
Road surface semantic segmentation for
autonomous driving
Huaqi Zhao1, Su Wang1, Xiang Peng1, Jeng-Shyang Pan2, Rui Wang3

and Xiaomin Liu1

1 The Heilongjiang Provincial Key Laboratory of Autonomous Intelligence and Information
Processing, School of Information and Electronic Technology, Jiamusi University, Jiamusi,
Heilongjiang, China

2College of Computer Science and Engineering, Shandong University of Science and Technology,
Qingdao, Shandong, China

3 Dongfeng District People’s Court, Jiamusi, Heilongjiang, China

ABSTRACT
Although semantic segmentation is widely employed in autonomous driving, its
performance in segmenting road surfaces falls short in complex traffic environments.
This study proposes a frequency-based semantic segmentation with a transformer
(FSSFormer) based on the sensitivity of semantic segmentation to frequency
information. Specifically, we propose a weight-sharing factorized attention to select
important frequency features that can improve the segmentation performance of
overlapping targets. Moreover, to address boundary information loss, we used a
cross-attention method combining spatial and frequency features to obtain further
detailed pixel information. To improve the segmentation accuracy in complex road
scenarios, we adopted a parallel-gated feedforward network segmentation method to
encode the position information. Extensive experiments demonstrate that the mIoU
of FSSFormer increased by 2% compared with existing segmentation methods on the
Cityscapes dataset.
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Keywords Semantic segmentation, Transformer, Weight-sharing factorized attention, Cross-
attention combining spatial and frequency features, Parallel-gated feedforward network

INTRODUCTION
With advances in self-driving technology, stable road scene segmentation is crucial for the
safe operation of autonomous driving systems. Semantic segmentation provides technical
support for road surface segmentation tasks. It is used to classify all pixel labels of an image
and has two characteristics compared to other vision tasks: pixel-by-pixel dense prediction
and multi-class representation (Dong, Wang & Wang, 2023). Although semantic
segmentation methods have achieved some good results in general pixel classification
tasks, they perform poorly in road surface segmentation tasks for complex urban scenes.
The reason is that these methods cannot mine pixel details and long-range context
information of an image (Duong, Nguyen & Jeon, 2021). Figure 1 shows one of the complex
road scenes which include complex intersections (large number of pedestrians and
vehicles), variable road conditions in bad weather, etc. Therefore, enhancing the
performance of road surface segmentation for complex scenes remains challenging.
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Traditional road surface segmentation methods utilize manually extracted features to
solve pixel-level label assignment problems,such as threshold selection (Otsu, 1979),
superpixel algorithms (Achanta et al., 2012), and graph algorithms (Boykov & Jolly, 2001).
With the development of deep learning, various methods based on fully convolutional
networks (FCN) perform well in semantic segmentation tasks (Deng et al., 2022).
DeepLabV3+ and PSPNet expand the receptive field by introducing a pooling module
based on a spatial pyramid to integrate the features at different levels (Chen et al., 2017;
Zhao et al., 2017). An HRNet can enhance semantic information by combining multiple
high-resolution branches for feature interaction (Wang et al., 2020b). OCNet enhances the
feature output of a backbone network through a global query context (Yuan, Chen &
Wang, 2020). However, semantic segmentation methods based solely on the use of
convolutions cannot establish effective context dependence on remote pixels in the image.
Therefore, segmentation performance is degraded in complex and messy road scenes.

Recently, transformers have shown promising performances in semantic segmentation
(Dosovitskiy et al., 2020; Liu et al., 2021; Touvron et al., 2021; Wang et al., 2021, 2022b).
DPT improves the performance of dense prediction tasks by building transformer-based
encoders (Ranftl, Bochkovskiy & Koltun, 2021). SETR introduces a sequence-to-sequence
approach that utilizes a pre-trained vision transformer (Vit) to extract features (Zheng
et al., 2021). However, SETR does not downsample the spatial resolution, which requires
considerable computation. SegFormer enhances efficiency by incorporating an encoder
based on a hierarchical transformer and a lightweight decoder (Xie et al., 2021). A series of
semantic segmentation methods with transformers uses self-attention to update the
semantic information of an image. However, self-attention has a high computational cost,
which makes it unsuitable for realistic scenarios (Dosovitskiy et al., 2020).

However, it is very difficult to simplify the complexity of transformer from the
perspective of spatial domain. Inspired by the fact that frequency features perform well in

Figure 1 An example of a complex urban scene. This image is taken by our team.
Full-size DOI: 10.7717/peerj-cs.2250/fig-1
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classification tasks (Rao et al., 2021; Wang et al., 2020a), we find that semantic
segmentation is also very sensitive to frequency features. Thus, we propose an important
frequency feature extraction method to directly capture the frequency features in the
spatial domain by constructing a dynamic frequency capture module.

The existing road scene semantic segmentation methods have the following
shortcomings:

1. These methods cannot establish context dependence on the remote pixels of an image,
resulting in low segmentation performance for overlapping or incomplete objects in the
road scene (Cira et al., 2022; Tian et al., 2022).

2. Existing road surface segmentation methods only focus on the spatial features of an
image and do not consider the feature interactions between different domains, which
results in boundary information loss for the segmented object (Vachmanus et al., 2020;
Tian et al., 2022).

3. The methods cannot encode location information, resulting in poor target segmentation
performance in complex road scenes (Cira et al., 2022; Vachmanus et al., 2020).

To solve these problems, we propose a frequency-based semantic segmentation with a
transformer (FSSFormer) and the experiment is carried out around three parts parameter
analysis, ablation experiments and comparative experiments. Also, compared with other
segmentation methods, FSSFormer has a significant improvement in the evaluation
metrics mIoU and FPS on four publicly available datasets. Besides, FSSFormer makes three
main contributions.

1. Weight-sharing factorized attention (WSFA) is proposed to select important frequency
features. This method constructs a dynamic frequency-capture module that enhances the
differences between categories to enhance the segmentation accuracy of overlapping
objects.

2. A cross-attention method combining spatial and frequency features is proposed to
further extract detailed pixel information. This method obtains the boundary information
of a segmented object by realizing the feature interactions between the spatial and
frequency domains.

3. A parallel-gated feedforward network segmentation method is proposed to encode the
location information. This method improves the segmentation performance of a target in
complex road scenarios by learning the local structures of images.

RELATED WORK
Frequency feature extraction methods
Recently, scholars have found that high-level contextual semantic information contained
in the frequency domain can help semantic segmentation methods learn the differences
between categories, which makes the segmentation boundaries between different objects
clearer (Dong, Wang & Wang, 2023). The WDSBLN obtains the deep features of SAR
images to achieve better classification performance by analyzing the frequency information
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(Ni et al., 2023). Rao et al. (2021) proposed a global filter network to capture frequency
features and obtain better image classification results. Dong, Wang & Wang (2023)
proposed an adaptive frequency filter to extract frequency features that preserve contextual
semantic information in high-resolution features. Li et al. (2021) proposed a discriminant
feature learning framework for frequency perception to mine the frequency information of
images. Various frequency feature extraction methods obtain high-level semantic
information from images in the frequency domain. Therefore, they have important
application value for semantic segmentation to extract frequency features.

Cross-attention
Scholars have proposed cross-attention by realizing the interaction of information between
different branches or different modules (Wang et al., 2022a). For example, Wang et al.
(2022a) adopted cross-attention between different resolutions to fully realize the
interaction of the semantic information of low- and high-resolution branches. Chen, Fan
& Panda (2021) proposed a token fusion strategy with cross-attention to extract multiscale
features.Wei et al. (2020) extracted the correlation features within and between modalities
using cross-attention. Zhu et al. (2022) designed a dual cross-attention method for learning
subtle features and identifying fine-grained targets. Lin et al. (2022) achieved good
performance with low computational cost by building a hierarchical network of a cross-
attention transformer (CAT). However, these cross-attention methods realize the
interaction of information in the spatial domain, which results in a limited receptive field
for features. Therefore, the use of cross-attention between different domains is of great
research significance.

Feedforward network
As a component of the transformer, a typical feedforward network cannot output high-
quality features owing to its simple structure, resulting in poor generalization performance
of segmentation methods (Zamir et al., 2022). Zamir et al. (2022) designed a gated
feedforward network based on depthwise convolution to perform feature conversion. Xie
et al. (2021) introduced a 3� 3 depth-wise convolution in a feedforward network to
provide location information. Dauphin et al. (2017) used a simplified gating mechanism in
feedforward networks to capture the local contextual relationships between features. Feed-
forward networks with a single gating mechanism cannot yield powerful representations,
leading to poor segmentation performance. Therefore, we propose a parallel-gated
feedforward network segmentation method that improves the segmentation performance
of a target in complex road scenarios by learning the local structures of images.

FREQUENCY-BASED SEMANTIC SEGMENTATION WITH
TRANSFORMER
Existing road-surface segmentation methods cannot capture complete contextual semantic
information, leading to a decline in the segmentation performance of overlapping objects
in road scenes. Moreover, these methods ignore the combination of spatial and frequency
features and lose considerable edge-detail information. Furthermore, existing
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segmentation methods cannot encode location information, which decreases the
segmentation performance of complex road surfaces. Therefore, we propose frequency-
based semantic segmentation with Transformer (FSSFormer). The framework of the
FSSFormer is shown in Fig. 2. We start with an input image and apply a convolutional
layer and three successive residual layers (He et al., 2021) to obtain the reduced-resolution
feature X̂, and X̂ is input to the dynamic frequency capture module to generate the
frequency features X̂A; X̂ is then input into the linear attention operator to convert X̂ into
the spatial feature X̂s, and next the frequency feature X̂A and X̂s are input into the cross-
attention combining spatial and frequency features module to generate the mixed feature

X̂F ; finally, X̂F is input into the parallel-gated feedforward network module to generate the
deep feature X̂P, and X̂P is input into the segmentation head to output the segmented
image. Based on the above content, we study three parts: the important frequency feature
extraction method based on weight-sharing factorized attention, the cross-attention
method combining spatial and frequency features, and the parallel-gated feedforward
network segmentation method.

Important frequency feature extraction method based on weight-
sharing factorized attention
Road surface segmentation is a highly complex task in pixel-level classification that results
in category confusion, leading to low segmentation performance of overlapping or
incomplete objects in road scenes (Dong, Wang &Wang, 2023). Inspired by AFFormer, we

Figure 2 The architecture of proposed segmentation method. Full-size DOI: 10.7717/peerj-cs.2250/fig-2
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propose an important frequency feature extraction method based on weight-sharing
factorized attention (WSFA). By constructing a dynamic frequency capture module, the
frequency features of the image are directly captured in the spatial domain, and WSFA is
then used to select important frequency features dynamically.

The core components of the dynamic frequency capture module are shown in Fig. 3,
including the adaptive low-frequency capture kernel (ALFCK), adaptive high-frequency
capture kernel (AHFCK), and WSFA. First, the feature X̂ is generated by a convolutional
layer and three consecutive residual layers, and then X̂ is converted into X by
dimensionality reduction, and X applies the ALFCK to obtain the low-frequency feature.
Subsequently, X and the low-frequency feature are then converted into high-frequency
features by the AHFCK. Finally, the low- and high-frequency features are aggregated to
obtain frequency features, which are then applied to WSFA to generate the important
frequency feature X̂A. In the following section, ALFCK, AHFCK, and WSFA are
introduced.

Adaptive low-frequency capture kernel
Low-frequency features contain the most contextual semantic information in an image. In
this study, average pooling was used as an adaptive low-frequency capture kernel to
capture low-frequency features dynamically. Since different images have different cut-off
frequencies, “adaptive” means that different groups of pooling are set to capture the low-
frequency features according to the kernel size and step size. Given the input

X̂ 2 RB�C4�H
16�W

16. The formula for the adaptive low-frequency capture kernel is as follows:

X ¼ reshape ðX̂Þ (1)

ALFðXÞ ¼ B ðconcat ð’s�s ðxmÞÞÞ: (2)

In Eq. (1), reshapeð�Þ represents dimension conversion; X 2 RB�ðH16�W16Þ�C4 . In Eq. (2), xm

represents dividing the given feature into m groups; ’s�sð�Þ represents an adaptive average
pooling with an output size of S� S; concatð�Þ represents splicing; and Bð�Þ represents the
upsampling operation of bilinear interpolation.
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Zhao et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2250 6/28

http://dx.doi.org/10.7717/peerj-cs.2250/fig-3
http://dx.doi.org/10.7717/peerj-cs.2250
https://peerj.com/computer-science/


Adaptive high-frequency capture kernel
The high-frequency features of images are key to retaining their details during semantic
segmentation. To reduce computational complexity, this study directly utilizes low-
frequency features to dynamically capture the high-frequency features of different images,
which are expressed as

AHF ðXÞ ¼ X � ðX � ALF ðXÞÞ (3)

where X represents the features projected onto lower dimensions. ALFðXÞ represents low-
frequency features. This method obtains high-frequency features by subtracting low-
frequency features from the original image features (Jiang, 2018). Moreover, segmentation
noise is suppressed by using the Hadamard product of the original and high-frequency
features (Dong, Wang & Wang, 2023).

Weight-sharing factorized attention
For high-frequency and low-frequency features, our goal is to select the key frequency
features that can capture global contextual semantic information. Therefore, this study
proposes WSFA. By designing an external, learnable, and shared weight space RS, the
correlation between all the frequency features of the image is implicitly considered to select
the important frequency features that are helpful for semantic segmentation.

Factorized attention uses the identity and Softmaxð�Þ functions to factorize the Softmax
attention map of self-attention approximately. Factorized attention first computes the
matrix multiplication of the key vector K and value vector V. Subsequently, the Softmaxð�Þ
function is used to activate the matrix product, and finally, the matrix multiplication of the
query vector Q and the result of the previous step are calculated. Given the input low-
frequency feature ALFðXÞ and high-frequency feature AHFðXÞ, the formulas for the
factorized attention FAðQ;K;VÞ are defined as follows:

XLH ¼ concat ðALFðXÞ; AHFðXÞÞ (4)

Q;K;V ¼ Linear ðWdXLHÞ (5)

FAðQ;K;VÞ ¼ Qffiffiffiffi
C

p ðSoftmax ðKTÞ � V: (6)

In Eq. (4), XLH represents the aggregated frequency features, and concatð�Þ represents
the concatenation operation. In Eq. (5), Linearð�Þ is the learnable linear layer, and Wd

represents 3� 3 depth-wise convolution. In Eq. (6), C is the channel dimension of query
vector Q. Moreover, factorized attention significantly degrades computational complexity
by factorizing (Xu et al., 2021).

WSFA introduces an external weight RS based on the factorized attention. First, the
external weight RS and the value vector V are matrix multiplied to obtain the attention
map, and then the feature FA ðQ; K; VÞ, which are generated by the factorized attention,
are multiplied with the attention map to generate the important frequency features. The
formulas for WSFA EFA ðQ; K; VÞ are as follows:
EFA ðQ; K; VÞ ¼ FA ðQ; K; VÞ � Norm ðV � RSÞ (7)

X̂A ¼ reshape ðEFAðQ; K; VÞÞ (8)
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where Normð�Þ represents normalization, and RS 2 RB�ðH16�W16Þ�C represents learnable
weights. WSFA can select important frequency features that help capture high-level
contextual semantic information by introducing a shared weight, RS.

In summary, we proposed an important frequency feature extraction method based on
WSFA. In the dynamic frequency capture module, an adaptive low-frequency capture
kernel and an adaptive high-frequency capture kernel are used to directly capture the low-
and high-frequency features in the spatial domain, and WSFA is proposed to select and
enhance important frequency features.

Cross-attention method combining spatial and frequency features
Existing semantic segmentation methods extract only spatial features and ignore frequency
features, resulting in the loss of detailed image information. Therefore, we propose a cross-
attention method combining spatial and frequency features, which realizes the interaction
of spatial and frequency features to obtain segmentation edge detail information. The
framework of cross-attention, which combines spatial and frequency features, is shown in
Fig. 4. The inputs are the spatial feature XS and frequency feature X̂A, and the cross-
attention mechanism is then applied to generate the mixed feature X̂F of different domains.
The generation of frequency features is introduced. In the following section, we introduce
the generation of spatial features using the linear attention operator module and the
interaction of features between different domains with cross-attention combining spatial
and frequency features.

The spatial feature XS 2 RB�C4�H
16�W

16 is generated by the linear attention operator
module (LAO) inspired by external attention (Guo et al., 2022). As shown in Fig. 5, the
input of LAO is the reduced-resolution feature X̂, and the output is the spatial feature XS.
XS is defined as:

XS ¼ DN ðX̂ � KT
e Þ � Ve (9)

where Ke; Ve 2 RM�D are learnable weight parameters, M is the resolution size of the
feature, and DNð�Þ is the double normalization operation. Moreover, we eliminated the
multihead mechanism of external attention to reduce the computational cost.

In the cross-attention combined spatial and frequency feature modules, the inputs were
the spatial feature XS and frequency feature X̂A. First, the input X̂A applies a dimension
transformation to generate XA 2 R1�ðB�C4Þ�H

16�W
16. XA is expressed as:

XA ¼ reshape ðX̂AÞ: (10)

Second, to make the spatial features and frequency features better fusion in each
dimension, the spatial feature X undergoes a series of matrix operations such as
normalization, pooling, convolution, splitting along the channel dimension, and
dimension conversion to generate two cross-feature vectors: KS 2 RðB�144Þ�C5 and

VS 2 RðB�C5Þ�144. KS and VS are defined as follows:

KS; VS ¼ r ðhðW1�1 � Pooling ðNorm ðXSÞÞÞÞ (11)
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where rð�Þ and hð�Þ represent dimension conversion and matrix splitting respectively,
W1�1 represents 1� 1 convolution, Poolingð�Þ represents the pooling operation, and
Normð�Þ represents the normalization.

Finally, since simple feature aggregation operations cannot realize feature interaction
between different domains, a cross-attention operation is applied to generate the hybrid
feature XF 2 R1�ðB�C5Þ�H

16�W
16, and then XF performs dimension transformation to obtain the

output X̂F 2 RB�C5�H
16�W

16. X̂F is expressed as:

XF ¼ Softmax
XA � KT

Sffiffiffiffiffi
df

p
 !

� VS (12)

X̂F ¼ reshape ðXFÞ (13)

where df represents the channel dimensions of XA. Moreover, when the space size of the
cross feature is 12� 12, our FSSFormer exhibits the best segmentation performance. The
specific experimental details are presented in “Experiments”.

In summary, the cross-attention method that combines spatial and frequency features
can obtain detailed image information through the interaction of the spatial and frequency
features.

Figure 4 The structure of the cross-attention combining spatial and frequency features.
Full-size DOI: 10.7717/peerj-cs.2250/fig-4
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Parallel-gated feedforward network segmentation method
Existing segmentation methods perform well for simple scenes. However, owing to the
poor generalization performance, the segmentation accuracy of complex road surfaces
decreases. As the core component of a transformer, a feedforward network is typically
composed of two fully connected layers and nonlinear activation functions. However, this
network structure could only process pixels at different positions in the same manner
(Xie et al., 2021). Because the pixel information at different positions is different, this
structure cannot obtain the local information of images, resulting in poor generalization
ability. Therefore, this article proposes a parallel-gated feedforward network segmentation
method that improves the feature information flow in the feedforward network from two
aspects: the parallel mechanism and the gated mechanism based on the GeLu activation
function. The architecture of the parallel-gated feedforward network is shown in Fig. 6.
First, the input mixed feature X̂F is divided into two sets of features: XF1, XF2 by applying a
parallel mechanism, and then XF1, XF2 are used as two parallel branches to generate
features Y1, Y2, respectively, by applying a gated mechanism. Finally, Y1 and Y2 are
aggregated to generate the enhanced feature X̂P. Specific details of the parallel and gated
mechanisms are presented below.

Parallel mechanism refers to parallel computing and has two advantages. The parallel
mechanism retains the advantages of the multihead mechanism in the transformer to a
certain extent. Conversely, the relationship between pixels at different positions is captured
by generating two different paths for feature mapping. Given an input feature vector

X̂F 2 RB�C5�H
16�W

16, the formula is as follows:

XF1; XF2 ¼ Split ðX̂FÞ: (14)

In Eq. (14), Splitð�Þ represents splitting the feature into two parallel branch features; XF1

and XF2 represent the features of two parallel branches, respectively.
Moreover, to learn the local structure of images, a gated mechanism was designed as an

element-wise product of two parallel branches, inspired by Restormer (Zamir et al., 2022).
First, the two parallel branches use the BatchNorm normalization function and depthwise
convolution to encode different pixel positions. Second, the GeLu activation function is
used to activate the encoded features in the two parallel branches. Finally, the element
product operation was applied to two parallel branches to realize the interaction of pixels
at different positions. The formula used is as follows:

Y1 ¼ f ðW1
dW

1
p ðBNðXF1ÞÞÞ � W2

dW
2
p ðBN ðXF2ÞÞ (15)

Y2 ¼ W1
dW

1
p ðBNðXF1ÞÞ �f ðW2

dW
2
p ðBN ðXF2ÞÞÞ (16)

where Wð�Þ
p represents 1� 1 pixel convolution. Wð�Þ

d represents 3� 3 depth-wise
convolution. fð�Þ represents the GeLu activation function (Hendrycks & Gimpel, 2016).
BNð�Þ represents batch normalization (Ioffe & Szegedy, 2015). The � represents element-
wise multiplication.

Zhao et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2250 10/28

http://dx.doi.org/10.7717/peerj-cs.2250
https://peerj.com/computer-science/


Finally, the feature maps of the two parallel branches were spliced together, and the
output feature was X̂P, as shown in the following formula:

EGðXÞ ¼ concat ðY1; Y2Þ (17)

X̂P ¼ W0
pEG ðXFÞ þ XF (18)

where concatð�Þ is the splicing operation.
The deep features X̂P are then fed into the segmentation head, which consists of two

convolutional layers, and the segmentation head is used to output the segmented image.
Generally, the proposed parallel-gated feedforward network segmentation method

enhances the feature representation by encoding the position information and learning the
local structure of the image, which improves the segmentation performance of the target in
complex road scenes.

EXPERIMENTS
We validated the proposed FSSFormer using four publicly available datasets: Cityscapes
(Cordts et al., 2016), DarkZurich (Sakaridis, Dai & Van Gool, 2020), ACDC (Sakaridis, Dai
& Van Gool, 2021) and COCO-Stuff (Caesar, Uijlings & Ferrari, 2018). This section
focuses on three aspects: parameter analysis, ablation experiments, and comparative
experiments. All experiments are conducted on a single RTX 2080Ti.

Experimental setup
We used the Paddle1.8.0 framework (Wang et al., 2022a) for the experiments and
uniformly used the AdamW optimizer. The initial learning rate was set to 0.0004, and the
weight attenuation was set to 0.0125. Additionally, we used Params, mIoU, precision,
recall, and FPS to evaluate the segmentation performance. Params represents the number
of model parameters, and mIoU represents the ratio of the intersection and union of two
sets of true and predicted values. Precision is the probability that a given class is correct.
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Figure 6 The structure of the parallel-gated feedforward network module. Full-size DOI: 10.7717/peerj-cs.2250/fig-6
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Recall is the probability that a class is correctly predicted among the true values. The mIoU,
precision, and recall were calculated as shown in Eqs. (19)–(21):

mIoU ¼ 1
kþ 1

Xk
i¼0

PiiPk
j¼0 Pij þ

Pk
j¼0 ðPji � PiiÞ

(19)

Precision ¼ TP
ðTP þ FPÞ (20)

Recall ¼ TP
ðTP þ FNÞ : (21)

In Eq. (19), the relationship between classes is defined as P, which is used to represent
the probability of true and false positives of the pixels. In Eq. (20), TP represents true
positives, and FP represents false positives. In Eq. (21), FN represents a false negative.

Moreover, FPS represents the number of pictures processed per second. The FPS is
measured on a single RTX 2080Ti without tensorRT acceleration by default.

Parameter analysis
In this study, a weight-sharing factorized attention is designed to enhance the
segmentation accuracy of overlapping targets. A cross-attention method combining spatial
and frequency features is introduced to obtain boundary information. A parallel-gated
feedforward network segmentation method is proposed to improve the segmentation
performance of the target in complex scenes. This section presents a parameter analysis of
the three modules.

Parameter analysis of the group number M of important frequency feature
extraction method

To explore the impact of the group number M of the low-frequency capture kernel on the
important frequency feature extraction method, this section uses group number M as a
parameter for experimental analysis. The values of M range from 2 to 9 respectively.

As shown in Fig. 7, when the number of groups of low-frequency capture kernels was
four, the mIoU was the highest, reaching 73.38%, which was 3.25% higher than the lowest.
Within a certain range, the larger the value of M, the more low-frequency features of
different frequency bands are captured. Therefore, the mIoU initially increased with an
increase in M. Beyond a certain range, the captured low-frequency features contain more
segmentation noise, which degrades the semantic segmentation performance. Therefore,
as the value of M increased, the mIoU slowly decreased. Through the above experimental
analysis, it is proven that the extraction of frequency features substantially improves
segmentation performance.

Parameter analysis of cross-feature space size of the cross-attention method

combining spatial and frequency features
To explore the influence of different cross-feature space sizes on FSSFormer, this section
sets the cross-feature space size S as the experimental parameter and designs eight groups
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of experiments with S ¼ 6� 6, 8� 8, 10� 10, 12� 12, 14� 14, 16� 16, 18� 18 and
20� 20. The experimental results are shown in Fig. 8.

As shown in Fig. 8, when the size of the cross-feature space was 12� 12, the mIoU
reached the highest value of 73.38%, which was 0.82% higher than the lowest value.
Moreover, with an increase in the S value, the mIoU value also increases; when the S value
is 144, it reaches a peak value of 73.38%. With an increase in the S value, the mIoU value
slowly decreases. When the space size of the spatial and frequency features are closer
together, the features in different domains interact better. Because the space size of the
feature in the frequency range was 12� 12, the mIoU reached its maximum when S was
set to 12� 12. Based on the above experimental analysis, the cross-attention method
combining spatial and frequency features can improve segmentation performance through
the interaction of features between different domains.

Parameter analysis of depth-wise convolution of the parallel-gated feedfor-
ward network segmentation method
To explore the impact of different groups of depthwise convolutions in a parallel-gated
feedforward network, group G was set as the experimental parameter, and eight groups of
experiments were designed with G ¼ 8, 16, 32, 64, 128, 256, 512, and 1,024. The
experimental results are shown in Fig. 9.

As shown in Fig. 9, the mIoU also increased with an increase in G. However, the larger
the value of G, the higher the computational cost. When the value of G exceeded a certain
range, the speed of the model significantly degraded. To balance speed and segmentation
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Figure 7 Parameter analysis of the group number M of important frequency feature extraction
method. The red-dot data point shows that when the number of groups of low-frequency capture
kernels was four, the mIoU was the highest, reaching 73.38%.

Full-size DOI: 10.7717/peerj-cs.2250/fig-7
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Figure 8 Parameter analysis of cross-feature space size of cross-attention method combining spatial
and frequency features. The red-dot data point shows that when the size of the cross-feature space was
12 × 12, the mIoU reached the highest value of 73.38%. Full-size DOI: 10.7717/peerj-cs.2250/fig-8

(8,71.64%)

(16,72.13%)

(32,72.41%)

(64,72.57%)

(128,72.69%)

(256,72.92%)

(512,73.02%)

(1024,73.38%)

8 16 32 64 128 256 512 1024
71.0
71.2
71.4
71.6
71.8
72.0
72.2
72.4
72.6
72.8
73.0
73.2
73.4
73.6
73.8
74.0

Group number of depthwise convolution

m
Io

U
(%

)

Figure 9 Parameter analysis of depth-wise convolutions of parallel-gated feedforward network
segmentation method. The red-dot data point shows that when G was 1,024, the mIoU value was
73.38%. Full-size DOI: 10.7717/peerj-cs.2250/fig-9
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performance, 1,024 was set as the value of G. When G was 1,024, the mIoU value was
73.38%, which was 1.74% higher than the lowest value. This also proves that the use of
different depthwise convolutions in a parallel-gated feedforward network impacts
segmentation performance.

Ablation studies and analysis
Ablation experiments were conducted using the Cityscapes (Cordts et al., 2016) dataset.
The training settings for the experiments described in this section are the same as those
described above.

Ablation experiment results of each module
To prove the performance of the dynamic frequency capture module, the cross-attention
combining spatial and frequency feature modules, and the parallel-gated feedforward
network module proposed in this study, this section conducts experimental verification on
the Cityscapes (Cordts et al., 2016) dataset.

In this section, the design and experiments for each module are described based on the
transformer network. In Table 1, DFCM represents the dynamic frequency capture
module, CACSF represents cross-attention combining spatial and frequency features, and
PGFFN represents the parallel-gated feedforward network module. As shown in Table 1,
DFCM improves the segmentation accuracy of overlapping objects by capturing high-level
contextual semantic information; compared with the transformer-based segmentation
method, mIoU is increased by 3.92%. From the data analysis in Fig. 10, the design of the
CACSF further improves the semantic segmentation performance by obtaining image
boundary information, and the value of mIoU is 1.88% higher than that without the
CACSF. Finally, although the parallel-gated feedforward network module only improves
the mIoU by 0.41%, it can be seen from Fig. 10 that the precision of PGFFN reaches the
highest, which indirectly proves that encoding the position information has substantial
help in improving the semantic segmentation performance. Figure 10 illustrates the
changes in recall and precision in the four sets of ablation experiments. Moreover,
Experiments 3 and 4 had the highest recall and precision, respectively.

Advantages of important frequency feature extraction method based on
weight-sharing factorized attention
To prove that WSFA can capture high-level contextual semantic information and
effectively segment the overlapping targets, this section presents experimental verification

Table 1 The experimental results of proposed segmentation methods on Cityscapes.

DFCM CACSF PGFFN mIoU

Experiment 1 67.17%

Experiment 2 ✓ 71.09%

Experiment 3 ✓ ✓ 72.97%

Experiment 4 ✓ ✓ ✓ 73.38%

Zhao et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2250 15/28

http://dx.doi.org/10.7717/peerj-cs.2250
https://peerj.com/computer-science/


using different types of attention for a frequency feature extraction method based on
WSFA.

As shown in Table 2, we found that WSFA was better than factorized attention in terms
of speed and accuracy, and the mIoU value was improved by 3.96%. Moreover, the
efficiency of WSFA was much higher than that of self-attention, and the segmentation
method with WSFA was almost twice as fast as that with self-attention. The experimental
results show that WSFA can improve segmentation performance.

Advantages of cross-attention method combining spatial and frequency
features
To verify the effectiveness of the cross-attention method, which combines spatial and
frequency features, different cross-attention methods were used for experimental
verification.
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Figure 10 Changes in mIoU, precision and recall in ablation experiments.
Full-size DOI: 10.7717/peerj-cs.2250/fig-10

Table 2 The impact of our segmentation methods with different types of attention.

Method GPU FPS mIoU

Not using attention RTX 2080Ti 74.2 63.09%

Factorized attention RTX 2080Ti 73.1 69.42%

Self-attention RTX 2080Ti 30.8 72.87%

Weight sharing factorized attention RTX 2080Ti 73.7 73.38%
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As shown in Table 3, the mIoU of the segmentation method with typical cross-attention
is 1.03% higher than that without cross-attention, indicating that the cross-attention
mechanism is effective for the segmentation method. The mIoU of the segmentation
method with cross-attention combining spatial and frequency features is 2.26% higher
than that with typical cross-attention, which indicates that cross-attention combining
spatial and frequency features can obtain the boundary information of the segmented
target, thereby improving the performance of semantic segmentation.

Advantages of parallel-gated feedforward network segmentation method
To prove that the parallel-gated feedforward network segmentation method can enhance
the segmentation accuracy of targets in complex scenes, we will study whether the gated or
parallel mechanism is adopted.

As shown in Table 4, the mIoU of the segmentation method with the gated feedforward
network was 0.46% higher than that of the typical feedforward network, and the
improvement in the segmentation performance was not significant. Moreover, the mIoU
of the segmentation method with the parallel feedforward network was 1.58% higher than
that of the typical feedforward network, indicating that the parallel mechanism was
effective for our segmentation method. Furthermore, the segmentation performance of our
method with the parallel-gated feedforward network was significantly enhanced compared
to that of the typical feedforward network, and the mIoU was increased by 3.58%. The
experimental results show that the parallel-gated feedforward network can improve
semantic segmentation performance by encoding location information.

Comparison with state-of-the-art semantic segmentation methods
In this section, we compare FSSFormer with top-ranking semantic segmentation methods
and conduct experiments on Cityscapes (Cordts et al., 2016), COCO-Stuff (Caesar, Uijlings
& Ferrari, 2018), ACDC (Sakaridis, Dai & Van Gool, 2021) and DarkZurich datasets
(Sakaridis, Dai & Van Gool, 2020).

Table 3 The impact of our segmentation methods with different types of cross-attention.

Method GPU FPS mIoU

Not using cross-attention RTX 2080Ti 74.5 68.09%

Typical cross-attention RTX 2080Ti 74.1 69.12%

Cross-attention across space-frequency features RTX 2080Ti 73.7 73.38%

Table 4 The impact of our segmentation method with different feedforward network.

Method GPU FPS mIoU

Typical feedforward network RTX 2080Ti 73.9 69.8%

Gated feedforward network RTX 2080Ti 73.8 70.26%

Parallel feedforward network RTX 2080Ti 73.8 71.38%

Parallel gated feedforward network RTX 2080Ti 73.7 73.38%
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Results on Cityscapes dataset
Previous works on semantic segmentation have used Cityscapes (Cordts et al., 2016) as a
standard benchmark, considering its high-quality annotation. As shown in Table 5, we
tested the speed of models published for nearly 2 years on our platform with the same
settings for a fair comparison. The experimental results show that FSSFormer outperforms
the current leaderboard SOTA methods (VLTSeg and PIDNet-L) in both speed and
accuracy, increasing the accuracy from 72.5% to 73.38% mIOU, making it the most
accurate model in the real-time domain. Also, transformer-based semantic segmentation
methods, such as SegFormer, performed better than convolution-based semantic
segmentation methods, such as DeepLabV3+ and PSPNet. However, the number of
parameters in transformer-based semantic segmentation methods is large, making them
unsuitable for real-world applications. Moreover, our FSSFormer achieved 73.38% mIoU
only with 7.8 M parameters. Compared with SegFormer, the number of parameters in
FSSFormer was reduced by 5 M, and the mIoU was increased by 1%. Furthermore,
compared with lightweight semantic segmentation methods such as RTFormer,
FSSFormer improves the mIoU by nearly 2% while using only half of the model
parameters. To reflect the training process of each method more intuitively, the changes in
the mIoU values with an increase in model iterations are shown in Fig. 10.

As shown in Fig. 11, the overall curve of the proposed segmentation method is smoother
than those of the other segmentation methods, indicating that our segmentation method is
more stable throughout the training process. However, in the training process of the
current leaderboard SOTA method PIDNet-L, there is a large fluctuation range, which
indicates that the model is unstable. In the early training stage, the mIoU of the proposed
segmentation method steadily increased. When the iteration is 80,000, the mIoU value of
the proposed method is stable at approximately 71%, and our segmentation method can
complete the training process faster than the other segmentation methods. In summary,
the segmentation performance of FSSFormer was better than that of the other semantic
segmentation methods during training.

Table 5 Comparison to semantic segmentation methods on Cityscapes.

Segmentation methods GPU Params mIoU Resolution FPS

BiSeNetV2 (Yu et al., 2018) GTX 1080Ti 49.0 M 71.89% 1;024� 512 47.3

SegFormer (Xie et al., 2021) RTX 3090 84.7 M 72.38% 1,024 � 512 48.6

FCN (Long, Shelhamer & Darrell, 2015) RTX 2080Ti 9.8 M 63.29% 1;024� 512 14.2

OCRNet (Yuan, Chen & Wang, 2020) RTX 2080Ti 10.5 M 67.7% 1;024� 512 30.3

PSPNet (Zhao et al., 2017) RTX 2080Ti 13.7 M 70.2% 1;024� 512 11.2

DeepLab V3+ (Chen et al., 2018) RTX 2080Ti 15.4 M 70.54% 1;024� 512 8.4

RTFormer (Wang et al., 2022a) RTX 2080Ti 16.8 M 71.13% 1;024� 512 71.4

PIDNet-L (Xu, Xiong & Bhattacharyya, 2023) RTX 2080Ti 10.3 M 72.13% 1;536� 768 73.2

VLTSeg (Hümmer et al., 2023) RTX 2080Ti 28.3 M 72.5% 1;024� 512 72.1

DDRNet-23 (Hong et al., 2021) RTX 2080Ti 20.1 M 72.6% 1;024� 512 75.2

Ours RTX 2080Ti 7.8 M 73.38% 1;024� 512 73.7
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Results on COCO-Stuff dataset
The COCO-Stuff dataset (Caesar, Uijlings & Ferrari, 2018) contains several intractable
samples from the COCO dataset. For the COCO-Stuff dataset, only the Params of
RTFormer, OCRNet, VLTSeg, PIDNet is comparable with our model, so we tested their
speeds with the same settings on our platform for a fair comparison. As shown in Table 6,
FSSFormer provides much higher accuracy compared with other models with similar
inference speeds. FSSFormer outperforms the previous state-of-the-art model VLTSeg by
1.53% mIOU with a speedup of about 0.1 ms per image. Also, compared with lightweight
segmentation methods (such as RTFormer), the proposed segmentation method reduces
the number of parameters by 10 M. In addition, compared with semantic segmentation
methods based on transformer networks, such as SegFormer, the proposed segmentation
method achieves 33.8% mIoU with only 6.8 M Params, and the number of parameters is
degraded by 10 times while the speed is nearly doubled. Compared with the current
leaderboard SOTA method PIDNet-L, the number of parameters of FSSFormer was
reduced by 3.5 M, and the mIoU was increased by 2.6%. In summary, the proposed
segmentation method achieved the best tradeoff between speed and segmentation
performance.

As shown in Fig. 12, the trend of the proposed segmentation method steadily increased
in the early training stage and flattened in the later stage. Although some semantic
segmentation methods (such as SegFormer) have a higher mIoU than the proposed
method, the change span of the mIoU is large in the later stages, which means that they are
not stable throughout the training process. However, the two latest methods (VLTSeg and

m
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U
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iter

Figure 11 The mIoU changes of semantic segmentation methods at different iters on cityscapes.
Full-size DOI: 10.7717/peerj-cs.2250/fig-11
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PIDNet-L) show a wide range of stagnation in mIoU during training. According to the
analysis, the performance of FSSFormer on COCO-Stuff in terms of training stability was
better than that of the other semantic segmentation methods.

Results on ACDC dataset

ACDC (Sakaridis, Dai & Van Gool, 2021) is a dataset of autonomous driving scenarios
under adverse weather conditions. We conduct experiments on the ACDC dataset to test
the generalization performance of our model. As shown in Table 7, our FSSFormer

Table 6 Comparison to semantic segmentation methods on COCO-Stuff.

Segmentation methods GPU Params mIoU Resolution FPS

BiSeNetV2 (Yu et al., 2018) GTX 1080Ti 5.2 M 25.2% 640� 640 52.4

SegFormer (Xie et al., 2021) RTX 3090 84.7 M 36.7% 640� 640 50.3

VLTSeg (Hümmer et al., 2023) RTX 2080Ti 28.3 M 32.27% 640� 640 76.3

DDRNet-23 (Hong et al., 2021) RTX 2080Ti 20.1 M 32.1% 640� 640 74.3

DeepLab V3+ (Chen et al., 2018) RTX 2080Ti 17.4 M 31.54% 640� 640 12.5

RTFormer (Wang et al., 2022a) RTX 2080Ti 16.8 M 35.3% 640� 640 66.1

PSPNet (Zhao et al., 2017) RTX 2080Ti 13.7 M 30.2% 640� 640 21.3

OCRNet (Yuan, Chen & Wang, 2020) RTX 2080Ti 13.5 M 37.9% 640� 640 35.2

PIDNet-L (Xu, Xiong & Bhattacharyya, 2023) RTX 2080Ti 10.3 M 31.2% 640� 640 75.8

FCN (Long, Shelhamer & Darrell, 2015) RTX 2080Ti 9.8 M 28.71% 640� 640 19

Ours RTX 2080Ti 6.8 M 33.8% 640� 640 76.9
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Figure 12 The mIoU changes of semantic segmentation methods at different iters on COCO-Stuff.
Full-size DOI: 10.7717/peerj-cs.2250/fig-12
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achieved 66.71% mIoU only with 7.8 M parameters. Moreover, compared with SegFormer
with the best segmentation performance, the inference speed per image of FSSFormer is
increased by 10 ms, and the mIoU was increased by 0.88%. Furthermore, compared with
lightweight semantic segmentation methods such as FCN, FFSFormer improves the mIoU
by nearly 3.49% while using 7.8 M parameters. However, the current leaderboard SOTA
method PIDNet-L, which performs well on Cityscapes (Cordts et al., 2016), has a mIoU of
only 23.96% on the ACDC dataset. The results show that our method is still quite
advantageous under severe weather conditions.

Results on DarkZurich dataset
DarkZurich (Sakaridis, Dai & Van Gool, 2020) is a nighttime driving dataset for
autonomous driving. Experiments are conducted on the DarkZurich dataset to test the
performance of our model when driving at night. As shown in Table 8, compared with the
VLTSeg with the best segmentation performance, the inference speed per image of
FSSFormer is increased by 0.02 ms, and the mIoU was increased by 0.46%. Besides,
compared with the FCN, which has the least parameters, although our method has 2 M
lower parameters, the mIoU was increased by 5.67%. Moreover, our FSSFormer achieved
40.96% mIoU only with 7.8 M parameters. Even in the dark environment, the
segmentation performance of the proposed method is also higher than other methods.
This reflects from the side that the generalization performance of our method is stronger
than that of other methods.

Visualized result analysis
To verify the practical application ability of the proposed method, the pictures of the road
scene taken by our team are used as the original images of the visualization results.

As shown in Fig. 13, compared with other segmentation methods, our segmentation
method has a better segmentation performance for overlapping vehicles and incomplete
road surfaces. Moreover, compared with BiseNet2, our method did not generate a

Table 7 Comparison to semantic segmentation methods on ACDC.

Segmentation methods GPU Params mIoU Resolution FPS

BiSeNetV2 (Yu et al., 2018) GTX 1080Ti 49.0 M 40.71% 1;024� 512 45.1

SegFormer (Xie et al., 2021) RTX 3090 12.8 M 65.83% 1;536� 768 45.3

PIDNet-L (Xu, Xiong & Bhattacharyya, 2023) RTX 2080Ti 10.3 M 23.96% 1;536� 768 72.4

OCRNet (Yuan, Chen & Wang, 2020) RTX 2080Ti 10.5 M 58.15% 1;024� 512 28.7

DeepLab V3+ (Chen et al., 2018) RTX 2080Ti 15.4 M 58.62% 1;024� 512 7.9

PSPNet (Zhao et al., 2017) RTX 2080Ti 13.7 M 59.31% 1;024� 512 10.6

FCN (Long, Shelhamer & Darrell, 2015) RTX 2080Ti 9.8 M 63.22% 1;024� 512 12.7

DDRNet-23 (Hong et al., 2021) RTX 2080Ti 20.1 M 63.59% 1;024� 512 71.5

VLTSeg (Hümmer et al., 2023) RTX 2080Ti 28.3 M 64.2% 1;024� 512 72.1

RTFormer (Wang et al., 2022a) RTX 2080Ti 16.8 M 64.29% 1;024� 512 69.2

Ours RTX 2080Ti 7.8 M 66.71% 1;024� 512 71.8
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Table 8 Comparison to semantic segmentation methods on DarkZurich.

Segmentation methods GPU Params mIoU Resolution FPS

BiSeNetV2 (Yu et al., 2018) GTX 1080Ti 49.0 M 37.91% 1;024� 512 48.2

SegFormer (Xie et al., 2021) RTX 3090 12.8 M 40.38% 1;536� 768 46.7

FCN (Long, Shelhamer & Darrell, 2015) RTX 2080Ti 9.8 M 35.29% 1;024� 512 13.4

DDRNet-23 (Hong et al., 2021) RTX 2080Ti 20.1 M 36.6% 1;024� 512 71.5

OCRNet (Yuan, Chen & Wang, 2020) RTX 2080Ti 10.5 M 37.4% 1;024� 512 31.2

RTFormer (Wang et al., 2022a) RTX 2080Ti 16.8 M 37.52% 1;024� 512 72.6

DeepLab V3+ (Chen et al., 2018) RTX 2080Ti 15.4 M 38.26% 1;024� 512 9.3

PSPNet (Zhao et al., 2017) RTX 2080Ti 13.7 M 39.7% 1;024� 512 12.3

PIDNet-L (Xu, Xiong & Bhattacharyya, 2023) RTX 2080Ti 10.3 M 39.82% 1;536� 768 73.8

VLTSeg (Hümmer et al., 2023) RTX 2080Ti 28.3 M 40.5% 1;024� 512 73.2

Ours RTX 2080Ti 7.8 M 40.96% 1;024� 512 74.1

Figure 13 Visualization results of semantic segmentation methods in complex road scenes. (A) Is the
original image; (B) is the segmentation image of the RTFormer; (C) is the segmentation image of the
DeepLabV3+; (D) is the segmentation image of the SegFormer; (E) is the segmentation image of the FCN;
(F) is the segmentation image of the PSPNet; (G) is the segmentation image of the BiseNet2; (H) is the
segmentation image of the ICNet; (I) is the segmentation image of our segmentation method.

Full-size DOI: 10.7717/peerj-cs.2250/fig-13
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significant amount of segmentation noise. This indicates that the proposed segmentation
method can obtain high-level semantic information, which enhances the differences
between categories.

As shown in Fig. 14, the segmentation boundaries between different objects, such as the
contours of pedestrians, vehicles, and road surfaces, were clearer in the segmentation
image obtained using our method. Furthermore, our FSSFormer can correctly segment
small, distant objects in an image. However, most segmentation methods fail to achieve
this goal. Moreover, our segmentation method maintains good segmentation performance
in both complex and simple scenes.

CONCLUSION
To address the problem that road surface segmentation performance decreases in complex
road scenes, we propose frequency-based semantic segmentation with a transformer
(FSSFormer). First, we propose WSFA to enhance the performance of overlapping or
incomplete target segmentation. Second, a cross-attention method combining spatial and
frequency features was used to obtain boundary information. Finally, a parallel-gated
feedforward network segmentation method is adopted to improve the accuracy of road

Figure 14 Visualization results of semantic segmentation methods in simple road scenes. (A) Is the
original image; (B) is the segmentation image of the RTFormer; (C) is the segmentation image of the
DeepLabV3+; (D) is the segmentation image of the SegFormer; (E) is the segmentation image of the FCN;
(F) is the segmentation image of the PSPNet; (G) is the segmentation image of the BiseNet2; (H) is the
segmentation image of the ICNet; (I) is the segmentation image of our segmentation method.

Full-size DOI: 10.7717/peerj-cs.2250/fig-14
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surface segmentation in complex scenes. Extensive experiments demonstrated that our
method improves mIoU, Precision and Recall by 2%, 0.9%, 3.1% respectively compared
with transformer-based method on the Cityscapes dataset. In addition, compared with
other segmentation methods, FSSFormer has the better generalization performance which
can be applied to the road surface segmentation under complex road conditions or
recognition of different driving scenarios.

Road segmentation technology for unmanned driving has always been a key and
challenging problem in computer vision tasks. Therefore, in the future, we will further
improve the speed of our method. Specifically, we will examine whether the combination
of convolution and attention can be used to replace the WSFA to speed up the operation.
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