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Abstract
In brief: Gender-affirming treatments for gender dysphoria can impact fertility. This review describes the impact of 
gender-affirming treatments on fertility and options to preserve fertility in transgender or gender-diverse children, 
adolescents, and young adults.

Abstract: Transgender individuals who pursue alignment with their gender identity through medical treatments or 
surgery face challenges to family building because the medical community lacks the understanding or infrastructure 
to serve the reproductive needs of transgender or non-binary people. Fertility preservation (FP) offers a crucial 
opportunity for the transgender community, enabling individuals to exercise autonomy over their reproductive 
choices. While fertility preservation has been extensively studied in other populations such as cancer patients, the 
unique biology and clinical care of transgender and gender-diverse (TGD) individuals have challenged the direct 
translation of what can be offered for cisgender individuals. Additionally, the FP services in transgender communities 
are reportedly under-utilized, despite the prevalent desire of TGD individuals to have children. This review aims 
to provide up-to-date information on the current standard of care and experimental FP options available to TGD 
individuals and their potential reproductive outcomes. We will also discuss the barriers to the success of FP utilization 
from both the biology/medical aspect and the perspectives of the TGD population. By recognizing the unique family-
building challenges faced by TGD people and potential areas of improvement, appropriate adjustments can be made 
to better support fertility preservation in the TGD community.

Introduction
For transgender communities, understanding the 
terminology is crucial for providing effective care. 
According to the World Professional Association for 
Transgender Health (WPATH) Standard of Care version 

8 (SOC8) (Coleman et al. 2022), the term transgender 
or gender-diverse (TGD) is used to describe individuals 
whose gender identities or expressions differ from the 
gender typically associated with the sex assigned to 
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them at birth. Gender identity refers to an individual’s 
internal sense of their gender, which is distinct from 
sexual orientation—defined as a person’s patterns of 
emotional, romantic, and sexual attraction. Gender 
affirmation involves recognizing and validating TGD 
individuals in their gender identity across social, 
medical, legal, and behavioral domains, or a combination 
of these (Poteat et al. 2023). Gender affirming medical 
and/or surgical therapy (GAMST) is the medical and 
surgical intervention to align a person’s body with 
their gender identity (Coleman et al. 2022). GAMST 
may include hormonal (gender-affirming hormone 
therapy: GAHT) and/or gender-affirming surgery (GAS), 
the latter of which may include but is not limited to 
genital reconstruction, removal of gonads, and surgery 
to enhance the secondary sex characteristics that affirm 
gender identity (Coleman et al. 2022). The evolution of 
terminology and diagnostic criteria shows the efforts 
that have been made to remove stigma from transgender 
communities.

Transgender individuals represent a small yet 
growing segment of the global population, constituting 
approximately 0.6% of adults and 2.7% of children and 
adolescents (Scheim et al. 2024). The reported prevalence 
varies depending on regions, survey methodologies, and 
definitions used (Reisner et al. 2016). More inclusive 
definitions of transgender, counting non-binary, 
gender -diverse, and gender non-conforming persons, 
indicate that up to 4.5% of adults and 8.4% of children 
and adolescents fall within this category (Scheim et al. 
2024). In the United States, according to The Williams 
Institute’s 2022 report, 0.5% of adults (approximately 
1.3 million individuals) and 1.4% of youth aged 13–17 
(around 300,000 individuals) identify as transgender. Of 
the 1.3 million adults identifying as transgender, 38.5% 
(515,200) are transgender women, 35.9% (480,000) are 
transgender men, and 25.6% (341,800) are gender non-
conforming (Herman et al. 2022). Notably, reported 
numbers are often higher among younger populations 
and may continue to rise (Zucker 2017).

TGD people show improvement in quality of life, well-
being, satisfaction in one’s body image, and sexual life 
after receiving gender-affirming treatments (Coleman 
et al. 2022). The current recommendations for GAMST 
by the Endocrine Society and WPATH SOC8 can be 
categorized into guidelines for TGD adults/adolescents 
with testes or ovaries (Hembree et al. 2017, Coleman et al. 
2022). GAHT for adult TGD people with testes requires 
both anti-androgen medications, such as Cyproterone or 
Spironolactone, and estrogen supplements, preferably 
estradiol. The protocol for adult TGD people with ovaries 
is testosterone monotherapy. The details of dosing and 
regimens vary among countries, possibly due to the 
availability, cost, and familiarity of clinicians with drug 
choices (Tangpricha & Den Heijer 2017). In adolescents, 
the treatment usually begins by delaying puberty with 
GnRH agonists (GnRHa) to allow more time for the youth 
to explore their gender identity and ease the distress 
of entering puberty before GAHT is initiated. GAHT 

can also later encompass puberty-blocking treatment. 
The recommended age to initiate GAHT, using the age 
of majority as previously mentioned in SOC7 – at least 
16 years for GAHT and 18 years for surgery – has been 
updated. In SOC8, to initiate GnRHa or GAHT in the youth, 
they must exhibit an early sign of entering puberty 
(Tanner stage 2). Another important consideration is 
that TGD individuals must be on stable GAHT treatment 
for at least 6 months before GAS in adults and 12 
months in adolescents unless GAHT is not desired or 
contraindicated. Nahata et al. reported the median age at 
which puberty blockers and cross-sex hormone therapy 
were prescribed was 15.0 (range: 9–18 years) and 16.0 
(range: 14–18 years), respectively. The median age at 
the first Endocrinology visit was 15.2 years (range: 9–18 
years) (Nahata et al. 2017).

The common indications to initiate treatment across 
all groups (transgender adults and adolescents of both 
genders) include i) having marked and sustained gender 
incongruence, ii) having the ability to consent, iii) that 
the other possible causes of gender incongruence 
have been ruled out, and iv) that TGD individuals fully 
understand the effects and consequences of treatment 
and thus, the benefits and risks of GAHT should be 
discussed, including the risk of infertility.

This review is a narrative review intended to provide 
up-to-date and comprehensive information regarding 
fertility preservation (FP) options for TGD people. We 
will review standard of care and experimental options 
for FP; implications of gender-affirming treatments for 
FP, as well as future reproductive options. A literature 
search was conducted separately for each topic using the 
Pubmed/MEDLINE combined database and hand search 
from the review references.

Effects of GAHT on fertility

GAHT showed unpredictable and negative effects on 
fertility. Therefore, the Endocrine Society, WPATH, 
American Society for Reproductive Medicine (ASRM), 
and European Society of Human Reproduction and 
Embryology (ESHRE) recommended counseling on the 
impact of GAMST on fertility and options for fertility 
preservation prior to and periodically during GAMST 
(Hembree et al. 2017, Anderson et al. 2020, Ethics 
Committee of the American Society for Reproductive 
Medicine 2021, Coleman et al. 2022). The GAHT-prior 
counseling should include informing and discussing the 
positive and negative effects of GAHT in every aspect, 
not limited to reproductive health. In this section, we will 
discuss the effect GAHT has directly on gametogenesis 
and fertility.

Effect of GAHT on spermatogenesis
GAHT effects on TGD individuals with testes are pervasive 
(Andrews et al. 2021). The severity of spermatogenesis 
defects can be represented using testis histopathology 
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classification (McLachlan et al. 2007) and semen analysis. 
Histopathology findings of GAHT-exposed testicular 
tissues with regard to the degree of spermatogenesis 
are summarized in Table 1. It is worth noting that 
androgen cessation is usually recommended before 
GAS-orchiectomy with a 2–6 weeks duration depending 
on the center. These periods of androgen cessation may 
or may not have a positive impact on spermatogenesis in 
the testicular tissue. However, the data are inconclusive, 
and the duration of hormonal cessation is unknown.

Testicular histology findings in TGD people with 
testes receiving GAHT showed evidence of complete 
spermatogenesis (normal/hypospermatogenesis) in 
0–37% of the specimens, with 21–100% presence of 
germ cells. Studies found no correlations between 
evidence of spermatogenesis and the hormonal regimen, 
dosage, duration on GAHT, or time off GAHT before 
GAS, which may be attributed to small sample sizes. 
Nevertheless, these findings indicate the possibility of 
utilizing discarded testes at the time of GAS for fertility 
preservation. Utilization of tissues may include but is 
not limited to large-volume testicular sperm extraction 
(TESE) on discarded testes (Niederberger 2020), and 
testicular tissue cryopreservation (TTC) for utilization 
of experimental approaches when technologies mature 
(please see section: Fertility preservation options – TGD 
people with testes – Experimental).

Effect of GAHT on oogenesis
Regarding the ovarian histologic findings in testosterone-
exposed TGD people with ovaries, some studies that 
reported histological findings resembling those of 
polycystic ovarian syndrome (PCOS) (Spinder et al. 
1989, Pache et al. 1991, Grynberg et al. 2010), the disease 
which also involves high testosterone exposure, while 
other studies that found no differences in the number of 
primordial, early, or antral follicles compared to controls 
(Ikeda et al. 2013, De Roo et al. 2017, Bailie et al. 2023). 
Table 2 summarizes the important study designs from 
each report.

Fertility preservation options
There are still no standard guidelines regarding FP 
choices for TGD individuals. This may be due to limited 
evidence to make the recommendations. We will review 
standard-of-care fertility preservation options that 
have been offered to TGD individuals and experimental 
options that are offered at very few centers with 
Institutional Review Board (IRB) approval. It is very 
important to note that, unlike in cancer patients, FP 
interventions are not usually offered until Tanner stage 
2 (approximately 11 years old in females and 11.5 years 
old in males) is reached as this stage of development 
is required for GnRHa/GAHT initiation. Therefore, we 
will focus our review on findings from the peripubertal 
period and older.

Fertility preservation options for TGD people 
with testes
Two fertility preservation options are possible for TGD 
people with testes. The established and standard of care 
option is to cryopreserve a semen sample with sperm. 
Cryopreserved sperm can be thawed in the future to 
fertilize partner or donor eggs and establish a pregnancy. 
This method has extensive evidence supporting its use 
in adult cisgender males and is the only recommended 
standard protocol for adults facing gonadal threats, 
such as chemotherapy or total body radiation (Gassei 
et al. 2017, Martinez 2017, Oktay et al. 2018, Practice 
Committee of the American Society for Reproductive 
Medicine 2019). The second option is TTC, which is 
typically reserved for prepubertal patients who are not 
producing sperm. TTC is experimental both for cisgender 
patients with a cancer diagnosis or TGD patients with a 
gender dysphoria diagnosis because there is no evidence 
yet that those tissues can be matured in the future to 
produce sperm. While many centers around the world 
provide TTC to cancer or bone marrow transplantation 
patients who are at risk of infertility, very few provide 
this service to TGD individuals who cannot or will not 
interrupt GAHT to collect and freeze a semen sample 
with sperm. TESE can be offered to TGD people with 
testes who are going to gender-affirming surgery, as 
the testes are typically removed during the GAS process 
and would otherwise be discarded. However, the long-
term impact of GAHT prior to GAS is not known. Table 
3 summarizes fertility preservation outcomes by semen 
collection and TESE based on age groups and history of 
GnRHa/GAHT exposure.

Standard of care FP options for TGD 
people with testes

Adult
Before the initiation of GnRHa or GAHT
Although sperm cryopreservation is recommended in 
adults who can produce sperm, the collection of semen 
via masturbation may cause psychological distress and 
exacerbate gender dysphoria in some cases (Reckhow 
et al. 2023). Also, there is a high prevalence (47%) of 
orgasmic dysfunction in TGD people with testes, even 
before GAHT (Kerckhof et al. 2019). In such cases, 
alternative ways to obtain sperm, such as Electro- or 
vibratory stimulation, TESE, Testicular Sperm Aspiration 
(TESA), or Epididymal Sperm Aspiration (PESA), among 
others, may be offered (Esteves et al. 2011). Adult TGD 
people with testes also had poorer semen parameters 
(sperm concentration, total motile sperm count, and/or 
morphology) compared to the WHO-referenced male or 
healthy cisgender male control group even before GAHT 
(Li et al. 2018, De Nie et al. 2020, Rodriguez-Wallberg  et al. 
2021a) (Table 3). Although not directly evaluated in these 
reports, poor sperm parameters before GAHT were 



Reproduction (2024) 168 e240253
https://doi.org/10.1530/REP-24-0253

C Ausavarungnirun and K E Orwig
Ta

bl
e 

1 
Eff

ec
t o

f G
AH

T 
on

 s
pe

rm
at

og
en

es
is

 in
 T

G
D

 a
du

lts
 w

ith
 te

st
es

 p
rio

r t
o 

ge
nd

er
 a

ffi
rm

in
g 

su
rg

er
y.

St
ud

y

Ad
ul

ts
/ 

te
st

es
 

ex
am

in
ed

, n
Ag

e*
 (y

ea
rs

)
N

or
m

al
  

n 
(%

)
H

yp
o 

n 
(%

)
M

at
ur

at
io

n 
ar

re
st

 n
 (%

)

Pr
es

en
ce

 o
f 

ge
rm

 c
el

ls
 n

 
(%

)
G

AH
T 

re
gi

m
en

D
ur

at
io

n 
on

 
G

AH
T*

 (m
on

th
s)

D
ur

at
io

n 
of

 c
es

sa
ti

on
 

be
fo

re
 G

AS

D
ab

el
 e

t a
l. 

(2
02

3)
25

28
.1

 (1
6–

40
)

0
0

SG
:1

7 
(6

8.
0)

; S
C:

 
5 

(2
0.

0)
; R

S:
 3

 
(1

2.
0)

25
 (1

00
)§

Cy
pr

ot
er

on
e 

ac
et

at
e 

+ 
es

tr
og

en
s

27
.6

 (1
1–

66
)

0–
6 

w
ee

ks

D
e 

N
ie

 e
t a

l. 
(2

02
2)

19
19

.0
 ±

 1
.5

 (T
S:

2–
3)

0
0

19
 (1

00
)

19
 (1

00
)

Tr
ip

to
re

lin
 o

r c
yp

ro
te

ro
ne

 
ac

et
at

e 
+ 

es
tr

og
en

s 
(m

ay
 

in
cl

ud
e 

G
nR

H
a 

in
 

ad
ol

es
ce

nt
 g

ro
up

, d
et

ai
l 

no
t s

pe
ci

fie
d)

5.
9 

± 
1.

4
4 

w
ee

ks
10

19
.6

 ±
 1

.9
 (T

S:
2–

3)
0

0
10

 (1
00

)
10

 (1
00

)
6.

8 
± 

1.
3

0
35

19
.7

 ±
 1

.2
 (T

S:
4–

5)
0

2
33

 (9
4.

3)
35

 (1
00

)
4.

1 
± 

1.
8

4 
w

ee
ks

14
19

.3
 ±

 0
.7

 (T
S:

4–
5)

0
3

11
 (7

8.
6)

14
 (1

00
)

2.
8 

± 
0.

6
0

62
34

.5
 ±

 1
2.

3
0

5
52

 (8
3.

9)
57

 (9
1.

9)
2.

8 
± 

1.
9

4 
w

ee
ks

74
36

.2
 ±

 1
2.

2
0

1
63

 (8
5.

1)
64

 (8
6.

5)
2.

3 
± 

1.
2

0
Si

nh
a 

et
 a

l. 
(2

02
1)

85
39

 ±
 1

6
7 

(8
.2

)
17

 (2
0.

0)
24

 (2
8.

2)
24

 (2
8.

2)
M

ix
ed

 re
gi

m
en

48
 (2

4–
60

)†
 N

S,
 li

ke
ly

 c
on

tin
uo

us

Ve
re

ec
ke

 e
t a

l. 
(2

02
1)

97
31

.1
9 

(2
3.

25
–4

5.
78

)†
0 

(a
cr

os
in

-
ne

ga
tiv

e)
0 

(a
cr

os
in

-
ne

ga
tiv

e)
SG

: 8
5 

(8
7.

6)
‡

85
 (8

7.
6)

Cy
pr

ot
er

on
e 

ac
et

at
e 

+ 
es

tr
og

en
21

.7
 (1

5.
2–

28
.4

)†
2 

w
ee

ks

Jia
ng

 e
t a

l. 
(2

01
9)

14
1 

te
st

es
39

 (3
0–

53
)†

0
57

 (4
0.

4)
U

ns
pe

ci
fie

d 
sp

er
m

at
id

 
pr

es
en

t

11
4 

(8
1)

Sp
iro

no
la

ct
on

e,
 e

st
ro

ge
n,

 
pr

og
es

te
ro

ne
39

 (2
4–

65
)†

2 
w

ee
ks

 c
es

sa
tio

n 
of

 
es

tr
og

en
 in

 
va

gi
no

pl
as

ty
 c

as
es

; t
he

 
re

st
 w

ith
 c

on
tin

uo
us

 
sp

iro
no

la
ct

on
e 

or
 

pr
og

es
te

ro
ne

.
Jin

da
ra

k 
et

 a
l. 

(2
01

8)
17

3
26

.0
9 

± 
5.

37
19

 (1
1)

45
 (2

6.
0)

63
 (3

6.
4)

12
7 

(7
3.

4)
M

ix
ed

 re
gi

m
en

10
2.

2 
± 

55
.2

4 
w

ee
ks

Ke
nt

 e
t a

l. 
(2

01
8)

13
5

30
 (1

8–
76

)†
6 

(4
)

0
17

 (5
.2

)
28

 (2
1%

)
Sp

iro
no

la
ct

on
e 

+ 
es

tr
ad

io
l 

an
d/

or
 fi

na
st

er
id

e,
 

pr
og

es
te

ro
ne

60
 (1

2–
68

4)
†

N
S

M
at

os
o 

et
 a

l. 
(2

01
8)

99
 te

st
es

33
 (2

1–
63

)
0

0
SG

:7
9 

(8
0)

; 
SC

:2
0 

(2
0)

99
 (1

00
%

)
Es

tr
ad

io
l a

nd
/o

r 
sp

iro
no

la
ct

on
e,

 
fin

as
te

rid
e,

 p
ro

ge
st

er
on

e

6–
24

0
N

S

Sc
hn

ei
de

r 
et

 a
l. 

(2
01

5)
10

8
42

 ±
 1

2.
1

26
 (2

4.
1)

⁋
SG

: 3
8 

(3
5.

19
); 

SC
:2

6 
(2

4.
07

)
90

 (8
3.

3)
M

ix
ed

 re
gi

m
en

N
S

Co
m

bi
ne

d 
co

ho
rt

s
22

10
 (4

5.
5)

6 
w

ee
ks

51
22

 (4
3.

1)
2 

w
ee

ks
35

14
 (4

0.
0)

0 
w

ee
k

*M
ea

n 
un

le
ss

 s
ta

te
d 

ot
he

rw
is

e;
 †

va
lu

es
 a

re
 m

ed
ia

n 
(IQ

R)
; ⁋

co
m

pl
et

e 
sp

er
m

at
og

en
es

is
; ‡

Sp
er

m
at

og
on

ia
 (M

AG
EA

4+
) p

os
iti

ve
 (a

m
on

g 
th

es
e:

 2
2 

co
nt

ai
ne

d 
sp

er
m

at
oc

yt
es

 (B
O

LL
+)

 a
nd

 1
4 

co
nt

ai
ne

d 
sp

er
m

at
id

s 
(C

RE
M

+)
; §

lo
w

er
 S

G
 c

ou
nt

/m
m

2  s
em

in
ife

ro
us

 tu
bu

le
 c

om
pa

re
d 

to
 c

is
ge

nd
er

 a
ge

-m
at

ch
ed

 c
on

tr
ol

.
BO

LL
, b

ou
le

 h
om

ol
og

ue
 R

N
A-

bi
nd

in
g 

pr
ot

ei
n 

(m
ar

ke
r f

or
 s

ec
on

da
ry

 s
pe

rm
at

oc
yt

es
 a

nd
 ro

un
d 

sp
er

m
at

id
s)

; C
RE

M
, c

AM
P-

re
sp

on
si

ve
 e

le
m

en
t m

od
ul

at
or

 (m
ar

ke
r f

or
 ro

un
d 

sp
er

m
at

id
s)

 a
nd

 a
cr

os
in

 
(m

ar
ke

r 
fo

r 
ac

ro
so

m
e 

vi
su

al
iz

at
io

n)
; G

AH
T,

 G
en

de
r-

Affi
rm

in
g 

H
or

m
on

e 
Th

er
ap

y;
 M

AG
E-

A4
, m

ar
ke

r 
fo

r 
sp

er
m

at
og

on
ia

 a
nd

 e
ar

ly
 s

pe
rm

at
oc

yt
es

); 
N

S,
 n

ot
 s

pe
ci

fie
d;

 T
G

D,
 T

ra
ns

ge
nd

er
 a

nd
 g

en
de

r 
di

ve
rs

e;
 R

S,
 ro

un
d 

sp
er

m
at

id
s;

 S
C,

 s
pe

rm
at

oc
yt

es
; S

G
, s

pe
rm

at
og

on
ia

; T
S,

 T
an

ne
r s

ta
ge

.



Reproduction (2024) 168 e240253
https://doi.org/10.1530/REP-24-0253

C Ausavarungnirun and K E Orwig

thought to be attributed to lifestyle or environmental 
factors such as the tucking of the testicles (Trussler 
and Carrasquillo 2020). Additionally, cryopreserved 
semen from TGD individuals before GAHT showed that 
only 26% of the post-thawed samples were of adequate 
quality for intrauterine insemination (IUI), the cheapest 
and simplest assisted reproductive technology (ART) 
(De Nie et al. 2020, Hamada et al. 2015). Therefore, even 
when pursuing FP before GAHT, TGD patients with testes 
may need to plan for more expensive ARTs in the future, 
such as in vitro fertilization (IVF) with intracytoplasmic 
sperm injection (ICSI). However, Hamada and colleagues 
did report a case of fertilization and pregnancy using a 

single transwoman’s cryopreserved sperm for IUI in a 
surrogate mother (Hamada et al. 2015).

After the initiation of GnRHa or GAHT
TGD people with testes whose GAHT treatment has 
been initiated without prior fertility preservation can 
collect sperm via the same means as the GAHT-naive 
group, opening up more flexibility to those who were 
undecided, prioritized initiation of GAHT, or simply 
changed their plan on family building. There is histologic 
evidence of complete spermatogenesis (Table 1) and 
evidence to suggest that sperm can be recovered in the 

Table 2 Effects of GAHT on the ovarian tissues of TGD with ovaries.

Effect/study Donors, n Age (years)
Testosterone 
exposure duration Control Summary of findings

Consistent with 
ovarian syndrome-like 
change
 Pache et al. (1991) 17 25 (18–35) 21 months average 13 (Age: 29 (27–39)) • Cortex and stromal thickening 

compared to control
• More antral follicles compared to 

control
• Multiple cystic atretic follicles

 Grynberg et al. 
(2010)

112 28.9 ± 0.9 2–9 years (3.7 ± 0.6) None • Cortex and stromal thickening 
• More than 12 antral follicles/

ovaries (PCOS features) in 89 
(79.5%) 

 Spinder et al. (1989) 26 26 ± 6 9–36 months 9 age-matched 
patients

• PCOS features in 18 (69.2%). (3/4 
of stromal hyperplasia, multiple 
cystic follicles, collagenization of 
the tunica albuginea in 25 subjects 
(96.2%), and luteinization of 
stromal cells)

Comparable oocyte 
distribution to 
control, no PCOS 
features
 Ikeda et al. (2013) 11 27–38 17 months–14 

years (median: 38 
months)

10 age and BMI-
matched oncology 
patients

• No differences in oocyte 
distribution numbers compared 
to control

• Cortical and medullary hyperplasia 
noted

 De Roo et al. (2017) 40 24.30 ± 6.15 14.5 ± 6.6 months • Compare with 
previously 
published normal 
values 

• No internal 
control group

• No differences in oocyte 
distribution numbers compared 
to control

• Cortical and medullary hyperplasia 
noted

 Bailie et al. (2023) 8 27.6 ± 1.7 18 months–10 
years

31.8 ± 1.5 healthy 
donors

• Higher proportion of non-growing 
ovarian follicles, higher levels of 
DNA damage.

• More growing follicles in 
transgender ovaries compared to 
control, but follicle health further 
deteriorated

BMI, body mass index; PCOS, Polycystic Ovarian Syndrome; GAHT, Gender-Affirming Hormone Therapy; SD = standard deviation; TGD = Transgender and 
gender diverse. 
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semen or by TESE after temporary cessation of gender-
affirming treatments in some cases (Table 3). Therefore, 
the state of GnRHa or GAHT should not preclude fertility 
preservation.

Adolescent
Recommendations for FP choice in adolescent TGD  
people with testes still sperm cryopreservation.  
However, this may not be feasible in adolescents under 
15 years old due to the high prevalence of azoospermia 
(no sperm in the ejaculate). A recent study in peripubertal 
cancer patients reported azoospermia in 66.7% of 
12-year-olds, 31.3% of 13-year-olds, and approximately 
10% of 14–17-year-olds, decreasing to 0% in 18–19-year-

olds (Halpern et al. 2019). Even if no sperm are found in 
the ejaculate, it is sometimes possible to retrieve sperm 
directly from the testis by TESE. Peri and colleagues 
reported that sperm recovery via TESE was successful in 
68% of patients in the 13–17 year-old range with no prior 
gender-affirming treatments (Peri et al. 2021) (Table 3).

Experimental: TTC

TTC has been offered and studied as an experimental  
FP approach in prepubertal cancer patients worldwide 
with the expectation that these tissues can be 
matured in the future to produce sperm from resident 
spermatogonial stem cells (SSCs) (Tran et al. 2022). 

Table 3 Fertility preservation (semen analysis or TESE outcomes) in TGD people with testes.

Age group
GAHT exposure 
status Technique used Results References

Adult No prior GnRHa 
and GAHT 
exposure

Semen collection Poor semen parameters 
compared to referenced 
cisgender samples

Adeleye et al. (2019b); 
Rodriguez-Wallberg et al. 
(2021a); Hamada et al. (2015); 
Barda et al. (2023); de Nie et al. 
(2020); Li et al. (2018)

Poor semen parameter in 
post-thawed samples 

de Nie et al. (2020); Hamada 
et al. (2015)

 With continued 
GnRHa/GAHT at 
collection

Semen collection Low semen parameters 
compared to previously-used 
GAHT and GAHT-naïve 

Adeleye et al. (2019b)

 Stop GnRHa/
GAHT at 
collection

Semen collection Semen parameters poorer than 
GAHT-naïve TGD samples 

Rodriguez-Wallberg et al. 
(2021a) 

Semen parameters comparable 
with GAHT-naïve TGNB samples. 

Adeleye et al. (2019b); Barda 
et al. (2023)

Semen parameters higher than 
continuously-used GAHT 

Adeleye et al. (2019b)

Semen collection or 
testicular sperm 
extraction

Natural conceptions reported in 
3/9 cases; Viable sperm 
retrieved from all 9 cases by 
semen collection or testicular 
sperm extraction. 

de Nie et al. (2023)

Peripubertal No prior GnRHa 
and GAHT 
exposure

Semen collection 
(16-24-year-old TGDs)

Normal semen parameters 
except for low percentage (3%) of 
normal morphology compared 
to normal reference per Modified 
Kruger criteria (>13%) in group 
with mean age 19.5

Barnard et al. (2019)

Testicular sperm 
extraction (13-17-year-
old TGDs)

Successful sperm retrieval (68%, 
17/25)

Peri et al. (2021) 

 With continued 
GnRHa/GAHT at 
collection

No data No data No data

 Stop GnRHa/
GAHT at 
collection

Semen collection (age 
17.5 at GnRHa initiation, 
age 18 at retrieval, n=1)

12 sperm (2 motile) found 3 
months after suspending 
GnRHa; Normal semen sample 5 
months after suspending GnRHa 

Barnard et al. (2019)

Semen collection (age 
18 at initiation, age 19 
at retrieval, n=1)

Azoospermic at 4 months after 
suspending GAHT 

Barnard et al. (2019)

GnRHa, Gonadotropin releasing hormone agonist; GAHT, gender-affirming hormone therapy
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Our center has extended this experimental FP option 
to young TGD patients (NCT05829928). This protocol is 
separate from our cancer patient TTC protocol because 
the risks and benefits for TGD patients are different 
than those for cancer patients. Our center is approved 
to cryopreserve testicular tissues for patients who have 
a diagnosis of gender dysphoria and are referred by 
their physician for fertility preservation. Patients must 
be ≥9 years old, getting ready to start or already on 
gender-affirming treatments, and unwilling or unable to 
delay or interrupt GnRHa or GAHT to collect sperm. If 
patients are 12 years or older, we provide the option to 
search a portion of the tissue for sperm, similar to TESE. 
However, the majority of the tissue is cryopreserved  
with the expectation that SSCs in the tissue have the 
potential to produce sperm in the future. Peri and 
colleagues reported retrieval of sperm from the testicular 
tissues of young TGD patients who were Tanner stage 3 
or higher and when testis volumes were greater than 
10–12 mL. Age, hormone levels, and previous gender-
affirming treatments were not reliable determinants 
of whether sperm could be retrieved from testicular 
tissues (Peri et al. 2021). Therefore, Tanner staging and 
testis volume data may be useful in counseling young 
TGD patients about the potential future uses of their 
cryopreserved testicular tissue. Several studies showed 
the presence of undifferentiated germ cells (stem and 
progenitor spermatogonia) in TGD testicular tissue 
regardless of GAHT history, showing the potential utility 
of cryopreserved testicular tissues in this group (Table 
1). This may suggest that suspension of gender-affirming 
treatments is not necessary prior to cryopreservation 
of testicular tissue with SSCs. TTC may also be possible 
when testes are being removed for GAS. However, 
there is no data on the function of germ cells that may 
remain in that tissue after long-term GAHT treatment. 
Studies in animal models have shown different ways 
to utilize the cryopreserved testicular tissue in both 
tissue-based and cell-based approaches (reviewed in 
(Tran et al. 2022)). Future utilization of tissues requires 
different considerations than in cisgender cancer 
survivors because TGD people may not want the tissue 
or cells transplanted back into their bodies or want 
to go through puberty in the gender that would be  
required to mature their tissues/cells inside their  
bodies. Methods to mature testicular tissue or cells 
outside the body to produce sperm (see below) may be 
required but are in very early stages of development.

Potential uses of cryopreserved 
testicular tissues in reproduction: 
considerations for TGD individuals

Testicular tissue or cell transplantation
Brinster and colleagues pioneered the method of 
spermatogonial stem cell transplantation more than 
three decades ago. Testicular cells (including SSCs) 

were injected into the seminiferous tubules of the 
testes where they regenerated spermatogenesis with 
sperm that were competent to fertilize and produce 
offspring (Brinster and Zimmermann 1994, Brinster and 
Avarbock 1994). Donor SSCs of any age are competent to 
regenerate spermatogenesis. In addition, cells that were 
thawed after 14 years of cryostorage could regenerate 
spermatogenesis (Wu et al. 2012), which is relevant in 
the context of fertility preservation in young patients. 
Testicular tissue grafting is an alternative approach 
that involves transplanting intact pieces of testicular 
tissue under the skin. Fresh or cryopreserved immature 
testicular tissue can be matured over several months 
in vivo and then recovered and dissected to release 
sperm that are competent to fertilize by IVF with 
ICSI and produce offspring (Honaramooz et al. 2002, 
Schlatt et al. 2003, Shinohara et al. 2002, Fayomi et al. 
2019). Testicular tissue grafting is usually performed 
in castrated recipients, which may be germane to TGD 
patients after GAS. This approach works only with 
immature (prepubertal) testicular tissues and not adult 
tissues (Arregui and Dobrinski 2014). It is not known 
whether testicular tissues from TGD patients where 
spermatogenesis is suppressed by gender-affirming 
treatments would function more like adult tissues or 
immature prepubertal tissues in this context. However, 
it is noteworthy that when spermatogenesis was 
suppressed in mice with acyline (GnRH antagonist) 
prior to transplantation, grafts survived and produced 
spermatogenesis (Arregui et al. 2012).

Spermatogonial stem cell transplantation and testicular 
tissue grafting are mature technologies that have been 
replicated in numerous animal models, including 
nonhuman primates (reviewed in (Tran et al. 2022)) 
and may be ready for translation to the human clinic. 
However, as indicated above, TGD patients may not  
want their testicular tissues or cells transplanted 
back into their body or to go through male puberty 
with testosterone production, which is necessary for 
spermatogenesis to occur from transplanted testicular 
cells or tissues. Below, we review ex vivo approaches to 
mature testicular tissues or cells and produce sperm. 
These methods are at a much earlier stage than the 
transplant approaches described above but may have 
valuable applications for TGD patients who have 
cryopreserved their testicular tissues.

Xenotransplant into SCID/Nude mice or 
other animal hosts
An alternative to autologous transplantation is  
testicular tissue grafting into an animal host. Testicular 
tissue from several species (reviewed in (Tran et al. 
2022)) can be transplanted under the dorsal skin or 
scrotal skin of immune-deficient SCID or nude mice 
and matured to produce sperm as well as offspring in 
rabbits (Shinohara et al. 2002), pigs (Nakai et al. 2010) 
and monkey (Liu et al. 2016). In humans, the most 
advanced germ cells produced by this technique were 
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Table 4 Developing technologies for maturing patient testicular tissues/cells and producing sperm outside the patient’s body. 
Evidence in human studies.

Tissue source Technique Methods Results Reference

Cisgender prepubertal tissue Tissue- based Xenotransplant into  
SCID or nude mice

  

 Fresh tissue into dorsal skin     
  From 10-11-year-old donors, n=3   Spermatogonia Goossens et al. (2008)
  From 3-9-year-old donors, n=3   BOLL+ spermatocytes Ntemou et al. (2019)
 Fresh tissue into scrotum     
  From 5-year-old donor, n=1   Spermatogonia Van Saen et al. (2011)
  From 12-13-year-old donors, n=2   Spermatocyte Van Saen et al. (2011)
  From 2-12-year-old donors, n=10   Spermatocyte Poels et al. (2013)
  From 3-9 -ear-old donors, n=3   Spermatocyte Ntemou et al. (2019) 
 Frozen prepubertal tissue into scrotum     
  From 3-13-year-old donors, n=3   Spermatogonia Van Saen et al. (2011)
  From 2-12-year-old donors, n=11   Spermatogonia Wyns et al. (2007)
  From 2-15-year-old donors, n=6   Spermatogonia Poels et al. (2014) 
  From 7-14-year-old donors, n=5   Spermatocyte Wyns et al. (2008)
  From 2-12-year-old donors, n=10   Spermatocyte Poels et al. (2013) 
Cisgender adult tissue     
 Fresh tissue into dorsal skin   Degenerated tissue Schlatt et al. (2006)
    Spermatogonia Geens et al. (2006)
 Fresh adult tissue into scrotum   Spermatocyte Van Saen et al. (2011)
 Frozen adult tissue into scrotum   Spermatocyte Van Saen et al. (2011)
Cisgender immature tissues (age 6-14) Tissue- based IVM with testicular 

tissue culture
  

 Used fresh   Spermatogonia Portela et al. (2019)
 Used frozen   Spermatogonia Portela et al. (2019), de 

Michele et al. (2017)
    SYCP3+ primary spermatocytes Medrano et al. (2018), 

Younis et al. (2023) 
    Round spermatid de Michele et al. (2018)
Cisgender adult tissue     
 Used Fresh   Spermatogonia Jorgensen et al. (2014)
Transgender adult tissue     
 Fresh and cryopreserved adult  

GAHT-exposed testicular tissue
  No progression of 

spermatogenesis after 2 
weeks in culture

Komeya et al. (2021)

Cisgender prepubertal and adult cells Cell-based De novo testicular 
morphogenesis 
(organoid culture)

  

 Fresh pubertal (age 15) and adult  
testicular cells

SC- based, or  
SC-free transwell

 Mitotically-active germ cells, 
normal somatic cells function 
and arrangement

Baert et al. (2017)

 Frozen prepubertal testicular cells Matrigel  Inverted organization of 
spermatogonia and somatic 
cells

Sakib et al. (2019)

 Fresh and frozen adult testicular cells ECM  Spermatogonia clusters, 
normal somatic cells function 
and arrangement 

Baert et al. (2015)

    PRM2+ elongated 
spermatids

Pendergraft et al. 
(2017), Nikmahzar 
et al. (2023)

TGNB, transgender and non-binary; GnRHa, gonadotropin-releasing hormone agonist; GAHT, gender-affirming hormone therapy, SYCP3 +, synaptonemal 
complex protein 3 (marker for primary spermatocytes); SCID, severe combined immunodeficiency;, BOLL , boule homologue RNA-binding protein (marker 
for secondary spermatocytes and round spermatids); ECM, extracellular matrix; IVM, in vitro maturation; SC, scaffold.
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premeiotic spermatocytes, which have been reported 
for both immature and adult as well as fresh or frozen 
human testicular grafts (References can be reviewed 
in Table 4). It is unclear why prepubertal monkey  
testicular tissues can be matured to produce sperm 
in a mouse host, while human testicular tissues 
cannot. Perhaps other animal hosts, such as immune-
deficient pigs (Boettcher et al. 2018) will support 
better development of human tissues. The risk of  
transmitting viruses or other xenobiotics from the 
animal host to the patient must be carefully considered 
(Kimsa et al. 2014, 2017). However, it is noteworthy that 
pigs are actively being developed as organ donors for 
human patients (Kozlov 2024).

In vitro maturation with testicular tissue 
organ culture
Sato and colleagues pioneered a method for culturing 
immature mouse testicular tissues at the air-liquid 
interface. Tissues matured over several weeks in culture 
and produced sperm that were competent to fertilize 
and produce offspring (Sato et al. 2011). Like testicular 
tissue grafting, this approach only works with immature 
testicular tissues; and it is not yet known whether it would 
work with testicular tissues where spermatogenesis is 
suppressed by gender-affirming treatments. Several 
groups have reported culturing human testicular  
tissues at the air-liquid interface. Tissues could be 
maintained for weeks to months with the maintenance 
of spermatogonia and occasional differentiation to 
produce spermatocytes or spermatids but not sperm 
(Medrano et al. 2018, De Michele et al. 2018, Portela 
et al. 2019, Younis et al. 2023). Komeya and colleagues 
reported that GAHT-exposed testicular tissues could be 
maintained for 2 weeks in culture, but the number of 
germ cells declined over that time (Komeya et al. 2021). 
Testing the fertilization potential of experimentally 
derived human sperm, using this approach or others, 
is necessary to demonstrate safety and feasibility, but 
raises ethical concerns and is challenged by restrictive 
funding or laws in some states and countries.

De novo testicular morphogenesis in an 
animal host or organoid culture
Heterogeneous testis cell suspensions have the 
remarkable ability to reform seminiferous tubules, both 
in vivo and ex vivo. Testis cells from mice, sheep, and 
pigs can be pelleted and transplanted under the skin of 
mouse recipients, where they reform into seminiferous 
tubules, which sometimes contain spermatids and/or 
sperm (Honaramooz et al. 2007, Kita et al. 2007, Arregui 
et al. 2008). The fertilization potential of those sperm 
has not been tested, and to our knowledge, in vivo de 
novo testicular morphogenesis has not been reported 
with human testis cells. Many groups have described 
methods for de novo testicular morphogenesis ex vivo, 
but none have yet produced sperm or offspring. Sakib 

and colleagues reported a microwell aggregation 
approach to produce 3D testicular organoids from 
neonatal or prepubertal testicular cell suspensions of 
mice, pigs, monkeys, and humans. The tubules formed 
inside out and contained spermatogonia but did not 
support complete spermatogenesis (Sakib et al. 2019). 
Two studies reported human testicular organoids from 
adults (15+ years) formed in the human testicular 
extracellular matrix (htECM). Baert and colleagues 
seeded heterogeneous prepubertal or adult human testis 
cell suspensions onto a 3-dimensional htECM scaffold 
that was shaped in the form of a tubule (Baert et al. 
2017). Pendergraft and colleagues used a hanging-drop 
method to induce organoid formation from cultured 
adult human spermatogonia mixed with immortalized 
human Sertoli and Leydig cells suspended in a hydrogel 
of htECM (Pendergraft et al. 2017). Both approaches 
led to the production of organoids including germ 
cells and somatic cells, but neither approach produced 
seminiferous tubule-like structures (Pendergraft 
et al. 2017, Baert et al. 2017). The Pendergraft study  
reported elongated spermatids, but since the starting 
point was adult tissues, it is impossible to determine 
whether those post-meiotic spermatids arose in  
culture or were already present in the original cell 
suspension (Pendergraft et al. 2017) (Table 4).

Standard of care FP options for TGD 
people with ovaries

Adult
Before the initiation of GAHT
Ovarian stimulation and oocyte cryopreservation can be 
done the same way as for cisgender females. Maxwell 
and colleagues reported four successful four live  
births in two couples utilizing cryopreserved oocytes 
from GAHT-naive adult TGD with ovaries, followed by 
fertilization with donor sperm and embryo transfer into 
cisgender, sexually intimate, female partners (Maxwell 
et al. 2017, Adeleye et al. 2019a). TGD people with  
ovaries (with and without prior testosterone exposure) 
produced a similar number of oocytes, with a similar 
maturity rate as age/BMI-matched cisgender women 
(Adeleye et al. 2019a, Leung et al. 2019) (Table 5).

After the initiation of GAHT
Oocyte cryopreservation and embryo cryopreservation 
can be offered even after the initiation of GAHT. 
However, Adeleye et al. reported that the number of 
oocytes retrieved from GAHT naive TGD with ovaries 
was higher than in the group with prior GAHT who 
had suspended testosterone treatment for a median  
time of 6 months (Adeleye et al. 2019a). The main 
question in this scenario is whether or not to 
discontinue testosterone supplements before oocyte 
retrieval. Testosterone cessation has traditionally been  
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encouraged to ensure a good oocyte retrieval outcome, 
and the duration recommended is at least 3 months 
or until the return of menstruation (De Roo et al. 
2016, Armuand et al. 2017). However, the necessity to  
suspend GAHT and resume menstruation requires 
further investigation because GAHT interruption can 
cause distress in TGD people (Armuand et al. 2017, 
Greenwald et al. 2022) (Table 5).

Ovarian tissue cryopreservation (OTC) is no longer 
considered experimental by the ASRM (Practice 
Committee of the American Society for Reproductive 
Medicine 2019), based in part on the evidence of more 
than 130 live births from transplanted ovarian tissues 
(Donnez and Dolmans 2017). However, that guidance 
was based almost entirely on data from survivors of 
cancer or bone marrow transplantation who were 
adults at the time of OTC. Data on the transplantation 
potential of ovarian tissues that were cryopreserved 
during childhood or from TGD individuals on GAHT are 
limited or absent, respectively. Thus, it is reasonable 
to offer OTC as an experimental option until more 
transplantation and live birth data can be accumulated 
for those populations.

Adolescent
Before GAHT initiation
Oocyte cryopreservation is the standard fertility 
preservation option for hormone-naive adolescent TGD 
people with ovaries. OTC could be offered at the time of 
GAS, but those patients have usually already initiated 
GAHT according to WPATH SOC 8 recommendations. 
According to WPATH SOC 8, GAS is usually  

recommended after 6 months of stable GAHT in 
adults and 12 months in youth unless the GAHT is not  
desired or contraindicated. This means that, in most 
cases, OTC with simultaneous GAS is generally not 
possible unless GAHT has begun (Amir et al. 2020a). 
Embryo cryopreservation, which requires partner 
sperm, is not usually offered in adolescents. OTC for 
fertility preservation is not generally offered as a stand-
alone option to adolescent TGD patients with ovaries, 
although it is offered at our center as an experimental 
protocol (NCT05863676).

After initiation of gender affirming treatments
Two studies have shown successful oocyte retrieval 
in adolescent TGD with ovaries who had GnRHa only  
and who had prior testosterone use (Insogna et al.  
2020, Barrett et al. 2022). Considerations for embryo 
freezing and OTC are the same as described above. 
Our center does not require the cessation of GnRHa or  
GAHT prior to OTC. This may be a consideration for 
TGD people who do not want to interrupt their gender-
affirming treatments for fertility preservation.

Potential uses of cryopreserved 
ovarian tissues in reproduction: 
Considerations for TGD individuals

Autologous transplantation
Cryopreserved ovarian tissue can be transplanted back 
to the donor at the ovary or pelvic site. Transplanted 

Table 5 Oocyte cryopreservation fertility outcome in TGD with ovaries

Age group
GAHT exposure 
status Technique used Results References

Adults No prior GAHT 
exposure

Cryopreserved oocytes and/or 
embryos 

Live births Maxwell et al. (2017)

Fresh oocytes 3 pregnancies Adeleye et al. (2019a)
 With continued 

GAHT at collection
Fresh transfer with reciprocal IVF Live birth Greenwald et al. (2022)
Fresh transfer Live birth White et al. (2024)
Oocyte retrieval Successful oocyte 

retrieval
Stark & Mok-Lin (2022); Gale 
et al. (2021); Cho et al. (2020)

 Stop GAHT at 
collection

Fresh transfer and embryo 
cryopreservation) 

2 pregnancies Adeleye et al. (2019a) 

IUI with donor sperm, IVF and 
reciprocal IVF, no freezing 

5 live births Ghofranian et al. (2023) 

Fresh or frozen transfer 7 live births Leung et al. (2019)
Pubertal/ 
adolescent

No prior GAHT 
exposure

Oocyte retrieval Successful oocyte 
retrieval

Chen et al. (2018); 
Barrett et al. (2022); 
Insogna et al. (2020)

 With continued 
GAHT at collection

No data No data No data

 Stop GAHT at 
collection

Oocyte retrieval in GnRHa-only, and 
who had history of prior testosterone 
use 

Successful oocyte 
retrieval

Insogna et al. (2020)

GAHT, gender-affirming hormone therapy; IUI, intrauterine insemination
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ovarian tissues can restore hormonal and reproductive 
function, including the possibility of in vivo conception 
and pregnancy. There have been more than 180 live 
births after transplantation of cryopreserved ovarian 
tissues using in vivo conception or IVF (Donnez and 
Dolmans 2017, Gellert et al. 2018, Practice Committee of 
the American Society for Reproductive Medicine 2019, 
Khattak et al. 2022) Transplantation of ovarian tissues 
that were cryopreserved in prepuberty, adolescence, 
or adulthood has resulted in live births (Table 6). To 
our knowledge, there are no reports of ovarian tissue 
transplantation in TGD individuals. While ovarian 
tissue transplantation is a robust technology, it 
probably requires GAHT cessation and the production 
of estrogen from developing follicles. However, we 
note that ovulation appears to be possible while still on 
testosterone treatment (Asseler et al. 2024, Stark and  
Mok-Lin 2022, Gale et al. 2021, White et al. 2024,  
Greenwald et al. 2022). Additional research may 

reveal protocols that enable follicle development in 
transplanted ovarian tissues without compromising 
gender-affirming medical treatments.

Ovarian tissue oocyte followed by in vitro 
maturation (OTO/IVM)
OTC can be performed prior to the initiation of GAHT, 
during GAHT, or concomitantly with ovariectomy as a 
part of the GAS. During ovarian tissue processing, the 
outer cortex of the ovary, which contains primordial 
follicles, is dissected away from the inner medulla 
and then cut into strips for cryopreservation. Small 
antral follicles that are present in the medulla are 
released into the dissection media and are usually 
discarded. Cumulus-oocyte complexes (COCs) retrieved 
from these medullary antral follicles can potentially 
be matured to produce MII oocytes or embryos that 
can be cryopreserved in parallel with the ovarian 

Table 6 Technology maturity of potential experimental fertility preservation approach for transgender men

Patient population Method Technique
GAHT 
cessation* Results References

Cisgender ALT Tissue-
based

Yes   

 Adult tissue    Live births Reviewed in Gellert et al. (2018), 
Donnez & Dolmans (2017), 
Khattak et al. (2022)

 Cisgender prepubertal and 
adolescent tissue

   Live births Demeestere et al. (2015), 
Matthews et al. (2018), 
Rodriguez-Wallberg et al. 
(2021b)

Transgender    No data No data
Cisgender OTO/IVM Cell-

based
No   

 Patients with cancer or  
ovarian neoplasm

   Live births Segers et al. (2020)

    Live birth† Kedem et al. (2018), Uzelac et al. 
(2015), Prasath et al. (2014)

    50-76.9% fertilization rate; 
Pregnancy rate not 
reported due to no 
utilization 

Reviewed in Mohd Faizal et al. 
(2022)

    Successful oocyte 
aspiration during cesarean 
section

Hwang et al. (1997)

 Benign pelvic AVM    Pregnancy Segers et al. (2015)
TGD with ovaries      
 Adult    Normal spindle after 

thawing 
Lierman et al. (2017)

    Poor embryonic 
progression after 
fertilization

Lierman et al. (2021)

    Poor embryonic 
progression overcome by 
spindle transfer

Christodoulaki et al. (2023)

ALT, autologous transplantation; AVM, arteriovenous malformation; TGD, transgender and gender diverse individuals; OTO/IVM,ovarian tissue oocyte/in 
vitro maturation.
*GAHT cessation at the time of fertility restoration; †Live birth rate after embryo transfer = 43%
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tissues (Cadenas et al. 2023). This approach does not 
require stimulation with exogenous hormones because  
the final steps of egg maturation occur in vitro. The 
birth of five healthy infants has been reported using  
this approach (Prasath et al. 2014, Uzelac et al. 2015, 
Segers et al. 2020) (Table 6). While data are limited in  
TGD with ovaries, studies showed normal oocyte 
distribution across all layers of ovarian tissue (De  
Michele et al. 2017, Bailie et al. 2023), though one study 
indicated higher yH2AX staining, a marker for DNA 
breaks, in primordial germ cells compared to cisgender 
control (Bailie et al. 2023). The COCs that were extracted 
from the medulla resulted in MII oocytes after IVM 
with 87% normal spindle structure, also indicating the 
possibility of using ovarian tissue oocytes with IVM 
(OTO-IVM) in TGD people with ovaries and a history 
of GAHT. However, poor embryo development was 
noted in GAHT-exposed in vitro-matured ovarian  
tissue oocytes recovered at the time of GAS during 
ovarian tissue processing (Lierman et al. 2021, 

Christodoulaki et al. 2023) and may be improved by 
spindle transfer (Christodoulaki et al. 2023). Thus, 
OTC earlier in transition before exposure to GAHT  
may be beneficial.

In vitro growth of primordial follicles 
followed by IVM in multistep culture
Cortical strips contain primordial follicles that can 
be extracted for in vitro development of primordial  
follicles (primordial follicle to antral follicle) and 
IVM (immature antral follicle to MII oocytes). The 
resulting MII can then be used for cryopreservation or 
fertilized for embryo transfer/cryopreservation. This 
approach has been studied as an alternative for cancer 
patients where the chance of reintroducing cancer 
is high. It shows promise in TGD with ovaries whose 
primordial follicles are retained in the cortical strip, 
and the reversal of GAHT is not required at the time 

Figure 1

Journey of TGD people to have a biological child.
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of fertility restoration. While in vitro maturation from  
primordial follicles to mature MII oocytes and 
preimplantation embryos was described more than 
a decade ago in mice (Jin et al. 2010), IVM to mature  
MII oocytes has only been achieved when starting from 
growing primary and secondary follicles in primates 
and humans (Xu et al. 2013) (reviewed in (Hu et al. 
2023)). An artificial ovary that reconstitutes the ovarian 
microenvironment ex vivo may provide a path forward 
(Amorim and Shikanov 2016, Laronda et al. 2017).

Barriers to successful fertility 
restoration in TGD communities
Reproductive desire and/or interest in family building is 
high among transgender people, both adults and youth, 
but FP services are reportedly under-utilized in many 
countries around the world. A meta-analysis using 76 
studies showed 48.7–67.0% of transgender adolescents 
and 18.4–82.1% of transgender adults desired children, 
but FP utilization rates were 2–4% (Stolk et al. 2023). It is 
noteworthy that successful sperm/oocyte/gonadal tissue 
cryopreservation is only the beginning of the journey 
to successful family building. Multidisciplinary teams 
are required to ensure that TGD people have access to 
fertility preservation care and develop technologies 
that will enable them to use their cryopreserved cells 
or tissues for family building with minimal disruption 
to gender-affirming care. Figure 1 shows the journey of 
a TGD person to have a biological child. For TGD people 
with testes, ejaculated sperm or sperm from testicular 
tissues can be used to fertilize partner or donor eggs using 
standard Assisted Reproductive Technologies (ARTs). If 
the partner has testes, egg donation for same-sex couples 
and surrogacy is often required. For TGD people with 
ovaries, fertility seems to be less affected by hormonal 
treatment compared to TGD people with testes. Once 
oocytes are collected by hormonal stimulation or from 
ovarian tissues, partner or donor sperm and ART are 
required for fertilization and conception. If the partner 
has ovaries, sperm donation for same-sex couples will 
be needed. Surrogacy is possible but may not be needed 
if the partner is a biological female who will carry the 
pregnancy.

Conclusion

The impacts of gender-affirming treatments on fertility 
and family building should be discussed before and 
throughout treatment. Explaining options for fertility 
preservation and restoration provides a sense of 
reproductive autonomy, even if the patient is unsure of 
their family-building goals. Like FP for cancer patients, 
it is important to start these discussions early while the 
medical and research communities are still learning the 
impacts of gender-affirming treatments on the ovaries, 
testes, eggs, and sperm. Early intervention for FP may 
be important in some cases. For fertility preservation 

to accomplish its purpose (which is to allow TGD people 
to have biological children if they want to), it takes 
multidisciplinary teams, ranging from pediatric and 
adult endocrinologists, mental health professionals, 
reproductive medicine experts and scientists. Laws that 
support same-sex parenting, egg/sperm donation for 
same-sex couples, and surrogacy will help ensure that 
TGD people have the same access to reproductive care as 
cisgender people. There is an unmet need for counseling 
and education to cisgender and TGD communities 
about the availability, accessibility, and feasibility of 
fertility preservation and fertility restoration options 
for all people as well as the specific challenges and 
opportunities for TGD people.
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