facial
identity while accurately conveying the target expression. The following subsections will
provide a detailed explanation of each of these steps.

Sub-r-pa et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2438 9/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2438


Figure 3 FACS action units detail used to identify facial expressions (Paul & Friesen, 1978). Facial Ac-
tion Coding System, https://www.cs.cmu.edu/~face/facs.htm.

Full-size DOI: 10.7717/peerjcs.2438/fig-3

Facial expression key points
Facial recognition (Kumar, Kaur & Kumar, 2019; Cheng, Hsiao & Lee, 2021) and landmark
detection (Wu & Ji, 2019) are computer vision techniques for detecting and analyzing
facial images. Landmark detection involves identifying specific points of interest on a
face, such as the corners of the eyes, nose, and mouth. We utilize OpenCV (Bradski,
2000), a cross-platform open-source library, to obtain facial boundary boxes and landmark
coordinates.

Figure 5 illustrates a facial boundary box and its corresponding landmark key point IDs.
The FEM algorithm then modifies these landmark coordinates to create new key points
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Table 1 Relationship between expression and FACS action units.

Expression Action units (AU) Description

Anger 4 + 5 + 7 + 23 Brow Lowerer, Upper Lid Raiser,
Lid Tightener, Lip Tightener

Contempt 12 + 14 (on one side of the face) Lip Corner Puller, Dimpler
Disgust 9 + 15 + 16 Nose Wrinkler, Lip Corner Depressor,

Lower Lip Depressor
Fear 1 + 2 + 4 + 5 + 7 + 20 + 26 Inner Brow Raiser, Outer Brow Raiser,

Brow Lowerer, Upper Lid Raiser,
Lid Tightener, Lip Stretcher, Jaw Drop

Happiness / Joy 6 + 12 Cheek Raiser, Lip Corner Puller
Sadness 1 + 4 + 15 Inner Brow Raiser, Brow Lowerer,

Lip Corner Depressor
Surprise 1 + 2 + 5 + 26 Inner Brow Raiser, Outer Brow Raiser,

Upper Lid Raiser, Jaw Drop

that represent a different facial expression (facial expression key points). Each expression
has a unique set of adjustments for the landmark points. All facial landmark key points are
used in the transformation process by default.

If the input or output expression involves forehead movements, we augment the
standard facial landmark set with additional key points to ensure accurate representation.
Specifically, for AU4 (Brow Lowerer), we add one key point at the top of the face, aligned
with the nose tip (ID 34). For AU1 (Inner Brow Raiser), we introduce three extra key
points: one at the top center of the face, aligned with the nose tip, and two more positioned
above each eyebrow (ID 20 and 25). This augmentation allows a more precise capture of
the subtle changes in the forehead region associated with these expressions.

It is important to note that contempt expression is primarily expressed through the
lower face. Therefore, for neutral-to-contempt translations, we remove key points below
the nose (y-axis lower than key point 30) while maintaining the neutrality of the upper
face.

Our approach for generating the final image involves combining key points from both
the input and translated images denoted as pnew . We determine a new set of key points
(pnew) using Eq. (8), where pori represents the key point from the input image and ptran
represents the key point from the translated image. The value of α controls the degree to
which the resulting expression resembles the input or translated image. When α is close to
1.0, the result is more similar to the translated image, while an α value close to 0.0 makes
the result more similar to the input image.

Pnew= (1−α)×Pori+α×Ptran. (8)

Delaunay triangulation
Delaunay triangulation (Lee & Schachter, 1980) is a computational geometry technique
for generating a series of non-overlapping triangles covering a given set of points. It is
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Figure 4 Overview of FEM framework.
Full-size DOI: 10.7717/peerjcs.2438/fig-4
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Figure 5 Facial boundary box and landmark key point ID (the extra key point ID is 69, 70, and 71).
Image source credit: Radboud Faces Database.

Full-size DOI: 10.7717/peerjcs.2438/fig-5

commonly used in computer graphics, image processing, and other applications. In the
context of facial landmarks, Delaunay triangulation can be applied to create a mesh of
triangles over an individual’s face.

Specifically, our proposed method uses facial expression key points to create a Delaunay
triangulation, ensuring accurate coverage of the regions of interest in each expression pair.
This method precisely represents each expression’s unique characteristics and effectively
covers both the original (input) and the translated (target expression) images.

For example, in Fig. 6, Delaunay triangles are shown, which are obtained from three sets
of key points: pori (original image key points), ptran (translated image key points), and pnew
(calculated key points for the morphed image). These triangles are generated with different
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Figure 6 Delaunay triangles generated from pori, ptran, and pnew . α values ranging from 0 to 1 were
used, demonstrating the effect of varying morphing degrees on the triangulation. Image source credit:
Radboud Faces Database.

Full-size DOI: 10.7717/peerjcs.2438/fig-6

α values, determining the degree of morphing. A higher α value results in a morphed
image that closely resembles the translated expression, while a lower α value results in a
morphed image that closely resembles the original image. The specific details of morphing
these Delaunay triangles are illustrated in Algorithm 1.

Facial expression morph
After generating Delaunay triangulations for both the translated and input images, we
combine corresponding triangles with the same key points to form the final output
structure. This results in a new set of Delaunay triangles made using pnew . While each
face has identical key points, the varying shapes and sizes of the original and translated
triangles can lead to distortions in the merged result. To address this, we employ affine
transformations, which preserve parallelism and ratios of distances, to reshape eachmerged
triangle to match the corresponding Delaunay triangle from pnew , ensuring consistency in
appearance.

Once this transformation is applied to all triangles across the face, the resulting image
becomes the new expression area. This area is then blended back with the original image
using a weighted averaging technique, emphasizing the new expression area more while
preserving the overall facial structure and skin tone. Figure 7 illustrates this process,
showcasing the FEM framework’s ability to generate realistic expression changes while
maintaining facial identity within our selected range of eight basic expressions.

It is important to note that our experiments focused on frontal face images with
these eight basic expressions (anger, disgust, fear, happiness, sadness, surprise, contempt,
and neutral), excluding extreme cases that could involve significant distortions of facial
features or large head rotations, as well as non-frontal face orientations. These scenarios
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Algorithm 1Morph_triangulation Algorithm
Require: Imga (Facial image with expression a)
Require: Imgb (Translated image in domain b from trained I2I)
Require: trianglesa (Delaunay Triangulation from Imga)
Require: trianglesb (Delaunay Triangulation from Imgb)
Require: triangles (Delaunay Triangulation from combined key points)
Require: α (Hyperparameter used to adjust the priority of translated image)

//trianglesa, trianglesb, triangles
warpedImage1← CreateEmptyImage(same size as Imga)
warpedImage2← CreateEmptyImage(same size as Imgb)
for index← 0 to size of triangles do

//Get the corresponding triangle from each image
triangle← triangles[index]
triangle1← trianglesa[index]
triangle2← trianglesb[index]
//Calculate affine transformation matrices
warpMatrix1to2← CalculateAffineTransform(triangle1,triangle2)
warpMatrix2to1← CalculateAffineTransform(triangle2,triangle1)
//Warp triangles to a common shape (the average shape)
avgTriangle=CalculateAverageTriangle(triangle1,triangle2)
WarpTriangle(Imga,warpedImage1,triangle1,avgTriangle,warpMatrix1to2)
WarpTriangle(Imgb,warpedImage2,triangle2,avgTriangle,warpMatrix2to1)

end for
morphedImage← CreateEmptyImage(same size as image1)
for each pixel inmorphedImage do

morphedImage[pixel] = (1−α)×warpedImage1[pixel]+α×warpedImage2[pixel]
end for
returnmorphedImage

might require additional adjustments or specialized techniques to ensure seamless blending
and prevent artifacts in the final image.

The detailed steps of the FEM algorithm are presented in Algorithm 2. In the
algorithm, detect_landmarks represents Facial Landmark Detection using OpenCV,
create_triangulation is used to create Delaunay triangulations from a given set of facial key
points, and merge merges two triangles into one, representing a combination of the input
and translated images. Finally, Imgoutput represents the final output image that combines
the original image with the expression area resulting frommorphing two expression areas.

EXPERIMENTAL SETUP
Dataset
Our research involves training a model using the RaFD dataset (Langner et al., 2010), a
high-quality collection of images featuring 67 models, including Caucasian males and
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Figure 7 Overview of FEM framework. Image source credit: Radboud Faces Database.
Full-size DOI: 10.7717/peerjcs.2438/fig-7

Algorithm 2 FEM Algorithm
Require: Imga (Facial image with expression a)
Require: Ma−>b (CycleGAN, UVCGANv1, or UVCGANv2 use to translate expression a to b)
Require: α (Hyperparameter used to adjust the priority of translated image)

Imgb←Ma−>b(Imga)
Pori← detect_landmarks((Imga)
Ptran← detect_landmarks((Imgb)
if a,b= neutral or contempt then

remove keypoint below the nose from Pori and Ptran
else

if a contains AU4 then
Add 1 extra key point to Pori and Ptran

end if
if a contains AU1 then

Add 3 extra key point to Pori and Ptran
end if

end if
Pnew= (1−α)×Pori+α×Ptran
triangulationori← create_triangulation(Pori)
triangulationtran← create_triangulation(Ptran)
triangles=← create_triangulation(Pnew)
ExpressionImage←Morph_triangulation(triangulationori,triangulationtran,triangles,Imga,Imgb,α)
Imgoutput← Imga+ExpressionImage
return Imgoutput

females, Caucasian children, and Moroccan Dutch males. These images display eight
emotional expressions (anger, disgust, fear, happiness, sadness, surprise, contempt, and
neutrality) with variations in gaze direction and camera angles (as shown in Fig. 8). The
RaFD dataset, created by the Behavioural Science Institute of the Radboud University
Nijmegen, is considered ethically sound. The models provided informed consent for their
images to be used, and the data is readily available for non-commercial scientific research
purposes. This makes the dataset a valuable resource for training robust facial expression
recognition models while also supporting transparency and further research in this field.
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Figure 8 Example of RaFD images (Langner et al., 2010). Image source credit: Radboud Faces Database.
Full-size DOI: 10.7717/peerjcs.2438/fig-8

While larger datasets like AffectNet (Mollahosseini, Hasani & Mahoor, 2017), containing
over 550K images, and RAF-DB (Li, Deng & Du, 2017; Li & Deng, 2019), with 29,672
images, offer potential advantages in terms of sheer volume, we opted for RaFD due
to its controlled environment, consistent image quality, and higher resolution. Both
AffectNet and RAF-DB include ‘‘in-the-wild’’ images, introducing significant variability
in pose, lighting, and occlusions, which can complicate the task of isolating and accurately
translating facial expressions. Moreover, despite providing 224 × 224 pixel images
(AffectNet) or varying resolutions (RAF-DB), the quality of some images in these datasets
can be low. The FER2013 dataset, while popular, suffers from a very low image resolution
of 48 × 48 pixels, which can significantly limit the ability to capture and manipulate fine
facial details crucial for accurate expression translation. In contrast, RaFD’s controlled
setting and high-resolution images facilitate precise analysis and manipulation of facial
expressions, aligning well with the objectives of our research.

Before training, we pre-processed the dataset by cropping the images to focus on the face
area. We employed an identity-based train-test split to prevent overfitting and ensure the
model can generalize to new, unseen individuals. Specifically, we randomly selected seven
individuals (approximately 10% of the total) from the dataset and held out all their images
to form the testing set. The remaining images from the other 60 individuals constituted
the training set. This 90/10 split prioritizes maximizing the training data available to the
model, given the relatively small size of the RaFD dataset. This approach guarantees that
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the model is evaluated on faces it has never encountered during training, providing a more
rigorous assessment of its ability to translate expressions on unseen individuals.

• Training set: This subset, typically around 90% of the data, is used to train the model.
The model learns to identify patterns and relationships within the data, allowing it to
make predictions on new, unseen data.
• Testing set: This smaller subset, usually around 10% of the data, is held out from the
training process. It is used to evaluate the model’s performance after training, ensuring
that the model can generalize to new faces and expressions it hasn’t seen before.

The RaFD dataset offers a valuable collection of facial expressions for deep learning.
However, it is relatively small, which could restrict the model’s ability to adapt to new faces.
To address this, we used a specific data augmentation technique: horizontally flipping the
images. This method effectively doubled the training data, maintaining the crucial facial
expression characteristics and ensuring that the augmented images remained realistic and
representative of human faces.

Moreover, we implemented an identity-based train-test split to ensure that the model
was assessed on faces it had not encountered during training.

Training detail
Our experiment leveraged three established baseline models with a distinct network
architecture: CycleGAN, UVCGANv1, and UVCGANv2. Due to its superior performance
in prior research on I2I translation, we adopted the UVCGANv1 approach, avoiding the
need for training from scratch. Instead, we pre-trained the generator using self-supervised
learning with inpainting (Pathak et al., 2016), a technique where the model learns to restore
images by filling in intentionally removed or missing parts. This served as a proxy task for
our expression translation goal, as the model effectively learned to reconstruct facial details
and textures. This pre-training phase utilized all available expression images, exposing the
model to a wide range of facial variations.

Training individual expression pairs were necessary due to the inherent limitations
of CycleGAN-based models, which can only transform images between two domains
(expressions, in this case) in a single training process. Therefore, we train 28 individual
pairs (leading to 56 generators and discriminators), enabling us to focus on refining
translations between specific expressions.

Our primary interest was developing and evaluating the FEM algorithm as a post-
processing step for CycleGAN-based outputs. Thus, we opted to maintain consistent
hyperparameters, adopting the settings from the UVCGANv2 male-to-female translation
task (λidt = 0.5, λcyc = 5.0), which demonstrated strong performance in a related facial
modification task (male-to-female), rather than performing extensive hyperparameter
tuning on the CycleGAN-based model itself.

The training consisted of 500 epochs for each expression pair, utilizing a fixed learning
rate of 1e−4 for the first 250 epochs. In the latter half, the learning rate was gradually
decreased linearly to facilitate model convergence and refinement. Each model’s training
time varied depending on its architecture. CycleGAN took approximately 6 h per expression
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pair, UVCGANv1 required around 8 h, and UVCGANv2, the most complex model, took
approximately 12 h per pair. The specifics of our evaluationmetrics and the results obtained
will be detailed in the subsequent section, providing a comprehensive assessment of our
model’s ability to translate facial expressions accurately and realistically.

Computational environment
All experiments were conducted using the following software and hardware configurations.
The deep learning framework utilized was PyTorch 2.1 with CUDA 11.8 andOpenCV 4.9.0.
The operating system used was Windows 11 Pro. The hardware configuration included an
Intel Core i9-12900F 2.40 GHz, an NVIDIA GeForce RTX 2080 GPU with 12GB VRAM,
16GB DDR4 RAM, and a 2TB NVMe SSD.

Evaluation metric
Metrics for measuring image generation depend on the research purpose. Our goal is to
create images that accurately depict the target expression, are realistic, and maintain facial
identity. We use different metrics to measure each of these goals. These metrics include
translation success rate, Fréchet Inception Distance (FID), and Face Similarity Distance
(FSD).

Translation success rate
CycleGAN-based research has demonstrated remarkable success in I2I translation tasks,
such as converting images of cats to dogs or transforming male faces into female ones.
However, facial expression recognition (FER) (Li & Deng, 2020) presents a unique challenge
due to the nuanced details and subtle variations that distinguish different expressions,
which may not be fully captured by the CycleGAN model. During our experiments, we
observed that the baseline CycleGAN model sometimes struggled to translate certain facial
expressions accurately.

To evaluate the effectiveness of I2I translation, we trained a FER model based on
EfficientNet B2 (Tan & Le, 2019) using the same train/test split dataset as our I2I models to
classify the resulting image and predict the probability of each expression. This FER model
achieved 98% accuracy on our test set, demonstrating its strong discriminatory power.
Any misclassification was considered a translation failure, and the success/failure ratio was
calculated accordingly.

We leverage a FER model based on EfficientNet B2 (Tan & Le, 2019) to evaluate the
primary objective of accurate expression translation. This model, trained on the same
dataset as our I2I models, classifies the translated image and predicts the probability of
each expression. A translation is considered successful only if the predicted probability for
the target expression exceeds a predefined threshold of 0.8. This metric directly measures
how effectively our method captures and conveys the intended emotion in the generated
image.

FID
While the translation success rate focuses on expression accuracy, the FID assesses the
overall quality and realismof the generated images. FID leverages a pre-trained Inception-v3
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model to extract feature representations from both real and generated images, quantifying
their similarity in terms of statistical properties. A lower FID score indicates higher visual
fidelity and closer resemblance to real-world images. By incorporating FID into our
evaluation, we ensure that the generated facial expressions not only accurately represent
the intended emotions but also appear visually convincing and natural. FID is calculated
using the following Eq. (9):

FID=‖µ1−µ2‖
2
+Tr

(
σ1+σ2−2

√
σ1σ2

)
(9)

where µ1 and µ2 are the mean vectors of the real and generated image features, and σ1 and
σ2 are the covariance matrices of the real and generated image features, respectively. ‖.‖2

represents the squared L2 norm (Euclidean distance), and Tr denotes the matrix trace.
A lower FID score indicates higher similarity between the two sets of images, suggesting

that the generated images are more realistic and diverse. While a score of 0.0 would ideally
mean the generated images are indistinguishable from real images, this is often difficult to
achieve in practice.

Incorporating FID into our evaluation can ensure that the generated facial expressions
accurately represent the intended emotions and appear visually realistic. This is crucial for
applications where the quality and believability of generated images are paramount, as FID
can help assess the preservation of subtle nuances in facial expression translation.

In addition to FID, we also evaluated our results using the Kernel Inception Distance
(KID) metric. However, the trends observed in KID scores consistently aligned with those
of FID. To maintain conciseness in the main article, we focus our discussion on FID, but
KID results are available upon request.

Face similarity distance
Preserving the original subject’s identity during expression translation is crucial for
maintaining realism and avoiding the uncanny valley effect. We utilize the Face Similarity
Distance (FSD) metric to evaluate this aspect, which measures the perceptual similarity
between the input and output images using a pre-trained FaceNet model (Schroff,
Kalenichenko & Philbin, 2015). A lower FSD score signifies greater similarity in facial
identity, indicating that the translated image successfully retains the essence of the original
person while conveying the target expression.

FSD=
∥∥freal− ftran∥∥2. (10)

Equation (10) describes details of the calculation of FSD, where freal represents the feature
map of the real input image, and ftran represents the feature map of the translated image.
Both feature maps are obtained from FaceNet. Our experiment discusses the differences in
FSD scores of each baseline model, both before and after applying our proposed FEM.

Limitations of the metrics
While these metrics offer valuable insights into different aspects of our method’s
performance, they also have limitations.
1. Translation success rate: This metric relies on the accuracy of the FER model itself,

which might have limitations in recognizing subtle or ambiguous expressions.
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2. FID: Primarily focuses on overall image quality and realism but might not fully capture
subtle nuances or inconsistencies specific to facial expressions. Moreover, a recent
research (Chen & Sub-R-Pa , in press) review shows that FID for I2I is measured in
terms of a group of generated images from a specific model. However, defective images
can always be clustered when considering each image individually.

3. FSD: While FSD is effective in measuring identity preservation, it might not be
sensitive to subtle changes in facial features that could affect the perceived naturalness
or expressiveness of the generated image.
In the future, we plan to explore additionalmetrics or develop new evaluation approaches

to address these limitations and provide a more comprehensive assessment of the quality
and effectiveness of facial expression translation methods.

RESULT ANALYSIS AND DISCUSSION
Once the model has completed training, it can transform input images into images with
the target facial expression. However, to further refine the quality and naturalness of these
translated images, we applied our proposed FEM method as a post-processing step.

A key parameter in FEM is α, which determines the balance between maintaining the
original facial identity and incorporating the translated expression. We tested α values
from 0.6 to 1.0 and provided visual examples in Fig. 9. While all values within this range
produced generally acceptable results, we noticed slight differences in the quality and
natural appearance of the blended images. When α is set to 1.0, it directly pastes the
translated expression onto the original face, which can cause inconsistencies and artifacts,
especially when the source and target expressions have significantly different facial shapes.
However, lower values like 0.6, while preserving more of the original identity, may not
completely capture the subtleties of the target expression. After careful examination,
we found that setting α to 0.9 consistently produced the most visually appealing and
natural-looking results, striking an optimal balance between preserving the identity and
accurately conveying the expression. Therefore, we selected α = 0.9 for all subsequent
experiments and analyses presented in this article.

With the FEM method finalized (using α= 0.9), we proceeded to assess the CycleGAN-
based outputs and the FEM-enhanced results using Translation Success Rate, FID and FSD
metrics. Our quantitative analysis focused on the performance of CycleGAN, UVCGANv1,
and UVCGANv2, as these models offer a range of CycleGAN-based architectures with
different levels of complexity and performance.While other models, such as AttGAN (He et
al., 2019), StarGAN (Choi et al., 2018) and GANimation (Pumarola et al., 2018), have been
explored in the literature for facial expression translation, their inclusion in our quantitative
evaluationwas not feasible due to several factors. First, the computationally intensive nature
of our experiments, coupled with the limited availability of readily reproducible code for
some of these models, posed challenges in conducting a comprehensive comparison.
Second, the evaluation settings in the reference articles often differed from ours, such
as not including the full forehead in their analysis, making a direct and fair comparison
difficult. The following sections provide a detailed analysis of our results, highlighting key
insights and findings.
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Figure 9 FEMOutput in different α setting (happy-to-neutral). Image source credit: Radboud Faces
Database.

Full-size DOI: 10.7717/peerjcs.2438/fig-9

Table 2 Translation success rate (CycleGAN/UVCGANv1/UVCGANv2) for neutral, angry, contempt,
and disgust.Values below 0.8 are marked in bold with an asterisk (*).

From \To Neutral Angry Contempt Disgust

Neutral – 0.96/1.0/1.0 *0.19/0.80/0.89 1.0/1.0/1.0
Angry 0.96/0.85/0.96 – *0.48/0.89/0.93 1.0/1.0/1.0
Contempt *0.78/0.85/0.89 1.0/1.0/1.0 – 0.93/1.0/1.0
Disgust 1.0/0.96/1.0 1.0/1.0/1.0 *0.74/0.81/0.89 –
Fearful 0.89/1.0/1.0 0.93/1.0/1.0 *0.26/0.80/0.85 0.81/1.0/1.0
Happy 1.0/0.96/1.0 1.0/1.0/1.0 *0.78/0.81/0.93 0.96/1.0/1.0
Sad *0.52/0.96/0.89 *0.78/1.0/1.0 *0.3/0.81/0.93 0.93/1.0/1.0
Surprise 0.85/0.93/1.0 0.96/1.0/1.0 *0.63/0.81/1.0 0.93/1.0/1.0

Translation success rate
Tables 2 and 3 shows the success rate of I2I translation for each pair of expressions.
Our study indicates that UVCGANv1 and UVCGANv2 can precisely translate all pairs of
expressions. However, CycleGAN frequently failed to translate several pairs accurately,
including neutral-to-contempt, neutral-to-sad, and others.

We found that the failed images generated by CycleGAN were either blurry or identical
to the input image. This is likely due to the model’s inability to differentiate between
the input and output expressions, as the generator produced the same output and was
trained on it within the same domain due to identity consistency loss. This phenomenon
occurs when the model learns to prioritize maintaining the identity of the input image over
accurately translating the expression, resulting in minimal changes or no changes at all.

For the CycleGAN generator, we considered 14 combinations as failure translations
based on a threshold of 0.8 for the predicted probability of the target expression, which was
less than 0.8. However, we did not encounter any issues with UVCGANv1 andUVCGANv2.
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Table 3 Translation success rate (CycleGAN/UVCGANv1/UVCGANv2) for fearful, happy, sad, and
surprise. Values below 0.8 are marked in bold with an asterisk (*).

From \To Fearful Happy Sad Surprise

Neutral 0.93/1.0/1.0 1.0/1.0/1.0 0.7/0.96/1.0 1.0/1.0/0.96
Angry 0.89/1.0/1.0 0.93/1.0/1.0 1.0/1.0/1.0 1.0/1.0/1.0
Contempt 0.93/1.0/0.96 0.96/0.93/1.0 *0.74/0.96/1.0 1.0/1.0/1.0
Disgust 0.89/0.93/1.0 0.93/1.0/1.0 0.78/1.0/1.0 1.0/1.0/1.0
Fearful – 0.96/1.0/1.0 0.89/1.0/1.0 1.0/0.96/0.93
Happy 0.93/1.0/1.0 – 0.93/0.96/1.0 1.0/1.0/1.0
Sad *0.74/1.0/1.0 1.0/1.0/1.0 – 0.96/1.0/1.0
Surprise 0.89/0.96/1.0 0.96/1.0/1.0 1.0/1.0/1.0 -

Table 4 The average FID and FSD score for all translated images (the best result was marked as bold).

Model FID FSD

CycleGAN [7] (2017) 74.2525 0.8558
UVCGAN [8] (2023) 69.8843 0.7478
UVCGANv2 [9] (2023) 63.8290 0.6941
CycleGAN + FEM (Our method) 38.8100 0.7630
UVCGAN + FEM (Our method) 33.4427 0.6806
UVCGANv2 + FEM (Ourmethod) 31.9271 0.6331

FID
In this study, we sought to enhance the realism of facial expressions in images generated by
the CycleGAN-based model. To assess and quantify the improvements, we leveraged the
FID metric, a well-established measure for evaluating the quality and diversity of generated
images. We also evaluate the FID of the images after applying our proposed FEM method
as post-processing.

To rigorously evaluate the impact of FEM, we calculated the FID score of the translated
image of the testing dataset using the baseline generators (CycleGAN, UVCGANv1, and
UVCGANv2), both before and after applying FEM. The resulting FID scores averaged across
all input–output expression pairs, are presented in Table 4 for comprehensive analysis.
Our results reveal that UVCGANv2, an enhanced version of CycleGAN incorporating the
state-of-the-art ViT, consistently outperforms UVCGANv1 and the original CycleGAN
regarding FID. This significant improvement underscores the power of ViT architecture in
enhancing the model’s ability to generate realistic and accurate facial expressions.

Moreover, our analysis reveals a consistent pattern: the application of FEM leads to
notable improvements in FID scores across all generators. This observation provides
compelling evidence of the effectiveness of FEM in enhancing the overall quality of
translated facial expression images. Importantly, the benefits of FEM are not confined to a
single model but extend across the entire spectrum of evaluated generators.

To delve deeper into the performance of individual models and the specific effects of
FEM, we present a comprehensive visual analysis in Fig. 10. This figure showcases the FID
values for each input–output expression pair across all generators. The solid bars in the
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Figure 10 FID scores for generated images across different input–output expression pairs (all scores
on a 0–90 scale). Solid bars represent FID scores without FEM; dotted bars represent FID scores with FEM
applied.

Full-size DOI: 10.7717/peerjcs.2438/fig-10

chart represent the FID values obtained without FEM, while the accompanying dotted bars
illustrate the FID values after applying FEM.

A close examination of Fig. 10 reveals several key insights. First, it confirms the superior
performance of UVCGANv2, which consistently outperforms CycleGAN across all
expression pairs in terms of FID. Second, there are instances where UVCGANv1 and
UVCGANv2 achieve comparable FID scores for specific expression pairs, indicating that
the relative performance of these models can be influenced by the specific expression
being translated. However, the most striking observation is the consistent and significant
improvement in FID across all models after the application of FEM.

The consistent improvement in FID scores across various generators underscores the
effectiveness and versatility of FEM. Furthermore, the superior performance ofUVCGANv2
highlights the potential of incorporating advanced architectures, such as the ViT, into image
translation models.
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FSD
Maintaining a person’s identity during facial expression translation is crucial for ensuring
the realism and credibility of the generated images. To assess how well our models
preserve identity while modifying expressions, we utilize the FSD. This metric quantifies
the perceptual similarity between two images by analyzing the distance between their
feature representations in a high-dimensional space. A lower FSD score indicates greater
similarity, signifying that the translated image retains the essence of the original person
while successfully conveying the target expression.

Table 4 comprehensively compares average FSD scores across all translated images,
highlighting the models’ ability to preserve identity. We observe that UVCGANv2,
the enhanced version of CycleGAN leveraging the ViT, consistently yields lower FSD
scores compared to its predecessors. This suggests that UVCGANv2 modifies facial
expressions while faithfully maintaining the person’s underlying facial structure and
individual characteristics.

Furthermore, the application of our proposed FEM method consistently improves
FSD scores across all models. By intelligently blending features from the original and
translated images, FEM mitigates unrealistic artifacts that can arise during translation,
further enhancing the preservation of identity.

These findings highlight the importance of considering identity preservation alongside
expression translation. The results demonstrate that UVCGANv2, particularly when
combined with FEM, strikes a remarkable balance between these two competing objectives,
generating images that are both expressive and faithful to the original subject.

Qualitative analysis
Visual analysis of the generated images (Fig. 11) revealed that while CycleGAN effectively
translated facial expressions, the output images suffered noticeable blurriness, particularly
around the mouth. In contrast, UVCGANv1 and UVCGANv2 produced sharper images
with higher overall quality, although minor blurring was observed around the skin
and chin lines. Notably, our proposed method FEM, a technique where only the facial
expression areas are morphed or blended between the translated image and the original
image, consistently generated the most visually realistic and convincing results, closely
approximating the ground truth images in terms of detail and expression accuracy.

Further examination of expression translations using UVCGANv2 with FEM (Fig. 12)
revealed that while our method excelled at generating realistic expressions, certain
translations presented challenges. Notably, inconsistencies in preserving personal identity
were observed, particularly when transforming sad expressions into happy ones. In contrast,
disgust translations were consistently accurate across all samples, capturing the nuanced
details and intensity of the emotion. Fear translations proved to be the most difficult, often
resulting in distortions around the head and chin due to the significant differences in facial
shape between neutral and fearful expressions. Additionally, a minor loss of detail was
noted in teeth rendering, likely attributable to limitations in the training data.

To assess the performance of our method against established benchmarks, we compared
our results (UVCGANv2 + FEM) with those from a recent study, which evaluated AttGAN
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Figure 11 Translation of contempt to neutral expression using different methods (CycleGAN, UVC-
GANv1, UVCGANv2, and UVCGANv2+FEM). Image source credit: Radboud Faces Database.

Full-size DOI: 10.7717/peerjcs.2438/fig-11

(He et al., 2019), StarGAN (Choi et al., 2018), GANimation (Pumarola et al., 2018), and
LGP-GAN (Xia et al., 2021). Using the same input image and target expression, our
method consistently produced images with accurate expressions, sharp details, andminimal
blurring compared to other techniques in Fig. 13.

Despite these strengths, our approach presents challenges. While individual models for
each expression pair are not excessively large, the requirement for multiple models leads
to a substantial overall storage footprint. Additionally, the need for separate generator
models for each expression contributes to a greater cumulative model size, which could
be addressed in future work through more efficient training methodologies or model
architectures.

In summary, our visual and quantitative analysis demonstrates that our approach,
particularly UVCGANv2 with FEM, excels in generating realistic and accurate facial
expressions while largely preserving personal identity. However, challenges remain in
addressing identity inconsistencies in certain expressions and optimizing computational
efficiency. These findings offer valuable insights for future research to advance the state-
of-the-art facial expression translation.

LIMITATIONS AND FUTURE DIRECTIONS
While our proposed FEM method shows promising results in enhancing the quality and
preserving details in facial expression synthesis, we acknowledge certain limitations in the
current study.
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Figure 12 Examples of facial expression translation using UVCGANv2+FEM. Image source credit:
Radboud Faces Database.

Full-size DOI: 10.7717/peerjcs.2438/fig-12

Dataset
Our experiments primarily utilized the RaFD dataset, which, while comprehensive in terms
of expressions and demographics, represents a controlled environment with frontal face
images. To ensure the robustness and generalizability of ourmethod, it is crucial to evaluate
it on more diverse and unconstrained datasets, including those with varying poses, lighting
conditions, and occlusions.

Computational complexity
Our current method implementation requires training individual models for each
expression pair, resulting in a substantial overall storage footprint and increased
computational complexity during training and inference. Addressing this limitation
could involve investigating more efficient training methodologies or model architectures
that simultaneously handle multiple expressions.
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Figure 13 Comparison of facial expression translation results between our method
(UVCGANv2+FEM) andmethods from [13] (AttGAN, StarGAN, GANimation, LGP-GAN). Image
source credit: Radboud Faces Database.

Full-size DOI: 10.7717/peerjcs.2438/fig-13

Identity preservation
While our method is generally successful at preserving facial identity during expression
translation, we have observed some inconsistencies, especially when transforming between
highly dissimilar expressions (e.g., from sad to happy). In our future research, we aim to
enhance our approach to ensure consistent identity preservation across a broader range of
expression transformations. Our plans for future work include addressing these limitations
in the following ways.
1. Expanding evaluation: We will conduct extensive experiments on additional publicly

available facial expression datasets to rigorously assess the generalizability of our
method across different facial characteristics and imaging conditions. Moreover, while
FID and KID provide valuable insights into image quality and realism, other metrics
such as Learned Perceptual Image Patch Similarity (LPIPS), Structural Similarity Index
Measure (SSIM) or Recognition Accuracy (RA) (Al-Sumaidaee et al., 2023) could offer
complementary perspectives on evaluating facial expression translation. These metrics
focus on aspects of image similarity, such as perceptual quality or structural fidelity,
which could be relevant for assessing the subtle nuances and identity preservation
in generated expressions. Exploring these additional metrics is an area we plan to
investigate in future research.

2. Efficiency optimization: We will explore techniques to improve the computational
efficiency of our method, potentially through shared model components or more
streamlined training procedures.
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3. Identity refinement: We will investigate advanced techniques for enhancing identity
preservation during expression translation, particularly for challenging cases involving
significant facial deformations.

4. Exploring beyond-GANs models: We will investigate the potential of alternative
generative models, such as diffusion models, in combination with our FEM approach.
This exploration aims to leverage the strengths of different model architectures and
potentially achieve even higher levels of realism and accuracy in facial expression
synthesis.
By addressing these limitations and exploring new avenues for improvement, we aim to

further advance the state of the art in facial expression synthesis and pave the way for its
wider adoption in various applications.

CONCLUSION
In this article, we conducted a comprehensive study on image-to-image translation
tasks related to facial expressions, aiming to translate images across a wide range of
expressions, including anger, disgust, fear, happiness, sadness, surprise, contempt, and
neutrality. Our research focused on evaluating the effectiveness of CycleGAN-based
models, namely CycleGAN, UVCGANv1, and UVCGANv2, in achieving accurate and
realistic facial expression translations. Our findings demonstrate the superior performance
of UVCGANv2, particularly when combined with our proposed FEM method. This novel
post-processing technique significantly enhanced the quality of the translated images, as
evidenced by improved FID and FSD scores. The enhanced performance of UVCGANv2
can be attributed to its incorporation of the state-of-the-art ViT architecture, which excels
at capturing intricate details and nuances in facial expressions.

While our study demonstrates promising results in a controlled setting, future research
will address the challenges of translating facial expressions in uncontrolled, real-world
environments. We also plan to refine the model further and expand our experiments
to include more diverse datasets, ensuring the robustness and generalizability of our
approach. By tackling these challenges, we aim to advance the state-of-the-art in facial
expression translation and pave the way for innovative applications in various fields,
including entertainment, human–computer interaction, and psychology.

ACKNOWLEDGEMENTS
Thank you to the data provider.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This article is supported by the NSTC, Taiwan Project No. NSTC-112-2221-E-324-003-
MY3 and NSTC-112-2221-E-324-011-MY2. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Sub-r-pa et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2438 29/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2438


Grant Disclosures
The following grant information was disclosed by the authors:
NSTC, Taiwan Project: No. NSTC-112-2221-E-324-003-MY3, NSTC-112-2221-E-324-
011-MY2.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Chayanon Sub-r-pa conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.
• Rung-Ching Chen conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the article, and approved the final draft.
• Ming-Zhong Fan performed the experiments, prepared figures and/or tables, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The RaFD dataset utilized in our experiment is available at https://rafd.socsci.ru.nl/.
Researchers are required to request access to the RaFD database individually.

The Facial Action Coding System (FACS) is available at https://www.cs.cmu.edu/~face/
facs.htm.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2438#supplemental-information.

REFERENCES
Al-Sumaidaee SA, AbdullahMA, Al-Nima RRO, Dlay SS, Chambers JA. 2023. Spatio-

temporal modelling with multi-gradient features and elongated quinary pattern de-
scriptor for dynamic facial expression recognition. Pattern Recognition 142:109647
DOI 10.1016/j.patcog.2023.109647.

ArjovskyM, Chintala S, Bottou L. 2017.Wasserstein generative adversarial networks.
In: International conference on machine learning. Proceedings of Machine Learning
Research (PMLR). 214–223.

Botezatu C, IbsenM, Rathgeb C, Busch C. 2022. Fun selfie filters in face recognition:
impact assessment and removal. IEEE Transactions on Biometrics, Behavior, and
Identity Science 5(1):91–104 DOI 10.1109/TBIOM.2022.3185884.

Bradski G. 2000. The opencv library. Dr. Dobb’s Journal: Software Tools for the Profes-
sional Programmer 25(11):120–123.

Chen R-C, Sub-R-Pa C. 2024. Advancing image-to-image translation model assessment
with clustering technique. In: 2024 IEEE international conference on consumer
electronics-Taiwan (ICCE-TW). Piscataway: IEEE.

Sub-r-pa et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2438 30/33

https://peerj.com
https://rafd.socsci.ru.nl/
https://www.cs.cmu.edu/~face/facs.htm
https://www.cs.cmu.edu/~face/facs.htm
http://dx.doi.org/10.7717/peerj-cs.2438#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2438#supplemental-information
http://dx.doi.org/10.1016/j.patcog.2023.109647
http://dx.doi.org/10.1109/TBIOM.2022.3185884
http://dx.doi.org/10.7717/peerj-cs.2438


ChengW-C, Hsiao H-C, Lee D-W. 2021. Face recognition system with feature normal-
ization. International Journal of Applied Science and Engineering 18(1):1–9.

Choi Y, Choi M, KimM, Ha J-W, Kim S, Choo J. 2018. Stargan: unified generative
adversarial networks for multi-domain image-to-image translation. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. Piscataway: IEEE,
8789–8797.

Dosovitskiy A, Beyer L, Kolesnikov A,Weissenborn D, Zhai X, Unterthiner T,
Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N. 2020. An
image is worth 16x16 words: transformers for image recognition at scale. ArXiv
arXiv:2010.11929.

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B,Warde-Farley D, Ozair S, Courville
A, Bengio Y. 2020. Generative adversarial networks. Communications of the ACM
63(11):139–144 DOI 10.1145/3422622.

Guo Y, Xia Y,Wang J, Yu H, Chen R-C. 2020. Real-time facial affective computing on
mobile devices. Sensors 20(3):870 DOI 10.3390/s20030870.

He Z, ZuoW, KanM, Shan S, Chen X. 2019. Attgan: facial attribute editing by only
changing what you want. IEEE Transactions on Image Processing 28(11):5464–5478
DOI 10.1109/TIP.2019.2916751.

Ho J, Jain A, Abbeel P. 2020. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems 33:6840–6851.

Isola P, Zhu J-Y, Zhou T, Efros AA. 2017. Image-to-image translation with conditional
adversarial networks. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. Piscataway: IEEE, 1125–1134.

Karras T, Aila T, Laine S, Lehtinen J. 2017. Progressive growing of gans for improved
quality, stability, and variation. ArXiv arXiv:1710.10196.

Kumar A, Kaur A, KumarM. 2019. Face detection techniques: a review. Artificial
Intelligence Review 52:927–948 DOI 10.1007/s10462-018-9650-2.

Langner O, Dotsch R, Bijlstra G,Wigboldus DH, Hawk ST, Van Knippenberg A. 2010.
Presentation and validation of the radboud faces database. Cognition and Emotion
24(8):1377–1388 DOI 10.1080/02699930903485076.

Lee D-T, Schachter BJ. 1980. Two algorithms for constructing a Delaunay triangu-
lation. International Journal of Computer & Information Sciences 9(3):219–242
DOI 10.1007/BF00977785.

Li S, DengW. 2019. Reliable crowdsourcing and deep locality-preserving learning for
unconstrained facial expression recognition. IEEE Transactions on Image Processing
28(1):356–370 DOI 10.1109/TIP.2018.2868382.

Li S, DengW. 2020. Deep facial expression recognition: a survey. IEEE Transactions on
Affective Computing 13(3):1195–1215 DOI 10.1109/TAFFC.2020.2981446.

Li S, DengW, Du J. 2017. Reliable crowdsourcing and deep locality-preserving learning
for expression recognition in the wild. In: 2017 IEEE conference on computer vision
and pattern recognition (CVPR). Piscataway: IEEE, 2584–2593.

Sub-r-pa et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2438 31/33

https://peerj.com
http://arXiv.org/abs/2010.11929
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.3390/s20030870
http://dx.doi.org/10.1109/TIP.2019.2916751
http://arXiv.org/abs/1710.10196
http://dx.doi.org/10.1007/s10462-018-9650-2
http://dx.doi.org/10.1080/02699930903485076
http://dx.doi.org/10.1007/BF00977785
http://dx.doi.org/10.1109/TIP.2018.2868382
http://dx.doi.org/10.1109/TAFFC.2020.2981446
http://dx.doi.org/10.7717/peerj-cs.2438


Li B, Xue K, Liu B, Lai Y-K. 2023. BBDM: image-to-image translation with Brownian
bridge diffusion models. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. Piscataway: IEEE, 1952–1961.

Lian Z, Li Y, Tao J-H, Huang J, NiuM-Y. 2020. Expression analysis based on face
regions in real-world conditions. International Journal of Automation and Computing
17:96–107 DOI 10.1007/s11633-019-1176-9.

Lou J, Wang Y, Nduka C, Hamedi M, Mavridou I, Wang F-Y, Yu H. 2019. Realistic facial
expression reconstruction for VR HMD users. IEEE Transactions on Multimedia
22(3):730–743 DOI 10.1109/TMM.2019.2933338.

Mollahosseini A, Hasani B, MahoorMH. 2017. Affectnet: a database for facial expres-
sion, valence, and arousal computing in the wild. IEEE Transactions on Affective
Computing 10(1):18–31 DOI 10.1109/TAFFC.2017.2740923.

Nirkin Y, Keller Y, Hassner T. 2019. Fsgan: subject agnostic face swapping and reenact-
ment. In: Proceedings of the IEEE/CVF international conference on computer vision.
Piscataway: IEEE, 7184–7193.

Pathak D, Krahenbuhl P, Donahue J, Darrell T, Efros AA. 2016. Context encoders:
feature learning by inpainting. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. Piscataway: IEEE, 2536–2544.

Paul E, FriesenWV. 1978. Facial action coding system: a technique for the measurement of
facial movement. Palo Alto: Consulting Psychologists Press.

Pumarola A, Agudo A, Martinez AM, Sanfeliu A, Moreno-Noguer F. 2018. Ganimation:
anatomically-aware facial animation from a single image. In: Proceedings of the
European conference on computer vision (ECCV). 818–833.

Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. 2022.High-resolution image
synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. Piscataway: IEEE, 10684–10695.

Ronneberger O, Fischer P, Brox T. 2015. U-net: convolutional networks for biomed-
ical image segmentation. In:Medical image computing and computer-assisted
intervention—MICCAI 2015: 18th international conference, Munich, Germany,
October 5–9, 2015, proceedings, part III 18. Cham: Springer, 234–241.

Schroff F, Kalenichenko D, Philbin J. 2015. Facenet: a unified embedding for face
recognition and clustering. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. Piscataway: IEEE, 815–823.

Song J, Meng C, Ermon S. 2020. Denoising diffusion implicit models. ArXiv
arXiv:2010.02502.

Sub-R-Pa C, Chen R-C. 2024. Facial expression translation using cycle consistent
adversarial networks with contrastive loss. In: Proceedings of the 2024 6th Asia Pacific
information technology conference. 51–57.

Sun X, LvM. 2019. Facial expression recognition based on a hybrid model com-
bining deep and shallow features. Cognitive Computation 11(4):587–597
DOI 10.1007/s12559-019-09654-y.

TanM, Le Q. 2019. Efficientnet: rethinking model scaling for convolutional neural
networks. In: International conference on machine learning. PMLR, 6105–6114.

Sub-r-pa et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2438 32/33

https://peerj.com
http://dx.doi.org/10.1007/s11633-019-1176-9
http://dx.doi.org/10.1109/TMM.2019.2933338
http://dx.doi.org/10.1109/TAFFC.2017.2740923
http://arXiv.org/abs/2010.02502
http://dx.doi.org/10.1007/s12559-019-09654-y
http://dx.doi.org/10.7717/peerj-cs.2438


Tao Y, Peiran Ren XX, Zhang L. 2021. GAN prior embedded network for blind face
restoration in the wild. In: IEEE conference on computer vision and pattern recognition
(CVPR) DOI 10.1109/CVPR46437.2021.00073.

Torbunov D, Huang Y, Tseng H-H, Yu H, Huang J, Yoo S, LinM, Viren B, Ren Y.
2023a. UVCGAN v2: an improved cycle-consistent GAN for unpaired image-to-
image translation. ArXiv arXiv:2303.16280.

Torbunov D, Huang Y, Yu H, Huang J, Yoo S, LinM, Viren B, Ren Y. 2023b. Uvcgan:
Unet vision transformer cycle-consistent gan for unpaired image-to-image transla-
tion. In: Proceedings of the IEEE/CVF winter conference on applications of computer
vision. 702–712 DOI 10.48550/arXiv.2203.02557.

Venkatesh S, Ramachandra R, Raja K, Busch C. 2021. Face morphing attack generation
and detection: a comprehensive survey. IEEE Transactions on Technology and Society
2(3):128–145 DOI 10.1109/TTS.2021.3066254.

Wang Y, Dong X, Li G, Dong J, Yu H. 2022. Cascade regression-based face frontalization
for dynamic facial expression analysis. Cognitive Computation 14:1571–1584
DOI 10.1007/s12559-021-09843-8.

WuY, Ji Q. 2019. Facial landmark detection: a literature survey. International Journal of
Computer Vision 127(2):115–142 DOI 10.1007/s11263-018-1097-z.

Xia Y, ZhengW,Wang Y, Yu H, Dong J, Wang F-Y. 2021. Local and global per-
ception generative adversarial network for facial expression synthesis. IEEE
Transactions on Circuits and Systems for Video Technology 32(3):1443–1452
DOI 10.1109/TCSVT.2021.3074032.

Zhang S, Yu H,Wang T, Dong J, Pham TD. 2021. Linearly augmented real-time 4D
expressional face capture. Information Sciences 545:331–343
DOI 10.1016/j.ins.2020.08.099.

ZhaoM, Bao F, Li C, Zhu J. 2022. Egsde: unpaired image-to-image translation via
energy-guided stochastic differential equations. Advances in Neural Information
Processing Systems 35:3609–3623 DOI 10.48550/arXiv.2207.06635.

Zhu J-Y, Park T, Isola P, Efros AA. 2017. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In: Proceedings of the IEEE international confer-
ence on computer vision. Piscataway: IEEE, 2223–2232 DOI 10.1109/ICCV.2017.244.

Sub-r-pa et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2438 33/33

https://peerj.com
http://dx.doi.org/10.1109/CVPR46437.2021.00073
http://arXiv.org/abs/2303.16280
http://dx.doi.org/10.48550/arXiv.2203.02557
http://dx.doi.org/10.1109/TTS.2021.3066254
http://dx.doi.org/10.1007/s12559-021-09843-8
http://dx.doi.org/10.1007/s11263-018-1097-z
http://dx.doi.org/10.1109/TCSVT.2021.3074032
http://dx.doi.org/10.1016/j.ins.2020.08.099
http://dx.doi.org/10.48550/arXiv.2207.06635
http://dx.doi.org/10.1109/ICCV.2017.244
http://dx.doi.org/10.7717/peerj-cs.2438

