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Abstract

The gut microbiome plays a crucial role in human health by influencing various physiological 

functions through complex interactions with the endocrine system. These interactions involve 

the production of metabolites, signaling molecules, and direct communication with endocrine 

cells, which modulate hormone secretion and activity. As a result, the microbiome can exert 

neuroendocrine effects and contribute to metabolic regulation, adiposity, and appetite control. 

Additionally, the gut microbiome influences reproductive health by altering levels of sex hormones 

such as estrogen and testosterone, potentially contributing to conditions like polycystic ovary 

syndrome (PCOS) and hypogonadism. Given these roles, targeting the gut microbiome offers 

researchers and clinicians novel opportunities to improve overall health and well-being. Probiotics, 

such as Lactobacillus and Bifidobacterium, are live beneficial microbes that help maintain gut 

health by balancing the microbiota. Prebiotics, non-digestible fibers, nourish these beneficial 

bacteria, promoting their growth and activity. When combined, probiotics and prebiotics form 

synbiotics, which work synergistically to enhance the gut microbiota balance and improve 

metabolic, immune, and hormonal health. This integrated approach shows promising potential 
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for managing conditions related to hormonal imbalances, though further research is needed to fully 

understand their specific mechanisms and therapeutic potential.
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1. Introduction

The human body is home to a vast array of microorganisms that reside in various areas, such 

as the gut, skin, mouth, and vagina, with the gastrointestinal (GI) tract being the primary 

site [1]. This collection of microorganisms forms the microbiome, which is composed of 

various microbial species known collectively as the microbiota [2]. The gut microbiota 

plays a critical role in human health, interacting closely with the endocrine system through 

mechanisms that involve hormones regulating host behavior, metabolism, immunity, insulin 

signaling, and other functions [3-5]. The gut microbiota can influence host behavior 

by modulating neurohormones like serotonin, dopamine, and gamma-aminobutyric acid 

(GABA), as well as stress hormones like cortisol [6].

The gut microbiota is increasingly being shown to influence the host immune net-work 

[7,8]. This relationship begins at birth, with the microbiota playing a crucial role in shaping 

immune system development, which in turn impacts the composition of the microbiome 

[7]. The gut microbiota also significantly affects the host’s metabolic status through 

multiple mechanisms. It produces short-chain fatty acids (SCFAs) like butyrate, propionate, 

and acetate. SCFAs via G protein-coupled receptor 43 (GPR43) activation can reduce 

inflammation and lipolysis, increase adipogenesis and leptin release, and ultimately lead 

to lower fat accumulation [9]. Additionally, SCFAs activate AMP kinase in muscles, which 

reduces lipid accumulation and improves insulin sensitivity [9], aiding in appetite regulation 

and weight management [9,10]. Furthermore, the gut microbiota produces metabolites that 

act as signaling molecules, influencing the release of key metabolically active hormones 

such as serotonin, glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and cholecystokinin 

(CKK) from enteroendocrine cells (EC) in the gut [3]. These hormones regulate important 

metabolic processes, including glucose metabolism, insulin sensitivity, adiposity, and 

appetite [3]. SCFAs, in particular, are known to modulate the secretion of these gut peptides 

[11]. GLP-1 and PYY, secreted by L-cells located primarily in the ileum and colon, play 

essential roles in regulating food intake and satiety. The gut microbiota’s influence on 

GLP-1 and PYY secretion highlights its significant implications for the development of 

metabolic diseases [3]. CCK, secreted from “I cells” predominantly found in the upper 

small intestine [12], is released in response to dietary fat and protein intake. However, the 

regulation of CCK by gut microbes is less well understood due to the limited exposure of 

CCK-containing cells to the microbiota in the small intestine [3].

Recent evidence highlights a possible significant role of the gut microbiota in 

regulating sex steroid levels. It affects estrogen metabolism through the estrobolome, a 

collection of bacterial genes encoding enzymes such as β-glucuronidase [13,14]. These 
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enzymes deconjugate estrogens, impacting their bioavailability and circulating levels [14]. 

Additionally, the gut microbiota has been identified as a major regulator of androgen 

metabolism in the intestines, leading to relatively high levels of free dihydrotestosterone 

(DHT), the most potent androgen, in the colonic contents of young and healthy mice and 

men [15].

A disrupted gut microbiome, in turn, can have detrimental effects on reproductive and 

metabolic health through hormonal fluctuations and inflammation. This imbalance in the gut 

microbiota can lead to altered sex hormone levels and metabolic dysfunctions, contributing 

to conditions such as PCOS, infertility, and various metabolic disorders [13,16-18].

2. Dysbiosis as a Possible Trigger of Hormonal Disorders

Gut dysbiosis refers to an imbalance or disruption in the composition and function of 

the gut microbiome. Dysbiosis can be triggered by various factors, including xenobiotics 

(such as prolonged antibiotic use), lifestyle habits (such as an unhealthy diet, smoking, 

and alcohol use), health status (such as chronic stress, infections, and chronic conditions 

like inflammatory bowel disease; IBD and irritable bowel syndrome; IBS), as well as 

environmental toxins, age, ethnicity, and genetic background [13,19,20] (Figure 1).

Gut dysbiosis can lead to alterations in the production and signaling of neurotransmitters 

and hormones, such as serotonin, dopamine, and cortisol [21]. These imbalances can have 

profound effects on mood, cognition, and overall brain function [22]. Individuals with gut 

dysbiosis are more likely to experience symptoms of depression and anxiety [23]. A study in 

germ-free (GF) mice and specific pathogen-free (SPF) mice showed that altering microbial 

colonization can affect behavioral responses to chronic stress by modulating hormones 

and hormone receptors in the hypothalamic–pituitary–adrenal (HPA) axis under stress [24]. 

Additionally, the altering gut microbiome can influence the production of neurotrophic 

factors, which are essential for brain development and repair [25].

Recent studies suggest a possible link between gut dysbiosis and female hormonal 

disorders [20]. Dysbiosis can lead to fluctuations in circulating estrogens by altering 

β-glucuronidase activity, which may contribute to metabolic complications, PCOS, and 

female infertility [13,16]. Additionally, dysbiosis may promote PCOS development, the 

most common reproductive endocrine disorder in females, by increasing gut permeability, 

leading to systemic inflammation and insulin resistance (IR) [26]. Dysbiosis-induced 

hypoestrogenemia could also influence the progression of endometriosis and its potential 

malignant transformation [27]. Hypoandrogenism in males and hyperandrogenism in 

females are both types of androgen disorders. Gut microbial imbalance can contribute 

to androgen synthesis dysfunction, which may lead to androgen-driven diseases such as 

obesity, metabolic syndrome, PCOS in females, and male hypogonadism [15,28].

Intestinal dysbiosis may affect the secretion of multiple hormones and vitamins, including 

vitamin D, thyroid hormones, and insulin [29,30]. Recent evidence indicates that primary 

hypothyroidism is associated with altered bacterial diversity and reduced SCFA production, 

which may contribute to thyroid dysfunction by lowering thyroxine levels [31]. There is also 
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an established link between the gut microbiome and other thyroid disorders, such as thyroid 

nodules, Hashimoto’s thyroiditis, and Graves’ disease [32-35].

A healthy gut microbiome is essential for maintaining glucose homeostasis. Evidence from 

basic and clinical studies indicates that gut dysbiosis can be a causal or contributing factor in 

the pathogenesis of various glucose metabolism disorders, including obesity, IR, and Type-1 

and Type-2 Diabetes [36]. Turnbaugh and colleagues demonstrated that gut microbiota 

dysbiosis can cause metabolic disease in mice independent of genetic background [37]. 

Their study showed that microbiota transplantation from mice with diet-induced obesity 

to lean germ-free mice recipients resulted in more fat deposition than transplants from 

lean mice donors. Likewise, another study reported that the transplant of microbiota 

from lean and obese human twins into germ-free mice lacking a native gut microbiome 

resulted in the conveyance of the metabolic phenotype of the host [38]. These findings 

highlight the potential of targeting the gut microbiome as a strategy for preventing and 

treating disorders related to hormonal imbalances. Common approaches include the use of 

probiotics, prebiotics, and synbiotics.

3. Probiotics: Definition, Mechanisms of Action, and Impact

Probiotics are living, non-pathogenic microorganisms that offer benefits to human health 

when consumed in adequate amounts [2]. Multiple microorganisms that belong to the genera 

Propionibacterium, Lactococcus, Enterococcus, Pediococcus, and Bacillus are considered 

to be probiotics [39]. Still, the most important probiotic strains are the Lactobacillus and 

Bifidobacterium, which are commonly used in functional foods and dietary supplements 

[40,41]. While microbiota refers to the natural population of microorganisms in the body, 

probiotics are beneficial microbes that are taken to support or enhance the microbiota.

Probiotics have been found to play a supportive role in the treatment and prevention of 

various conditions, including IBD, IBS, lactose intolerance, cancer, diarrhea, and allergic 

diseases [39]. The major therapeutic effects of probiotics are primarily attributed to their 

direct or indirect effect on the GI tract [42]. These beneficial effects are attributed to several 

key mechanisms by which probiotics eradicate pathogens and maintain a healthy balance of 

gut flora. These mechanisms include competing with pathogens for nutrients and adhesion 

sites in the gut, enhancing intestinal barrier functions, improving the immune system, and 

producing neurotransmitters [39], which makes it difficult for harmful pathogens to thrive. 

Probiotics also function as antimicrobial agents by producing substances, such as organic 

acids and hydrogen peroxide, which combat the pathogenic bacteria in the gut [43]. In 

addition, probiotics increase the production of mucin proteins, which strengthen the function 

of the intestinal barrier [44].

Apart from the direct effect on the GI tract, the gut microbiome interacts with the 

body’s endocrine system via several complex mechanisms. One important pathway is 

the gut–brain axis [45]. Probiotics influence the production and release of a number of 

neurotransmitters and hormones, such as dopamine, serotonin, and norepinephrine [46]. 

Additionally, probiotics reduce the level of stress hormones such as cortisol [47,48]. 

Accordingly, probiotics have a role in regulating depression, anxiety, and other central 

nervous system (CNS)-related disorders [48,49]. While existing studies highlighted the 
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impact of probiotics on neurotransmitter production, stress hormone levels, and CNS-related 

disorders, further research is warranted to determine the strain-specific effects of probiotics 

for targeting specific CNS disorders.

The synthesis of GI hormones such as leptin, ghrelin, and GLP-1 is influenced by specific 

strains of microbiota, indicating a role for the microbiota in appetite regulation [3,50]. 

Probiotics contribute to the fermentation of dietary fibers, producing SCFAs that positively 

affect metabolism and enhance the release of hormones involved in appetite control 

and insulin secretion [41,51]. While the impact of probiotics on GI hormones is well 

documented, the precise mechanisms through which different probiotic strains modulate 

these hormones remain unclear and warrant further research.

In a recent observational study, probiotic use was associated with higher estradiol levels in 

premenopausal women and lower total testosterone levels among pre- and postmenopausal 

women [52]. In ovariectomized mice, probiotics were found to influence estrogen levels 

by modulating the gut microbiota, enhancing SCFA production, and up-regulating estrogen 

receptors in adipose tissue [53]. While the gut microbiota’s role as a major regulator of 

colonic androgen content in young and healthy mice and men is well documented [15], there 

is a lack of studies investigating the impact of probiotics on androgen regulation in both 

males and females. Moreover, despite the potential benefits of probiotics for overall health 

in both men and women, their role in preventing or treating sex hormone-related disorders, 

such as hypogonadism in men and PCOS in women, remains understudied.

4. Prebiotics: Definition, Mechanisms of Action, and Impact

While probiotics are live beneficial bacteria that support gut health, prebiotics are non-

digestible fiber compounds that selectively nourish the gut microbiota, stimulating their 

growth and activity. This selective stimulation of the microbiota ultimately confers health 

benefits to the host [54]. Importantly, a prebiotic must be resistant to stomach acid, remain 

unabsorbed in the GI tract, be fermented by microbiota, and selectively stimulate the growth 

and activity of beneficial intestinal bacteria [55]. Prebiotics include diverse carbohydrates, 

including fructans, β-glucans, galacto-oligosaccharides, inulin, starch, guar gum, lactulose, 

maltodextrin, xylo-oligosaccharides, and arabino-oligosaccharides [54,56].

By promoting a healthy gut microbiome, prebiotics contribute to improving physical health. 

Several studies have reported the positive role of prebiotics on the GI tract. For instance, 

prebiotics can help manage conditions like bloating and constipation [57]. In a randomized 

controlled trial involving patients with functional bowel disorders, the administration of 

fructo-oligosaccharides (FOSs) over a six-week period was found to improve the symptoms 

of IBS [58]. FOS supplementation was also shown to decrease Crohn’s disease activity 

in patients in a clinical trial [59]. Prebiotic fermentation products have also demonstrated 

protective effects against the development and progression of colorectal cancer [60,61]. 

In addition, prebiotics have been found to aid in weight management in both adults and 

children [62,63]. Because the GI tract is connected to the brain via the gut–brain axis, 

prebiotics have positive effects on the nervous system, such as improved cognition and 

memory [64].

Basnet et al. Page 5

Gastrointest Disord (Basel). Author manuscript; available in PMC 2024 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Prebiotics offer numerous health benefits by selectively stimulating the growth and activity 

of beneficial bacteria in the gut. Their primary mechanism of action involves promoting the 

growth of beneficial bacterial strains like Lactobacilli and Bifidobacteria, which outcompete 

pathogenic microbes for resources and attachment sites, thereby enhancing gut health [65]. 

Additionally, the fermentation of prebiotics produces SCFAs, which diffuse through gut 

enterocytes and enter blood circulation, affecting not only the GI tract but also distant 

organs and systems [66]. The acids produced from prebiotic fermentation alter the gut 

environment by decreasing its pH, leading to changes in the composition and population 

of gut microbiota [67]. Prebiotics also improve gut barrier function by increasing mucin 

production and strengthening the tight junctions between intestinal cells, which helps 

prevent harmful substances from entering the bloodstream [68,69]. Furthermore, prebiotics 

stimulate the immune system by increasing the population of beneficial microbes in the gut 

and altering cytokine expression [70].

The prebiotic, inulin, has been shown to increase plasma levels of GLP-1 and reduce levels 

of ghrelin [71,72]. This suggests that prebiotics can influence GI hormone production, 

likely through the production of SCFAs, thereby affecting appetite regulation. As a result, 

prebiotics could serve as new targets for managing obesity and other eating disorders. 

In addition, prebiotics may help people cope with stress and mild anxiety by lowering 

cortisol levels, a stress hormone [73]. Some prebiotics have also been reported to increase 

estrogen metabolism in the intestine by suppressing β-glucuronidase activity [74], which 

could potentially reduce the risk of estrogen-mediated cancers. However, data on the role 

of prebiotics in hormone regulation are still limited. More research is needed to fully 

understand their impact on hormonal regulation and their potential therapeutic uses.

5. Synergistic Effects of Probiotics and Prebiotics (Synbiotics)

Synbiotics are a specific combination of probiotics, microorganisms that provide health 

benefits when consumed, and prebiotics, compounds that promote its growth, having a 

synergistic effect when paired together [75,76]. In May 2019, the International Scientific 

Association for Probiotics and Prebiotics (ISAPP) updated the definition of a synbiotic to 

“a mixture of live microorganisms and substrate(s) that confer health benefits to the host” 

[77]. Synbiotics are classified mainly into two groups: (a) complementary synbiotics and 

(b) synergistic synbiotics [75]. The complementary synbiotics are composed of probiotics 

and prebiotics that provide health benefits independently of each other, without requiring 

any mutual function. In contrast, synergistic synbiotics include a substrate that is specifically 

utilized by the co-administered live microbial populations, enhancing their effectiveness 

[75,77].

The use of synbiotics is an efficient and promising approach for maintaining gut microbiota 

homeostasis, promoting the restoration and maintenance of beneficial gut bacteria [78]. 

A randomized controlled trial has demonstrated that synbiotics can significantly improve 

metabolic health in individuals with metabolic syndrome and prediabetes [79]. Synbiotic 

supplementation under high-fat diet conditions has been found to alleviate metabolic 

disturbances and improve intestinal barrier integrity by increasing gut hormones and SCFAs 

[80]. Some potential benefits of synbiotic consumption in humans include the following: 
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(a) increasing the populations of Lactobacilli and Bifidobacterial, which helps maintain 

gut microbiota balance; (b) boosting the production of SCFAs; (c) improving metabolic 

processes such as bile acid deconjugation and mineral absorption; (d) strengthening the 

modulation of the host immune system; and (e) enhancing liver function in individuals 

with cirrhosis and other [75,81-83]. Overall, the synbiotic approach has proven to be 

more effective than using prebiotics or probiotics alone in modulating gut microbiota and 

alleviating metabolic disorders associated with an imbalanced gut microbiota in humans 

[84].

6. Probiotics and Prebiotics in the Management of Endocrine Disorders

The potential role of probiotics in hormonal regulation and the management of endocrine 

disorders is suggested by recent findings from both basic and clinical research (Table 

1). A recent observational cohort study among 2699 women, comprising a nationally 

representative sample of adults who participated in the National Health and Nutrition 

Examination Survey between 2013 and 2016, suggests the potential beneficial effect of 

probiotics. Probiotic ingestion was considered when a subject reported yogurt or probiotic 

supplement consumption. The data revealed that premenopausal women who consumed 

probiotics had higher estradiol levels, and postmenopausal women who consumed probiotics 

had lower total testosterone levels than women who did not consume probiotics [52]. 

Whether these findings could be extrapolated to other clinical conditions is unclear. For 

example, among patients with type 2 diabetes mellitus (T2DM), women have a higher level 

of circulating testosterone [85] and could be a population that could greatly benefit from 

probiotics. Another condition where excess of androgen is present in women is PCOS. 

About 80% of women with PCOS have hyperandrogenemia, and the level of testosterone 

is about 1.5-fold higher compared to women with normal cycling. Interestingly, women 

with PCOS and elevated androgen levels have a worse cardiometabolic profile compared to 

women with PCOS with normal levels of androgens [86]. Thereby, it can be speculated that 

a simple intervention such as yogurt or probiotics intake may result in beneficial hormonal 

changes that will decrease cardiovascular risk in those populations. However, this hypothesis 

remains to be tested. In contrast, in men with hypogonadism, probiotics administration failed 

to increase the plasma level of testosterone [87]. Whether and how probiotics, in a sexually 

dimorphic manner, regulate the levels of sex steroids remains to be elucidated.

Early puberty is defined by the development of secondary sexual characteristics and menses 

before eight years of age in girls and nine years in boys. Early puberty has been extensively 

linked to adverse health outcomes, such as metabolic syndrome. Recent data suggest that 

probiotic drinks or yogurt have a protective effect against early puberty [88]. Thereby, 

probiotics administration could constitute an effective intervention to modulate sex steroids 

in a variety range of clinical conditions.

Besides sex steroids, other steroids, such as cortisol, could also be impacted by prebiotics. 

Cortisol, or the stress hormone, has several functions in the human body, such as 

mediating the stress response, regulating metabolism, the inflammatory response, and 

immune function [89]. Data from a small randomized clinical trial demonstrated that a 

three-week consumption of two types of prebiotic supplements in healthy human volunteers 
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was associated with decreased waking salivary cortisol reactivity (a stress biomarker) and 

improvement in anxiety [90].

The thyroid hormones are well known for controlling metabolism, growth, and many other 

critical functions. Recent data have suggested that microbes influence thyroid hormone 

levels by regulating iodine uptake, degradation, and enterohepatic cycling [35]. A recent 

meta-analysis of eight randomized clinical trials has shown that although probiotics and 

prebiotics did not change the level of thyroid hormones, they may modestly reduce thyroid-

stimulating hormone receptor antibody levels in patients with hyperthyroidism [91].

T2DM, a metabolic disorder characterized by elevated glucose levels, has emerged as 

a major public health problem. Its prevalence is increasing, and it is estimated that 

by 2045, 700 million individuals worldwide are expected to have diabetes mellitus. A 

recent meta-analysis of 22 randomized clinical trials, including a total of 2218 patients, 

suggested that probiotics may lower baseline levels of HbA1c, fasting glucose, and IR in 

patients with T2DM. Similar findings were observed in women with gestational diabetes 

[92]. Metformin is an antihyperglycemic medication approved for the management of 

T2DM when glycemic control cannot be accomplished by lifestyle modification alone. 

Metformin is also recommended for diabetes prevention in patients age < 60 years and/or 

BMI ≥ 35 kg/m2, or HbA1c of 5.7% to 6.4%, in whom lifestyle modifications failed 

to reduce hyperglycemia Metformin is the initial therapy of choice in T2DM due to its 

efficacy, weight-neutral effect, general tolerability, favorable cost, and protection from 

cardiovascular events [93]. Recent data demonstrated that the co-administration of oral 

probiotic interventions along with metformin treatment was found to significantly improve 

glycemic control in T2DM patients [94].

Dyslipidemias, or abnormal levels of cholesterol and/or triglycerides, are frequently 

associated with T2DM. The administration of probiotics is associated with improvement 

in the lipid profile of patients with dyslipidemias [95]. However, whether this improvement 

of glycemic parameters or lipids results in an improvement in cardiovascular morbidity or 

mortality remains unknown.

7. Fecal Microbiota Transplantation

Fecal microbiota transplantation (FMT) refers to administering stool bacteria into the 

intestinal tract of a patient, a clinically relevant example is the treatment of recurrent 

Clostridioides difficile infection (CDI) [103]. Patients with recurrent CDI have a reduced 

diversity and number of the intestinal microbiome compared to healthy individuals [104]. 

This infection can be observed in up to 20% of antibiotic users. The mechanism is not 

entirely understood, but it is related to changes in the homeostatic balance of the GI mucosa. 

The alteration of the colonic microbiota following FMT appears to be long-term, with a 

high cure rate after FMT [105]. Limited data suggest that FMT can also be beneficial in 

CDI-associated bloodstream infections [106]. Additionally, FMT has demonstrated potential 

in reducing dysbiosis, decreasing hospitalizations, and improving disease severity in patients 

with hepatic encephalopathy and liver cirrhosis. It has also been shown to enhance metabolic 

outcomes in patients with non-alcoholic fatty liver disease [107].
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The impact of FMT on the endocrine system has been suggested in recent findings in 

cross-sex fecal transplants in Wistar rats. Male rats that received FMT from female donors 

displayed lower plasma concentrations of testosterone compared to the male recipients that 

received same-sex FMT without changes in other hormones such as cortisol [108]. It is 

very early to fully understand the clinical relevance of these findings and the mechanisms 

underlying this change. Recent findings suggest the existence of local testosterone synthesis 

and metabolism in the colon, with higher concentrations than those in plasma in male 

rats [109]. This finding is not novel per se; several other organs have the full machinery 

necessary to synthesize or activate sex steroids [110-112]. Although the sex of the donor is 

accounted for in some transplants, such as the heart [113], it is not usually the case for FMT. 

Clinical evidence also suggests that FMT may help preserve endogenous insulin production 

in patients recently diagnosed with type 1 diabetes [114]. However, further research is 

needed to fully understand the effects of FMT on the endocrine system.

8. Limitations, Future Directions, and Research Gaps

Despite their proven benefits to improve gut health overall, the efficacy of probiotics 

is limited by several factors. For example, patients who have long-term dysbiosis as a 

consequence of chronic gut inflammatory conditions, such as Crohn’s disease or ulcerative 

colitis, may be resistant to new colonization introduced by probiotics, reducing their efficacy 

[115]. Similarly, the concurrent use of antibiotics can also limit probiotic efficacy [116]. 

Since probiotics rely on fibers as substrates [117], a diet high in sugar and low in fiber 

creates a poor environment, further reducing their effectiveness. However, this limitation 

can be mitigated by the use of probiotics or synbiotics. Although generally considered 

safe for healthy populations, the use of certain probiotic species in immunocompromised, 

very young, or elderly patients carries the risk of adverse effects, such as fungemia, fungal 

septicemia, endocarditis, probiotic-associated pneumonia, allergic responses, and abdominal 

or liver abscesses [118]. Therefore, the effectiveness of probiotics, prebiotics, and synbiotics 

depends heavily on the specific strains used and the individual’s unique microbiome profile. 

Using non-personalized or generic strains that do not address specific microbial imbalances 

may result in suboptimal outcomes. The personalization of treatment, proper microbial 

balance, and careful consideration of underlying health conditions are crucial for optimizing 

the benefits of these interventions.

The use of probiotics is not fully established in clinical practice. This is mainly due 

to the sizeable, significant heterogeneity in the studies and variability in results. Large-

scale randomized clinical trials with clear and predefined endpoints are necessary to 

fully determine the efficacy and safety of probiotics in humans. Also, clear protocols 

and dose-dependent effects are required to untangle the complex impact of probiotics in 

chronic conditions. The findings from basic research could be beneficial in describing novel 

mechanisms and informing about efficacy and safety that could be translated to humans.

9. Conclusions

A disrupted gut microbiome can negatively impact reproductive and metabolic health by 

affecting the hormonal system. Due to its relatively safe profile, probiotic and prebiotic 
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supplementation has drawn considerable interest recently as potential strategies to improve 

gut health. However, stronger evidence, such as data from large randomized clinical trials 

in different groups, is needed to better estimate its efficacy and safety. Other caveats are 

the wide-ranging variations in the composition of the probiotics administered, the dosage 

and duration of the probiotic interventions, and limited endpoints, which could explain the 

inconsistent findings across studies. Regardless of the gaps in our knowledge, probiotics 

and prebiotics are emerging as novel co-adjuvant therapies in treating several endocrine 

disorders.
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Figure 1. 
Factors that can induce dysbiosis and the link to hormonal disorders. Dysbiosis can 

result from factors such as xenobiotics, poor lifestyle habits, chronic stress, environmental 

toxins, age, ethnicity, and genetics. This imbalance can lead to hormonal fluctuations 

and inflammation, contributing to several reproductive and metabolic disorders. Created 

in BioRender.
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Table 1.

Role of gut microbiome in hormonal regulation.

Hormone of Interest Main Findings Proposed Mechanisms Reference

Cortisol, 
adrenocorticotropic 
hormone, (ACTH), 
aldosterone

• Germ-free (GF) mice exhibit an imbalance in 
the HPA axis, affecting the neuroendocrine 
system in the brain and resulting in an 
anxiety-like behavioral phenotype in response 
to chronic restraint stress.

Tendency to ↑ Cortisol
↑ ACTH
↑ Aldosterone
↑ Corticotropin-releasing hormone 
receptor 1 (Crhr1) mRNA levels
↓ Mineralocorticoid receptor (MR) 
mRNA levels

[24]

• Probiotic formulation exerts anxiolytic-like 
effect in rats and beneficial psychological 
effects in healthy human volunteers.

↓ Urinary free cortisol in tested 
subjects [47]

• Probiotic Bifidobacterium longum 1714 
reduced stress and improved memory in 
healthy human volunteers. ↓ Salivary cortisol [96]

• Prebiotics: FOS and B-GOS intake reduces the 
waking cortisol response and alters emotional 
bias in healthy volunteers. ↓ Salivary cortisol [73]

Estrogen

Gut bacterial species containing β-glucuronidases and β-
glucuronides enzymes are capable of metabolizing estrogens.

The deconjugation and conjugation 
of estrogen by the estrobolome 
modulate the enterohepatic 
circulation of estrogens, thereby 
affecting circulating and excreted 
estrogen levels

[97]

In men and postmenopausal women, the level of total urinary 
estrogens was strongly and directly associated with fecal 
microbiome richness.

Altering β-glucuronidase activity [98]

Dysbiosis may influence the progression of endometriosis in 
females. ↓ Estrogen level [27]

• Diet rich in the probiotic Lactobacillus 
plantarum and soy isoflavones reverses 
menopausal obesity and increases circulating 
estrogen levels in ovariectomized mice.

↑ Serum estradiol, upregulate 
estrogen Receptor a (ERα) in adipose 
tissue.
↑ SCFA production

[53]

• Probiotic supplements and yogurt intake are 
associated with higher estradiol levels among 
premenopausal women. - [52]

Androgens

• Gut microbiota produces high free levels of 
DHT in the colonic content of young and 
healthy mice and men.

De-glucuronidation of DHT and 
testosterone [52]

• Probiotic supplements and yogurt intake are 
associated with lower total testosterone levels 
among postmenopausal women. - [52]

Insulin

• High-fat diet induces gut dysbiosis, promoting 
insulin resistance in TLR5-deficient mice. Disrupting insulin signaling [99]

• Gut microbiota from obese donors induced 
insulin resistance in recipient mice. Altering host gut microbiota 

composition [38]

• Gut microbiota alteration can impair insulin 
signaling and cause insulin resistance.

Increased intestinal permeability, 
lipopolysaccharide absorption, and 
inflammatory pathway activation

[100]
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Hormone of Interest Main Findings Proposed Mechanisms Reference

• Probiotic VSL#3 I improve metabolic status 
and insulin sensitivity in overweight adults.

↓ Circulating inflammatory markers 
and insulin Improves the lipid profile 
and decreases the atherogenic index

[101]

• Prebiotic oligofructose improve glucose 
tolerance and glucose-induced insulin secretion 
in high fat fed mice.

↓ Bifidobacterium spp.
↓ Endotoxemia and plasma and 
adipose tissue proinflammatory 
cytokines
↑ Colonic mRNA levels of the GLP-1 
precursor proglucagon

[102]

Leptin, Ghrelin, GLP-1

• Gut microbiota affects the levels/signaling of 
GI hormones such as leptin, ghrelin, and 
GLP-1.

SCFAs modulate leptin release via 
activating GPR41 receptor SCFAs 
induce GLP-1 release through 
interacting with enteroendocrine 
cells SCFAs attenuate ghrelin-
mediated signaling via the growth 
hormone secretagogue receptor-1a 
lipopolysaccharide (LPS) modulates 
GLP-1 release via TLR4

[3,50]

• The prebiotics inulin and oligofructose exert 
favorable effects on glucose and lipid 
metabolism.

↑ GLP-1 production
↓ Serum ghrelin levels [71]

Thyroid
• Gut dysbiosis negatively impacts the thyroid 

function in humans. ↓ SCFA production
↓ Thyroxine levels [31]
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