Skip to main content
. 2024 Oct 14;10:e2246. doi: 10.7717/peerj-cs.2246

Table 5. A comprehensive overview of the performance evaluation of different learning models used in this study.

Algorithm Accuracy ROC-AUC F1-Score
Adaboost 0.8285 0.854 0.835
Random forest 0.843 0.887 0.851
SVM 0.841 0.878 0.849
XGBoost 0.846 0.888 0.853
Logistic regression 0.835 0.891 0.842