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BACKGROUND: Evidence suggests that long-term exposure to air pollution may increase the risk of dementia and related cognitive outcomes. A major
source of air pollution is automotive traffic, which is modifiable by technological and regulatory interventions.

OBJECTIVES:We examined associations of four traffic-related air pollutants with rates of cognitive decline in a cohort of older adults.
METHODS: We analyzed data from the Chicago Health and Aging Project (CHAP), a longitudinal (1993–2012) community-based cohort study of
older adults that included repeated assessments of participants’ cognitive performance. Leveraging previously developed air pollution models, we pre-
dicted participant-level exposures to the tailpipe pollutants oxides of nitrogen (NOX) and nitrogen dioxide (NO2), plus the nontailpipe pollutants cop-
per and zinc found in coarse particulate matter [PM with aerodynamic diameter 2:5 lm to 10 lm (PM2:5–10,Cu) and PM2:5–10,Zn, respectively], over
the 3 y prior to each participant’s baseline assessment. Using generalized estimating equations, we estimated covariate-adjusted associations of each
pollutant with rates of cognitive decline. We probed the robustness of our results via several sensitivity analyses, including alterations to the length of
the exposure assessment window and exploring the influence of pre- and post-baseline selection bias.
RESULTS: Using data from 6,061 participants, estimated associations of these pollutant exposures with cognitive decline were largely inconsistent
with large adverse effects. For example, a standard deviation (5:8 ppb) increment in NOX corresponded to a slightly slower rate of cognitive decline
[e.g., mean difference in change in global score, 0.010 standard unit/5 y, 95% confidence interval (CI): − 0:016, 0.036]. The results of most of our
sensitivity analyses were in generally similar to those of our main analyses, but our prebaseline selection bias results suggest that our analytic results
may have been influenced by differential survivorship into our study sample.

DISCUSSION: In this large prospective cohort study, we did not observe compelling evidence that long-term TRAP exposure is associated with cogni-
tive decline. https://doi.org/10.1289/EHP14585

Introduction
The hypothesis that long-term exposure to air pollution increases the
risk of dementia and dementia-related outcomes continues to receive
support from epidemiological evidence.1–22 If air pollution elevates
these risks, interventions could be implemented to reduce the popu-
lation burden of exposures. Policy interventions can have particu-
larly wide reach, imparting benefits to whole populations without
the need for individual-level interventions or changes to behavior.

Understanding the cognitive effects of air pollution from spe-
cific sources may be especially useful for informing interventions.

Automotive traffic-related air pollution (TRAP) is one such com-
pelling source because human exposure to TRAP is common, par-
ticularly in urban settings.23 TRAP includes the products of fuel
combustion (“tailpipe pollutants”) and dust generated by the wear
and tear of brakes and tires, along with resuspended road material
and soil (“nontailpipe pollutants”). The health effects of nontail-
pipe pollutants are of growing interest because many pollutants
from tailpipe emissions have decreased over time.23 In comparison
with tailpipe particles, those in the nontailpipe mixture are larger
and have a higher metallic content.23 This mixture includes coarse
fraction particulate matter (PM; particles 2:5–10 lm in aerody-
namic diameter) produced by brake and tirewear that is rich in cop-
per and zinc, respectively.1

In general, exposure to TRAP is believed to adversely affect cog-
nitive health both directly through effects on the brain and indirectly
through effects on vascular health and other organ systems.23–25
Although numerous epidemiological studies have estimated associa-
tions of TRAP exposures with cognitive performance and demen-
tia,1,5,6,8,12–14,17,18,21,26 these studies have almost entirely focused
on tailpipe emissions and ignored nontailpipe emissions.
Furthermore, three recent systematic reviews judged the evi-
dence to be largely inconsistent1,23,27 and generally lacking stud-
ies of TRAP in relation to cognitive decline. This inconsistent
evidence may be important because cognitive decline character-
izes years-long cognitive function changes that precede and then
characterize cognitive impairment and dementia.28 Evidence of an
effect of TRAP exposure during adulthood on cognitive decline
would more directly tie this exposure to the neurodegenerative
process underlying dementia.

Selection bias also presents challenges to validly estimating
TRAP’s effects on dementia-related outcomes. In particular,
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TRAP exposure is associated with increased mortality and
morbidity,23,24,29,30 which both affect who enrolls in studies of
late-life health and who continues participating after enrolling.
Given that cognitive function is also associated with these determi-
nants of selection, it is possible that the resulting study samples of
older adults may be less susceptible than expected to TRAP’s
adverse cognitive effects.30–32 The possible influence of selection
bias is commonly acknowledged, but attempts to adjust for or quan-
tify its potential impact have been less common.

In this study, we aimed to investigate associations of long-term
exposures to two tailpipe and two nontailpipe traffic-related air pol-
lutants with rates of cognitive change during older adulthood,
advancing the evidence on how TRAP exposure affects dementia
risk. We hypothesized that higher long-term exposure to TRAP
would be adversely associated with rates of cognitive change. We
propose that exposure over long periods—e.g., exposure accrued
over years rather than days—is etiologically relevant to cognitive
decline in older adulthood. Even if short bouts of exposure exert
small effects on cognition, the influence of sustained exposure is
presumably larger, in addition to being more suitable for evalua-
tion in the setting of an observational study of cognitive decline.
We also explored the potential influence of selection bias on our
effect estimates.

Methods

Study Population
Our studywas set in the ChicagoHealth andAging Project (CHAP),
a population-based longitudinal study (1993–2012) of older adults
living in four adjacent neighborhoods on the south side of Chicago,
Illinois.30,33 The founding purpose of the CHAPwas to be a longitu-
dinal study of common late-life chronic conditions, particularly
those that increase the risk of dementia, in a cohort of Black and
White older adults who were at least 65 y of age.33 The CHAP
recruited an initial cohort of participants in the period 1993–1996,
enrolling 6,157 adults, comprising 79% of all age-eligible persons in
the study’s catchment area according to a community census; they
also enrolled a small subset (n=235) who were 61–64.9 y of age.
An additional 4,644 participants who later became age-eligible
were recruited in successive cohorts, leading to a total study popula-
tion of 10,802 participants by 2012.30,33 All CHAP participants
were interviewed in their homes, both at baseline and all follow-up
cycles (i.e., visits), which occurred roughly every 3 y post base-
line. These interviews involved cognitive assessments and ques-
tionnaires about demographics, health, and health-related behaviors.
This study was approved by the institutional review boards of Rush
University Medical Center, Chicago, Illinois; the University of
Michigan, Ann Arbor, Michigan; the University of Washington,
Seattle,Washington; and BostonUniversity, Boston,Massachusetts.
All CHAPparticipants providedwritten informed consent.

Exposure Assessment
We estimated participants’ exposure to four TRAP species. The
two tailpipe-generated pollutants, oxides of nitrogen (NOX) and
nitrogen dioxide (NO2), are both markers of fossil fuel exhaust.
The two nontailpipe-generated pollutants were coarse copper par-
ticulate matter 2:5–10 lm in diameter (PM2:5–10,Cu), an indicator
of vehicle brake wear, and coarse zinc PM 2:5–10 lm in diameter
(PM2:5–10,Zn), an indicator of vehicle tire wear.34,35 Data on nearly
all participants’ residential addresses (98%) were sufficiently com-
plete and correct to allow geocoding to an exact location.

Exposure to ambient NOX and NO2. NOX and NO2 concen-
trations were predicted at each residential address by spatiotempo-
ral models developed for the Chicago area as part of the Multi-

Ethnic Study of Atherosclerosis and Air Pollution (MESA Air)
project.36,37 In brief, these spatiotemporal models were optimized
via maximum likelihood methods and incorporated hundreds of
variables, including geographic features and distances from major
transportation routes (e.g., roads, highways, airports, ports, and
railroads).38–40 The models additionally incorporated data from a
community-monitoring campaign (which featured repeated sam-
pling from 6 fixed site monitors and 113 outdoor home samples)
and included a long-term spatial mean, temporal trends with spa-
tially varying coefficients, and a spatiotemporal residual. The
resulting models had a 10-fold cross-validation R2 of 0.87 and
were finely resolved both temporally (with predictions specific to
2-wk intervals) and spatially (with predictions at precise residential
locations).39

Exposure to ambient coarse copper and zinc PM. PM2:5–10,Cu
and PM2:5–10,Zn concentrations were predicted at residential
addresses by a spatial model developed for Chicago as part of
the MESA Coarse Study.41 This model employed universal krig-
ing for PM2:5–10,Cu and PM2:5–10,Zn concentrations in the Chicago
area and incorporated data from a two-season monitoring cam-
paign in 2009, plus a suite of covariates similar to those used in
the NOX and NO2 models to estimate spatial variations to precise
residential locations.37 The cross-validation R2 of the estimation
models was 0.81 for PM2:5–10,Cu and 0.80 for PM2:5–10,Zn.

Assessment of Cognitive Function
During interviews, all CHAP participants underwent a brief cogni-
tive assessment that consisted of four cognitive tests: the Symbol
Digit Modalities Test,42 which measured perceptual speed; the
East Boston Memory Test,43 which measured both immediate and
delayed episodic memory (two separate scores); and the Mini-
Mental State Examination,44 which measured several cognitive
functions, including orientation, memory, language, and visual
construction. We transformed each test score to z-scores, using
baseline raw scores as the source for themeans and standard devia-
tions (SDs).

For analyses, we considered both global and domain-specific
rates of change in cognitive function (i.e., cognitive decline). A
global cognitive scorewas created by generating a composite z-score
from averaging the z-scores from all four tests, and then this z-score
was transformed to become standard normally distributed via the
baseline composite z-score’s mean and SD.32,45–47 Processing speed
was defined as the Symbol Digit Modalities Test z-score, whereas
episodicmemorywas defined as the standard-normalized average of
the z-transformed immediate and delayed scores on the East Boston
Memory Test.

Measurement of covariates. Our analyses of TRAP effects on
cognitive decline included the following time-fixed covariates that
were measured at the time that participants enrolled in the CHAP:
sex/gender, race, years of education, and neighborhood socioeco-
nomic status at the time of CHAP enrollment. Sex/gender was
recorded by CHAP investigators as either male or female.
Participants reported their race according to the options given on
the 1990 US Census (White, Black, American Indian/Alaska
Native, or Asian/Pacific Islander). Nearly all participants (99.7%)
identified as either White or Black; due to the very small number
of participants who identified as Indian/Alaska Native or Asian/
Pacific Islander, we categorized participants as either Black or
not Black. This race variable in our models was meant to serve as
a proxy for historical and structural inequalities stemming from
racism. Participants also reported the years of formal education
that they had completed (<9 y, 9–11 y, 12–16 y, or >16 y).
Neighborhood socioeconomic status at the time of CHAP enroll-
ment was based on a composite area-based socioeconomic score
developed by Diez Roux et al.48 This score was based on
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participants’US census block groups and was the average of the
block group–specific z-scores for the following block-specific
measurements: a) median household income, b) median home
value, c) percentage of households with income from interest,
dividends, or rent, d) percentage of adults who completed col-
lege, and e) percentage of employed persons 16 y of age or older
in executive, managerial, or professional specialty occupations.
Higher scores indicated higher neighborhood socioeconomic
status. Originally, the score created by Diez Roux et al. included
an indicator for the percentage of adults with a high school
diploma as well; however, our score did not include this variable
because it was not distributed as expected across composite
scores within the CHAP census-block groups. This index has
been applied in several CHAP-based studies.30,49

We additionally included time-fixed covariates that weremeas-
ured at participants’ analytic baseline visit, which could have been
identical to or after their CHAP enrollment visit (see “Measures of
long-term exposure to TRAP and defining analytic baseline”
below): age, smoking status, year, and community noise level. Age
at analytic baseline was defined as the number of continuous years
(i.e., fractional years were permitted) between a participant’s birth-
day and the date of their analytic baseline visit. Smoking status was
ascertained by asking participants whether they currently, for-
merly, or never smoked cigarettes. Analytic baseline year was
defined as the year of each participant’s analytic baseline, which
also served as the end point for their predicted 3-y NOX and NO2
exposure levels as described in the section, “Measures of long-
term exposure to TRAP and defining analytic baseline.” We pre-
dicted community noise levels for each participant based on their
place of residence. The noise prediction model predictions incor-
porated data from A-weighted noise samples from 136 unique
locations around the Chicago area between 2006 and 2007.50

These samples were collected during daytime, non–rush hour peri-
ods. The model predicted community noise levels at any location
by incorporating geographic information (e.g., proximity from
major roadways).46,50,51 The R2 for this model was 0.7 using 10-
fold cross-validation.50 Finally, we included time since baseline as a
time-varying covariate; for each participant, this variablewas calcu-
lated as the time (in continuous years) from their analytic baseline
visit to each of their follow-up visits.

In the sensitivity analyses for which we estimated inverse
probability-of-continuation weights, the models of continuation
included the following time-fixed covariates: sex/gender, race,
years of education, smoking status. These covariates were all
measured at participants’ analytic baseline and defined as they
were for the exposure effects analyses. The models of continua-
tion also included baseline diabetes mellitus status (history of dia-
betes mellitus vs. no history) and TRAP exposure level (measured
according to the methods described earlier; the TRAP species
included varied according to the TRAP species of interest). In addi-
tion, these models included the following time-varying covariates:
age, global cognitive function score, social network score, physi-
cal disability, self-rated health, and alcohol consumption. At
each cycle, age was defined as the sum of a participant’s age at
their analytic baseline and the time that had elapsed since their
analytic baseline visit. Global cognitive score was defined as
above (a composite z-score). Social network score was the sum of
the number of children, relatives, and friends with whom the par-
ticipant had at least monthly face-to-face contact, plus the num-
ber of neighbors with whom they had a “friendly talk” at least
weekly. Physical disability was measured by the Nagi total physi-
cal function score, which captures performance on basic physical
activities of upper and lower extremity function, each on a
0–5 point scale52; individual scores were summed to create an
overall index score, where higher values indicated less physical

disability. Participants rated their health as “poor,” “fair,” “good,”
or “excellent” based on their perception of their health at the time
of their interviews. Finally, alcohol consumption was recorded as a
categorical variable (none, up to one drink/day, one or more
drinks/day) based on how much alcohol participants reported con-
suming at the time of their interviews.

Statistical Analyses
Measures of long-term exposure to TRAP and defining analytic
baseline. We designed the temporal dimensions of this study to
balance the need for measures of long-term exposure to TRAP
and the need for a follow-up period of sufficient duration and
cognitive assessment frequency to observe effects on cognitive
change. The period covered by the spatiotemporal TRAP predic-
tion models began in January 1999, and CHAP enrollment and
follow-up data collection were ongoing through October 2012
(Figure S1). Approximately 25% of the CHAP participants
entered the cohort after 2002, and, as described above, cognitive
function was assessed every 3 y. Estimating TRAP exposure over
a 3-y window prior to a designated “analytical baseline” cogni-
tive assessment provided both a multiyear exposure measure
along with a large number of participants with longitudinal cogni-
tive assessments after this exposure window.

We estimated participants’ exposure to TRAPwithin a 3-ywin-
dow based on a procedure previously used in this cohort.30 First,
we assigned every participant an analytic baseline visit date. The
analytic baseline visit date for participants who enrolled in the
CHAP prior to 1 January 1999 was defined to be their first follow-
up visit on or after 1 January 2002 (i.e., their first CHAP visit at
least 3 y after the start of the period covered by the NOX and NO2
prediction models). For participants who entered the CHAP after 1
January 1999, we assigned their analytic baseline visit date based
on their enrollment date and their response to a question about how
long they had lived at their current residence. For these partici-
pants, we subtracted the length of time they reported living at their
current residence from the date of their CHAP enrollment date,
which we call their “residence index date.”We then assigned these
participants an analytic baseline visit date as one of the following,
whichever came later: a) theirfirst CHAPvisit occurring on or after
1 January 2002 or b) their first CHAP visit occurring at least 3 y af-
ter their residence index date.

In our analyses, participants contributed cognitive assess-
ment data from their analytic baseline visit onward. As such, we
excluded data collected prior to participants’ analytic baseline
visit; we also excluded participants who moved outside of the
CHAP geographic area before their analytic baseline visit date or
who were missing any covariate information at their analytic base-
line visit. Among those who remained, we then estimated each par-
ticipant’s exposure to NOX and NO2 over the 3 y prior to their
analytic baseline visit date, incorporating residential mobility
within the period as warranted. Even though the prediction models
for PM2:5–10,Cu and PM2:5–10,Zn concentrations were specific only
to 2009, we applied these models to estimating each participant’s
exposure during that same 3-y window, incorporating residential
mobility during participants’ 3-y exposure period by weighting
the location-specific exposure predictions by the percentage of
time spent in each residential location within participants’ 3-y
windows. In the Supplement, we provide more detailed examples
of how TRAP exposure windows were assigned (Figure S2 and
Table S1).

To explore the temporal stability of the 3-y NOX and NO2
exposure estimates, we calculated Spearman rank correlations
between predicted annual concentrations of these pollutants for
all available years (1999–2012) at all CHAP geocoded locations.
We estimated the Spearman rank correlations between each pair
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of 3-y TRAP exposure measures (i.e., anchored to participants’
analytic baselines). We also generated two sets of statistics
describing the temporal variation (absolute and rank order) of
NOX and NO2 concentrations in the study area. First, for each
pollutant, we computed the mean year-specific (1999–2012)
concentrations at all CHAP residential locations. Second, we
computed the Spearman correlations between each year-specific
predicted annual concentration.

Association of TRAP with rate of cognitive change. The
association of TRAP with difference in rates of cognitive change
was evaluated via multivariable-adjusted generalized estimating
equations (GEE), with identity links and a working exchangeable
correlation structure, of repeatedly measured cognitive scores.53
A total of twelve models were fit corresponding to our four
TRAP exposures (NOX, NO2, PM2:5–10,Cu, and PM2:5–10,Zn) and
three cognitive measures (global cognition, processing speed, and
episodic memory). All models adjusted for the following varia-
bles deemed to be putative confounders of the TRAP-cognitive
change association (Figure 1): baseline age, race, years of educa-
tion, neighborhood socioeconomic status, community noise level,
and time since analytic baseline. All models also adjusted for
sex/gender and smoking status as precision variables; we also
included interactions of time since analytic baseline with all con-
founders and precision variables. The parameter of interest was
the coefficient for the interaction between TRAP exposure and
time since analytic baseline, which is interpreted as the mean dif-
ference in mean rate of cognitive change per 1-unit increment in
TRAP. Because NOX and NO2 were predicted from spatiotempo-
ral models (unlike PM2:5–10,Cu and PM2:5–10,Zn, which were pre-
dicted from spatial models), we additionally adjusted for the
NOX and NO2 analyses baseline calendar year.23 We multiplied
all estimated differences by 5 and by the SD of each TRAP mea-
sure, obtaining estimated differences in change in cognitive per-
formance over 5 y per 1-SD increase in predicted TRAP exposure.
To obtain 95% confidence intervals (CIs) around our estimates, we
used 1,000 nonparametric bootstrap replications of our models.
All analyses were conducted in R (version 4.3.2; R Development
Core Team).

Sensitivity and Additional Analyses
We conducted several analyses of the sensitivity of our estimated
associations to assumptions about differential selection and expo-
sure measurement.

Sensitivity to differential selection. Following their cognitive
assessments at analytical baseline and prior to its conclusion in

2012, 1,699 individuals died, and 1,103 individuals discontinued
participating in the CHAP for other reasons. We addressed the
potential influence of post-baseline attrition on our estimated asso-
ciations by applying inverse probability-of-continuation weights to
our analytic models.30,32 These weights were constructed by mod-
eling the probability of continuing to participate in the CHAP (i.e.,
not dying or dropping out) at a particular visit conditional on the
values of covariates measured at the prior visit, computing pre-
dicted probabilities of continuation for each participant, and taking
the inverse of these probabilities. We distinguished between con-
tinuing due to not dying and continuing due to not dropping out,
conditional on not dying, by fitting two separate pooled logistic
regression models to obtain two cause-specific inverse probability-
of-continuation weights. Then we constructed an overall inverse
probability-of-continuation weight as the product of these two
weights.30,32 Our models were based on prior work in the CHAP
that identified key predictors of continuation30,32,45 and included
the following covariates: sex, race, age, years of educational
attainment, smoking status, alcohol consumption within the pre-
vious 2 wk, Nagi disability score, self-rated health, self-reported
diabetes mellitus status at the analytic baseline visit, social net-
work score, global cognition score, and the relevant TRAP expo-
sure of interest.

The fitted models of continuation due to not dropping out had
several features indicating that their predictions could be substan-
tially inaccurate. For example, the C-statistics for our four models
predicting the probability of not dropping out (each model dif-
fered only in terms of which of our four TRAP species of interest
was included) were ∼ 0:61, suggesting that these models did not
adequately discriminate between those who dropped out vs. did
not (Table S2). In comparison, the four fitted models of continua-
tion due to not dying performed far better (C-statistics of ∼ 0:76,
indicating moderately good discrimination; Table S2). We also
found that whereas associations of covariates with continuation
due to not dying, from our fitted models, were approximately in
the expected directions, the associations from our fitted models
of continuation due to not dropping out yielded counter-to-
expected results (e.g., older age was associated with lower risk of
dropping out; Tables S3–S6). Nonetheless, weighting on the basis
of attrition solely due to mortality ignores the potential influence
of differential drop-out. Therefore, we generated three sets of
continuation-weighted analyses: a) weighted based on the inverse
probability of continuation due to not dying; b) these same analy-
ses with follow-up censored when a participant reached age 90,
to reduce violations of the positivity assumption,54 which become

Figure 1. Directed acyclic graph describing the assumed relationships between TRAP exposure, cognitive decline, and the covariates included in our primary
outcome models. Note: TRAP, traffic-related air pollution.
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more likely as participants reach very old age; c) and weighted
based on both the inverse probability of continuation due to death
and the inverse probability of continuation due to not dropping
out.

All estimated inverse probability-of-continuation weights were
stabilized by multiplying each participant’s wave-specific unstabi-
lized inverse probability-of-continuation weights by the condi-
tional probability of remaining alive and uncensored up to that
wave, given participants’ age, sex, race, years of educational
attainment, self-reported diabetes mellitus status at the analytical
baseline visit, and the relevant TRAP exposure of interest, as previ-
ously done in weight-based analyses in this cohort.32

Sensitivity to exposure measurement. We also evaluated a
longer exposure window. We chose a 3-y window for our primary
analyses to strike a balance between the maximizing directly esti-
mated exposure time and allowing sufficient post-baseline follow-
up time to observe cognitive decline. We repeated our analyses
using the subset of our analytic sample who had sufficient data
available to estimate exposures over a 5-y window (n=5,251;
86.6% of the primary analytic sample). For comparison, we also
analyzed 3-y exposures using the same people and follow-up visits
used in the analyses of 5-y exposures.

Addressing differential prebaseline selection into CHAP.
Given TRAP exposure’s adverse effects on mortality, we also
explored the influence of differential selection into the CHAP on
our effect estimates (i.e., bias arising from prebaselinemortality of
susceptible individuals). We used the effect of NO2 on rate of cog-
nitive change as an example because the effect of NO2 onmortality
has undergone extensive study.23 This exploration, modified from
the simulation-based approach of Mayeda et al.,55 estimates the
bias on an effect estimate that results from scenarios in which the
exposure of interest affects survival to enrollment age, and an
unmeasured factor also affects not only survival, but also the out-
come of interest (Figure 2). By restricting a cohort to those who
survive to enrollment, a biased association between exposure and
the outcome may result, a form of the phenomenon referred to as
collider bias.31 Mayeda et al. provide complete technical details55;
in short, this simulation approach consists of three fundamental
steps. First, a large population (e.g., N =100,000) of pseudo-
participants are generated, and each is assigned a) an exposure
value, b) a value of an unmeasured factor (U) that affects both
survival and rates of cognitive change, and c) a rate of cognitive
change (a decline trajectory) based on linear mixed effects mod-
els with random intercepts and slopes. Second, each pseudo-
participant is assigned a vital status (“nonsurvivor” or “survi-
vor”) at study enrollment, using a probability model for survival
that takes into account the values of exposure and U that were
generated in the prior step. Finally, the association between

exposure and cognitive change is estimated among a random
sample of surviving pseudo-participants. This entire process is
repeated many times (e.g., thousands of times), and prebaseline
selection bias is estimated by comparing the true causal effect of
TRAP exposure on cognitive change [from step 1(c)] with the aver-
age estimated associations (from the last step) across all repeated
simulations.

In our simulations, we assumed that higher TRAP exposure
lowered the probability of survival to study enrollment. We also
assumed that individuals possessed varying levels of U, which we
conceptualized as a normally distributed random variable, with
higher values of U increasing the probability of prebaseline sur-
vival and slowing cognitive decline; in some of simulations, we
included an interaction term between U and TRAP exposure, with
U counteracting some of the adverse effect of TRAP exposure on
cognitive decline. Following Mayeda et al., we developed scenar-
ios in which TRAP and U influenced survival independently on a
multiplicative scale, as well as scenarios in which their effects on
survival were supramultiplicative. These latter scenarios were
expected to yield larger biases.31,55 We also based our simulations
on a hypothetical study that enrolled participants once they turned
a certain age: an “age 65 study” and an “age 75 study.”

Although our simulation study followed the basic structure pro-
posed by Mayeda et al., we expanded on their approach in three
ways. First, we allowed vital status to vary by demographic charac-
teristics. Because life tables suggest that Blackmen, Blackwomen,
White men, and White women have different life expectancies af-
ter birth,56 we fit separate survival models in step 2 for these four
groups instead of a single survival model as in Mayeda et al.
Second, the simulation design choices of Mayeda et al. were not
informed by any real-world study. In our simulations, we assigned
pseudo-participants a TRAP level based on the distribution of
observed NO2 levels in the CHAP,whichwe stratified by race (i.e.,
there were NO2 distributions that were unique to White pseudo-
participants and to Black pseudo-participants). The use of separate
NO2 models for Black and White pseudo-participants was moti-
vated by data in CHAP showing that the average NO2 exposure for
Black participants (19:9 ppb) was higher than that ofWhite partici-
pants (17:0 ppb), and to further tailor our bias analyses to the
CHAP, we encoded this exposure difference in our simulations.
Finally, instead of simulating a dichotomous exposure, we parame-
terized our TRAP exposure variable as a three-category variable
(“low,” “medium,” and “high”). These categories were based on
tertiles of the overall (i.e., not race-stratified) distribution of NO2
in the CHAP, which retained the racial disparity in TRAP exposure
levels seen in our exploratory analyses.

In total, we ran 18 simulation studies in which we systemati-
cally altered the association between TRAP exposure and survival,

Figure 2. Conceptual directed acyclic graph underlying a simulation-based bias analysis for TRAP exposure on cognitive decline. Parameters next to arrows
correspond to parameters in the prebaseline selection bias simulation. Note: TRAP, traffic-related air pollution.
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the association between U and survival, and the strength of a multi-
plicative interaction between TRAP exposure and U on survival.
These studies were equally split between “age 65 studies” and “age
75 studies.” (See Supplementary Material for the R code used to
conduct the simulation studies.)

Results
Our analytic sample included 6,061 participants who had complete
3-y TRAP exposure and baseline covariate information (Figure 3).
These participants contributed a total of 13,275 observations
[mean±SD=2:2± 1:0 observations, with 1,926 (31.7%) contrib-
uting only a single observation].

Three-year average concentrations of most of the TRAP spe-
cies that we investigatedwere higher among participantswho iden-
tified as Black than among those identifying as non-Black, and
who attained fewer years of formal education, or lived in areas
with lower neighborhood socioeconomic status at analytic baseline
(Table 1). Three-year NOX, NO2, and PM2:5–10,Cu exposure levels
were positively correlated with each other; all three exposures were
inversely correlated with PM2:5–10,Zn exposure level (Table 2). In
supplementary materials, we include correlations between TRAP
and community noise levels (Table S9).

Differences in Rates of Cognitive Change
Overall, estimated mean differences in 5-y rates of cognitive
change with increasing 3-y TRAP exposure were small and qual-
itatively mixed (Figure 4). From the primary analyses, a 1-SD
increase in NOX (5:8 ppb) was associated with a difference in
mean 5-y rate of change in global cognition score of 0.010 SD
units (95% CI: −0:016, 0.036), a difference in mean 5-y rate of
change in episodic memory of −0:001 SD units (95%CI: −0:036,
0.035), and a difference in mean 5-y rate of change in processing
speed of 0.022 SD units (95% CI: −0:008, 0.052). With respect to
NO2, we observed that a 1-SD increase (2:2 ppb) was associated
with small negative differences in mean 5-y rate of change in all
three cognitive domains. Associations between PM2:5–10,Cu and
5-y rates of change in global cognition and episodic memory
scores were found to be small and positive; however, the

association between a 1-SD increase (1:9 ng=m3) in PM2:5–10,Cu and
5-y rate of change in processing speed was negative and more pro-
nounced (−0:018 SDunits, 95% CI: −0:043, 0.008). The associa-
tions between PM2:5–10,Zn and mean 5-y rates of change in global
cognition and episodic memory were similar to those observed with
PM2:5–10,Cu, but in contrast to PM2:5–10,Cu, we observed that a 1-SD
increase (6:7 ng=m3) in PM2:5–10,Zn was associated with a mean 5-y
rate of change in processing speed thatwas positive (0.011 SDunits,
95%CI:−0:010, 0.031).

The analytic sample for sensitivity analyses involving contin-
uation weights (either due to not dying or jointly due to not dying
and not dropping out) was identical to that for our primary analy-
ses (6,061 participants, 16,067 observations). Samples sizes of
the other sensitivity analyses were smaller. For analyses in which
we censored participant follow-up once the participant became
90 y of age or older (n=6,013 participants, 12,731 observations),
participants contributed a mean±SD=2:2± 1:0 observations.
For sensitivity analyses restricted to those participants with suffi-
cient follow-up time to estimate a 5-y TRAP exposure, our sample
size was 5,251 (12,227 observations), and participants contributed
a mean±SD=2:0± 0:8 observations to these analyses.

In our sensitivity analyses involving tailpipe-related TRAP
(Figure 5), we observed mixed results. The application of contin-
uation weights due to not dying led to small shifts in the esti-
mated associations between our four TRAP species of interest
and rates of change across three cognitive domains, with half of
these estimates shifting toward more positive values (i.e., TRAP
is less harmful) and half shifting toward more negative values
(i.e., TRAP is more harmful). Applying continuations weights to
analyses where we censored follow-up time after participants
turned 90 y of age led to more consistent negative shifts in esti-
mated associations, whereas applying uncensored overall contin-
uation weights (i.e., weights based on the product of the inverse
probability of not dying and not dropping out estimated from all
available participant follow-up time) yielded estimated associa-
tions that were shifted in a similar way to how they were shifted
after applying (uncensored) continuation weights due to not
dying. Restricting to the subset of participants eligible for a 5-y
TRAP exposure window also in general yielded similar results to

Figure 3. Flowchart describing the creation of our analytic dataset based on participants who enrolled in the Chicago Health and Aging Project between 1993
and 2012.
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those of our primary analyses for both the analyses using a 5-y or
a 3-y exposure window. However, we found that with respect to
both NOX and NO2, using a 5-y exposure window resulted in
noticeably more negative estimated associations with respect to
rates of change in processing speed.

With respect to our sensitivity analyses involving nontailpipe-
related TRAP (Figure 6), we found that the application of weights
and changing the exposure window again did not yield results that
were qualitatively different from those of our primary analysis.

Finally, from our quantitative bias analysis simulation of preba-
seline selection bias, we identified some scenarios in which the
estimated effect of TRAP on change in global cognition was biased
upward from a true inverse (deleterious) value. In these simulation
analyses, we assumed that the true difference in the mean differ-
ence in the annual rate of cognitive change was b= − 0:003 per
change in categorical TRAP level (e.g., “low” to “medium” or
“medium” to “high” exposure level). When our data-generating
models did not include supramultiplicative interactions between
TRAP exposure and U, we found estimated differences in mean
rates of cognitive change per change in categorical TRAP exposure
level between ∼ − 0:003 and <0:001 (Table 3). In practical terms,

Table 2. Spearman rank correlations between estimated TRAP concentra-
tions, averaged over 3 y prior to participants’ (n=6,061) analytic baseline in
the Chicago Health and Aging Project (1999–2012).

NOX NO2 PM2:5–10,Cu PM2:5–10,Zn
NOX 1.00 0.91 0.63 −0:10
NO2 0.91 1.00 0.71 −0:13
PM2:5–10,Cu 0.63 0.71 1.00 −0:18
PM2:5–10,Zn −0:10 −0:13 −0:18 1.00

Note: PM, particulate matter; TRAP, traffic-related air pollution.

Table 1.Median and interquartile range of TRAP concentrations near participants’ homes in the Chicago Health and Aging Project (1999–2012), averaged
over the 3 y prior to analytic baseline, by category of demographic and clinical characteristics.

n (%)
NOX exposure

(ppb) median (IQR)
NO2 exposure

(ppb) median (IQR)
PM2:5–10,Cu exposure
(ng=m3) median (IQR)

PM2:5–10,Zn exposure
(ng=m3) median (IQR)

Overall sample 6,061 (100.0) 40.8 (36.7–45.3) 18.5 (16.9–20.1) 7.9 (6.7–9.6) 22.6 (21.0–24.3)
Baseline age (quartile)
61–68 y old 1,644 (27.1) 42.0 (37.4–45.7) 18.9 (17.1–20.3) 8.1 (7.2–9.6) 22.4 (21.0–24.1)
68–74 y of age 1,479 (24.4) 41.0 (36.2–45.2) 18.6 (17.0–20.2) 8.0 (7.0–9.8) 22.5 (20.8–24.0)
74–80 y of age 1,562 (25.8) 41.0 (37.1–45.5) 18.6 (17.0–20.2) 7.9 (6.7–9.7) 22.7 (21.0–24.2)
80–104 y of age 1,376 (22.7) 38.9 (36.3–44.1) 17.8 (16.7–19.6) 7.3 (6.2–9.0) 22.9 (21.2–25.2)
Sex
Male 2,223 (36.7) 40.8 (36.8–45.2) 18.4 (16.9–20.1) 7.9 (6.8–9.6) 22.5 (20.9–24.2)
Female 3,838 (63.3) 40.8 (36.7–45.3) 18.6 (17.0–20.1) 7.9 (6.8–9.6) 22.7 (21.0–24.4)
Race
Black 3,906 (64.4) 43.9 (40.5–46.8) 19.5 (18.3–20.8) 8.9 (7.8–10.2) 22.5 (20.7–23.9)
White 2,155 (35.6) 37.0 (34.6–38.6) 16.9 (15.7–17.6) 6.4 (5.4–7.1) 22.9 (21.2–25.9)
Years of formal education
0–8 584 (9.6) 44.1 (40.9–47.1) 19.5 (18.4–21.0) 8.8 (7.6–10.2) 22.7 (20.6–24.1)
9–12 2,771 (45.7) 41.7 (37.3–45.5) 18.9 (17.2–20.3) 8.0 (6.8–9.6) 22.6 (20.7–24.3)
13–16 2,087 (34.4) 39.4 (36.3–44.5) 18.0 (16.7–19.8) 7.7 (6.6–9.4) 22.6 (21.1–24.4)
17 or more 619 (10.2) 37.2 (33.9–40.6) 17.0 (15.6–18.6) 7.2 (6.6–8.6) 22.7 (21.2–24.4)
Community noise levels [tertile, dB(A)]
51.1–54.6 2,022 (33.4) 41.7 (37.6–45.4) 18.9 (17.3–20.3) 7.8 (6.8–9.2) 22.5 (20.8–24.2)
54.6–56.2 2,020 (33.3) 39.0 (36.0–43.9) 17.8 (16.5–19.3) 7.6 (6.6–9.1) 22.3 (21.0–24.1)
56.2–70.0 2,019 (33.3) 41.3 (37.1–46.7) 19.0 (17.0–20.7) 8.4 (6.9–10.3) 23.0 (21.1–24.6)
Neighborhood socioeconomic status z-score (tertile)
−7:6 to −3:2 2,034 (33.6) 44.5 (41.4–47.2) 19.7 (18.7–20.8) 9.0 (7.8–10.3) 22.6 (21.1–23.6)
−3:2 to 1.1 2,007 (33.1) 42.2 (37.8–46.0) 19.0 (17.4–20.4) 8.4 (6.5–9.9) 22.3 (20.2–24.4)
1.1–10.7 2,020 (33.3) 37.1 (34.4–39.1) 16.9 (15.6–17.8) 6.8 (6.2–7.6) 23.0 (21.4–26.3)
Smoking history
Current 704 (11.6) 41.9 (38.0–46.1) 18.9 (17.2–20.4) 8.1 (7.1–9.7) 22.5 (20.8–24.0)
Former 2,534 (41.8) 40.6 (36.6–45.1) 18.4 (16.8–20.1) 7.8 (6.7–9.6) 22.6 (21.0–24.3)
Never 2,823 (46.6) 40.5 (36.7–45.2) 18.5 (16.9–20.1) 7.8 (6.7–9.5) 22.7 (21.0–24.4)
Alcohol consumption (drinks/day)
0 3,813 (62.9) 41.9 (37.3–45.7) 18.9 (17.3–20.3) 8.2 (7.1–9.8) 22.6 (20.9–24.3)
0–1 1,917 (31.6) 39.0 (36.2–44.2) 17.7 (16.4–19.6) 7.4 (6.4–9.0) 22.7 (21.1–24.4)
>1 331 (5.5) 38.4 (35.7–43.0) 17.4 (16.2–19.1) 7.3 (6.5–8.5) 22.6 (21.2–24.4)

Nagi physical disability scorea

0 to 17 2,682 (44.3) 40.5 (36.7–44.9) 18.4 (16.9–20.0) 7.7 (6.6–9.4) 22.7 (21.0–24.5)
18 to 20 3,379 (55.7) 41.1 (36.7–45.4) 18.6 (17.0–20.2) 8.0 (6.8–9.6) 22.6 (21.0–24.2)
Self-rated health
Excellent 1,322 (21.8) 38.8 (36.0–43.9) 17.7 (16.4–19.6) 7.4 (6.4–9.1) 22.7 (21.2–24.5)
Good 2,999 (49.5) 40.8 (36.7–45.3) 18.5 (17.0–20.1) 7.8 (6.7–9.6) 22.6 (21.0–24.3)
Fair 1,451 (23.9) 42.1 (37.6–45.8) 19.0 (17.4–20.4) 8.2 (7.2–9.7) 22.6 (20.8–24.2)
Poor 289 (4.8) 42.3 (37.6–45.5) 19.1 (17.4–20.3) 8.2 (7.2–9.9) 22.5 (20.6–24.0)
History of diabetes mellitus
Yes 1,406 (23.2) 42.3 (37.6–45.8) 19.0 (17.3–20.3) 8.3 (7.2–9.8) 22.6 (21.0–24.2)
No 4,655 (76.8) 40.2 (36.5–45.0) 18.3 (16.8–20.0) 7.8 (6.6–9.5) 22.6 (21.0–24.4)
Global cognition z-score (tertile)
−2:74 to 0.18 2,021 (33.3) 42.7 (38.0–46.0) 19.2 (17.5–20.4) 8.3 (7.3–9.9) 22.7 (20.8–24.3)
0.18–0.71 2,020 (33.3) 41.4 (37.0–45.5) 18.7 (17.1–20.2) 7.9 (6.9–9.6) 22.7 (21.0–24.3)
0.71–1.76 2,021 (33.3) 38.5 (35.7–43.5) 17.7 (16.3–19.5) 7.3 (6.4–9.0) 22.5 (21.0–24.4)

Note: IQR, interquartile range; TRAP, traffic-related air pollution.
aHigher scores indicate less physical impairment and disability.
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these correspond to a scenario in which the estimated difference in
mean rate of cognitive change would be approximately correct
both qualitatively and quantitatively and to a scenario where one
would incorrectly estimate a mean difference of approximately
zero. When supramultiplicative interactions were added to the
data-generating models, we observed estimated mean differences
between ∼ 0:002 and 0.005. As such, in other words, in all simula-
tions, the estimated cognitive change coefficient was biased
upward from the true value, but in the simulations with supramulti-
plicative interactions between TRAP and U were introduced, the
resulting bias universally led to both quantitively and qualitatively
incorrect effect estimates (i.e., based on the direction of the esti-
mated effect, one could mistakenly conclude that TRAP exposure
is beneficial, when in truth it is harmful).

Discussion
This large study of urban-dwelling older adults generated evi-
dence that did not support the hypothesis that long-term exposure
to TRAP, measured via residentially located ambient concentra-
tions of four surrogate pollutants, is associated with steeper rate
of cognitive decline. Associations were small and imprecisely
estimated, and they were also largely insensitive—with a few no-
table exceptions—to the choice of exposure window and eligible
participant sample.

The absence of a clear deleterious association of TRAP with
cognitive decline in our study joins a body of equivocal evidence.
Prior studies of NO2 and NOX in relation to cognitive decline,
which have been set in Europe, North America, and Asia, have
produced mixed results. A study that included the Washington
Heights–Inwood Community Aging Project (WHICAP), a cohort
of older adults living in the northern Manhattan area of New
York City, New York, found evidence of an association between
NO2 and faster rates of cognitive decline in that cohort.57
However, the same study failed to observe any such associations
in another, smaller cohort located in the same geographic area

[the Northern Manhattan Study (NOMAS)]. Most studies of NO2
and/or NOX and cognitive decline, however, have failed to find
any evidence of an association.6,58–66 With respect to PM2:5–10,Cu
and PM2:5–10,Zn, our study is the first to examine associations
between these pollutants and cognitive decline, and although this
is a notable strength of our study, it prevents any comparison to
prior literature.

There are several potential explanations for why our study did
not find associations between TRAP and cognitive decline,
assuming that such an association exists. First, it could be that
there was low variability in our TRAP exposure estimates
because all CHAP participants lived in one of four adjacent
neighborhoods in Chicago. For example, the interquartile range
(IQR) of NO2 was 3:2 ppb (Table 1), which is considerably
smaller than the estimated NO2 IQR of 12:3 ppb in the WHICAP
cohort in which NO2 was associated with rate of cognitive
decline. At the same time, other studies have not found associa-
tions between NO2 and cognitive decline, despite having consid-
erable variability in estimated TRAP levels, which suggests that
low variability in TRAP exposure estimates cannot fully explain
null associations between TRAP and cognitive decline.

Second, we may not have been able to detect an association
between TRAP and cognitive decline because of insufficient
follow-up time. The longest possible follow-up period in our
study was from 2002 to 2012, and our participants contributed an
average of 2.2 assessments over an average of 3.7 y of follow-up,
with almost a third of participants only contributing a single ob-
servation. Consequently, we may have needed a longer window
in which to measure rates of cognitive decline to detect the effect
of TRAP, if it exists. At the same time, several studies with lon-
ger follow-up time than our study59,64,66 (up to 22 y59) have not
found evidence of any association of NOX or NO2 with cogni-
tive decline, and in our own results, we found in sensitivity
analyses that a longer exposure window (and therefore, shorter
follow-up window) yielded estimated associations that were

Figure 4. Adjusted differences in the mean 5-y rate of change in global cognition, processing speed, and episodic memory per 1-SD increment in TRAP expo-
sure, estimated from our primary analysis (n=6,061). Note: All models adjusted for baseline age, sex, race, study time, educational attainment, smoking status,
community noise level, neighborhood socioeconomic status and cross-products between these variables and study time. The parameter of interest was the inter-
action between TRAP exposure and study time. Models for NOX and NO2 additionally adjusted for the calendar year of the baseline visit. In addition, although
CHAP collected data on its participants from 1993 to 2012, model-based predicted values of NOX and NO2 for CHAP participants were available from 1999
to 2012, whereas model-based predicted values for PM2:5–10,Cu and PM2:5–10,Zn were available for 2009 only. To partially address this misalignment of exposure
and outcome ascertainment, we used the procedure described in the main text to assign 3-y TRAP exposures to each participant in our analytic sample. We
modeled associations between TRAP and rates of cognitive change, correcting for potential post-baseline attrition bias by incorporating inverse probability-of-
continuation weights into our GEE models. CHAP, Chicago Health and Aging Project; GEE, generalized estimating equations; PM, particulate matter; SD,
standard deviation; TRAP, traffic-related air pollution.
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slightly stronger than those in our primary analysis. This finding
suggests that although follow-up time may be important for the
study of TRAP and cognitive decline, other considerations (e.g.,
aspects of the sample over time) may also play important roles.

Finally, our study results may have been influenced by ei-
ther prebaseline or postbaseline selection bias. Although we
explored the presence of postbaseline selection bias and its
correction through the use of inverse probability weights, the
results of our unweighted (primary) and weighted (sensitivity)
analyses were only slightly different, which is consistent with
either the lack of appreciable postbaseline selection bias or mis-
specified inverse probability-of-continuation weight models
(e.g., the exclusion of one or more key drivers of postbaseline
selection bias, which meant that our weights could not fully cor-
rect for the bias that was present). With respect to prebaseline
selection bias, some of our simulation results were not inconsis-
tent with considerable bias, particularly in the presence of
supramultiplicative interactions between TRAP exposure and an
unmeasured cause of survival and cognitive decline. However,

even though we designed our simulations with the CHAP and our
study in mind and made our data-generating assumptions explicit,
no simulation can fully capture the complex relationships between
TRAP, survival to study baseline, and cognitive decline, and as
such, we must interpret these results with appropriate caution.67

For example, we implicitly assumed that TRAP exposure affected
the probability of survival to age 60 or 75 y starting from a pseudo-
participant’s birth; however, in reality, TRAP exposure may only
affect the probability of survival during specific windows.

Our study advances the line of inquiry intro TRAP exposure
and cognitive decline in several ways. First, the CHAP investiga-
tors succeeded in recruiting most age-eligible residents from their
target census area and implemented design features (e.g., in-
home study assessments) that reduced participant burden and
helped retain participants after enrollment; most attrition was
from death rather than disengagement from the study. In addi-
tion, given that more than 60% of the CHAP participants iden-
tified as Black, our study addressed the effects of TRAP on
cognitive health among a racialized group in the United States

Figure 5. Adjusted differences in the mean 5-y rate of change in global cognition, processing speed, and episodic memory per 1-standard deviation increment
in tailpipe-related traffic-related air pollution exposure, estimated from sensitivity analyses. Note: All models adjusted for baseline age, sex, race, study time,
educational attainment, smoking status, community noise level, neighborhood socioeconomic status, calendar year of the baseline visit, and cross-products
between these variables and study time. In addition, although the CHAP collected data on its participants from 1993 to 2012, model-based predicted values for
PM2:5–10,Cu and PM2:5–10,Zn were available for 2009 only. To partially address this misalignment of exposure and outcome ascertainment, we used the proce-
dure described in the main text to assign 3-y TRAP exposures to each participant in our analytic sample. To explore the impact of potential post-enrollment
selection biases and our choice of a 3-y exposure window, we conducted the following sensitivity analyses: a) incorporating stabilized inverse probability of
continuation due to not dying weights into our outcome models; b) incorporating stabilized inverse probability of continuation due to not dying weights into
our outcome models, censoring follow-up time once a participant became at least 90 y of age; c) incorporating stabilized inverse probability of continuation
weights, which were defined as the product of the inverse probability of continuation due to not dying and the inverse probability of continuation due to not
dropping out of the study; d) restricting to those eligible for a 5-y exposure window [i.e., those who had at least one CHAP visit 5 y after their working start
date described in the main text, and estimating 5-y and 3-y TRAP exposure among those eligible for 5-y exposure windows (“5-year exposure” and “3-year ex-
posure among the 5-year exposure subset,” respectively)]. For all sensitivity analyses, we assumed as with our primary analyses that 2009 predicted
PM2:5–10,Cu and PM2:5–10,Zn concentrations reflect, at least in rank ordering, what would have been observed for each CHAP participant at their analytic baseline
visit. CHAP, Chicago Health and Aging Project; PM, particulate matter; TRAP, traffic-related air pollution.
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Figure 6. Adjusted differences in the mean 5-y rate of change in global cognition, processing speed, and episodic memory per 1-SD increment in nontailpipe-
related traffic-related air pollution exposure, estimated from sensitivity analyses. Note: All models adjusted for baseline age, sex, race, study time, educational
attainment, smoking status, community noise level, neighborhood socioeconomic status, calendar year of the baseline visit, and cross-products between these
variables and study time. Although the CHAP collected data on its participants from 1993 to 2012, model-based predicted values for PM2:5–10,Cu and
PM2:5–10,Zn were available for 2009 only. To partially address this misalignment of exposure and outcome ascertainment, we used the procedure described in
the main text to assign 3-y TRAP exposures to each participant in our analytic sample. To explore the impact of potential post-enrollment selection biases and
our choice of a 3-y exposure window, we conducted the following sensitivity analyses: a) incorporating stabilized inverse probability of continuation due to
not dying weights into our outcome models; b) incorporating stabilized inverse probability of continuation due to not dying weights into our outcome models,
censoring follow-up time once a participant became at least 90 y of age; c) incorporating stabilized inverse probability of continuation weights, which were
defined as the product of the inverse probability of continuation due to not dying and the inverse probability of continuation due to not dropping out of the
study; d) restricting to those eligible for a 5-y exposure window [i.e., those who had at least one CHAP visit 5 y after their working start date described in the
main text, and estimating 5-y and 3-y TRAP exposure among those eligible for 5-y exposure windows (“5-year exposure” and “3-year exposure among the 5-
year exposure subset,” respectively)]. For all sensitivity analyses, we assumed as with our primary analyses that 2009 predicted PM2:5–10,Cu and PM2:5–10,Zn
concentrations reflect, at least in rank ordering, what would have been observed for each CHAP participant at their analytic baseline visit. CHAP, Chicago
Health and Aging Project; PM, particulate matter; SD, standard deviation; TRAP, traffic-related air pollution.

Table 3. Results of a quantitative analysis of prebaseline selection bias according to the causal structure in Figure 4 across 2,000 simulated cohorts modeled af-
ter participants in our sample of Chicago Health and Aging Project participants (n=10,000 in each simulated cohort).

exp ðc1Þ exp ðc2Þ exp ðc3Þ exp ðc4Þ exp ðc5Þ �
bb (bias %) age 65 y �

bb (bias %) age 75 y

1.05 1.25 0.9 1.0 1.0 −0:002 (−32%) −0:003 (−14%)
1.25 1.75 0.7 1.0 1.0 0.000 (−100%) −0:001 (−52%)
1.25 1.75 0.8 1.0 1.0 −0:001 (−65%) −0:002 (−33%)
1.50 2.25 0.7 1.0 1.0 −0:000 (−94%) −0:002 (−49%)
1.50 2.25 0.8 1.0 1.0 −0:001 (−59%) −0:002 (−30%)
1.25 1.75 0.7 0.9 0.7 0.003 (−212%) 0.002 (−177%)
1.25 1.75 0.8 0.9 0.7 0.003 (−186%) 0.002 (−166%)
1.50 2.25 0.7 0.8 0.5 0.005 (−276%) 0.005 (−254%)
1.50 2.25 0.8 0.8 0.5 0.005 (−260%) 0.005 (−253%)

Note:The parameters c1 to c5 correspond to log OR, and therefore, expðc1Þ to expðc5Þ correspond to ORs. An OR of 1.0 is the null value, indicating no association (or in the case of
interactions, no interaction). We assumed that the probability of death was given by the following equation in agreement with Figure 2 in the main text:

Pr Si =0ð Þ= exp fc0,c +c1I Qi =2ð Þ+c2 I Qi =3ð Þ+c3Ui +c4 I Qi =2ð ÞUi +c5I Qi =3ð ÞUig
1+exp fc0,c +c1 I Qi =2ð Þ+c2I Qi =3ð Þ+c3Ui +c4 I Qi =2ð ÞUi +c5 I Qi =3ð ÞUig ,

where I is an indicator function and Qi denotes the pseudo-individual’s TRAP exposure, with 1 corresponding to the first/lowest tertile of exposure (i.e., “low”), 2 corresponding to the
second tertile of exposure (i.e., “medium”), and 3 corresponding to the third/highest tertile of exposure (i.e., “high”). The values of c1 through c5 are chosen as part of the simulation
design (i.e., they are user-specified), and a root finding procedure is applied to estimate the c0,c that gives approximately the correct marginal probability of death, as given by life
tables in Arias.56 OR, odds ratio; TRAP, traffic-related air pollution.
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that shoulders a high burden of TRAP exposure but that has
long been under-included in dementia-related studies. Our
study is among the few to evaluate the cognitive effects of air
pollution estimates that were generated by highly resolved
spatiotemporal (NOX and NO2)36,39 and spatial (PM2:5–10,Cu
and PM2:5–10,Zn) models that incorporated data from within-
city air sampling campaigns.

Our study also addressed both pre- and postbaseline selection
bias through simulation-based quantitative bias analyses and sen-
sitivity analyses incorporating inverse probability-of-continuation
weights, respectively, with no change to our overall qualitative
finding of little discernible association between TRAP and cogni-
tive decline. In studies of older adults, such tools are helpful for
understanding the extent to which differential survival and partic-
ipation affect study results, particularly studies that cannot practi-
cally cover the entire life course. In our simulations, we used
parameter values that we believed were within plausible ranges.
Prior work supports the hypothesis that TRAP exposure has a
harmful effect on mortality, as reflected in our simulations.23

Regarding U, we remained agnostic to what exactly this variable
might be, aside from it being an unmeasured resilience factor.
Although U could be a biological variable (e.g., a genetic muta-
tion), it could also plausibly be an often-unmeasured socioeco-
nomic privilege variable (e.g., access to high-quality health care).
This latter possibility is relevant for the plausibility of potential
interactions between TRAP and U in relation to mortality. For
example, socioeconomic status has been shown to be related to
both mortality,68 cognitive decline,69 and risk factors for mortal-
ity or cognitive decline like stroke and diabetes mellitus.70,71 If
socioeconomic vulnerability makes individuals more susceptible
to TRAP’s harmful effect on mortality (or conversely, if high
socioeconomic status buffers against this effect), this could be a
real-world example of the TRAP–U supramultiplicative interac-
tion assumed by our simulation study; however, more work is
needed to test this hypothesis.

Another noteworthy strength of our study was our ability to
examine rarely studied nontailpipe-related aspects of TRAP, like
PM2:5–10,Cu and PM2:5–10,Zn, because the health effects of these
pollutants remain poorly understood.72 Whereas tailpipe TRAP is
generated through combustion-related reactions, nontailpipe
TRAP is generated through physical grinding and resuspension
of solid materials; these distinct generative processes mean that
tailpipe- and nontailpipe-related TRAP differs not only in terms
of composition, but also potential biological deposition and ulti-
mate impact on cognitive health. Nontailpipe TRAP also contains
far more metallic content than tailpipe TRAP, including metals,
such as copper and zinc, that have neurotoxic potential at high
doses or the presence of brain metal dyshomeostasis.73 The cog-
nitive effects of nontailpipe TRAP may operate via excessive ex-
posure to these metals, though it is possible that these metals are
proxies for the mixture of air pollutants generated by brake and
tire wear. The relevance of the features of nontailpipe pollutants
to cognitive decline merits further study, particularly given that
the transition of the world’s vehicle fleet to fully electric or
hybrid energy sources will reduce tailpipe but not nontailpipe
pollutants.23 It is also interesting that we observed an inverse cor-
relation between PM2:5–10,Cu and PM2:5–10,Zn levels in our study.
Although we cannot be certain, we believe that is because
PM2:5–10,Cu is a surrogate of brake wear and PM2:5–10,Zn is a surro-
gate of tire wear. One can imagine that areas with a lot of “stop-
and-go” traffic would be high in PM2:5–10,Cu because of widespread
brake usage, but low in PM2:5–10,Zn because fewer vehicles reach
speeds that generate substantial tire wear. Conversely, areas where
vehicles travel at high speeds (e.g., highways) could see high
PM2:5–10,Zn because of tire wear, but low PM2:5–10,Cu, because

braking is infrequent or even nonexistent. Relatedly, these dif-
ferent traffic patterns could explain why PM2:5–10,Zn was inver-
sely correlated with NOX and NO2; in areas with stop-and-go
traffic, NOX and NO2, levels could be higher because vehicles
aremore likely to be idle, thereby allowing tailpipe-related pollutant
concentrations to increase. However, future work is needed to test
these speculations. Our study therefore represents an important step
toward better understanding the potential cognitive health impact of
TRAP, even as vehicle emissions continue to decrease.

Our study also had several important limitations. First, we
assumed that all TRAP estimates reflected long-term exposure,
even though we were unable to predict location-based concentra-
tions of NOX and NO2 prior to January 1999, and we had only a
single spatial surface of predicted PM2:5–10,Cu and PM2:5–10,Zn con-
centrations that reflected spatial contrasts from 2009. Our assump-
tions of temporal stability were likelymet in terms of rank ordering
but not absolute concentration, as shown in year-specific NOX and
NO2 concentrations over the study period 1999–2012 and year-by-
year correlations (Tables S7 and S8). However, it is less clear
whether our assumption about the stability of PM2:5–10,Cu and
PM2:5–10,Zn concentrations was met. As mentioned, these concen-
trations were predicted from highly resolved spatial models that
incorporated hundreds of covariates, giving us residence-based
data on these pollutants, which is rare for studies based in the
United States. We believe that many of the features contributing to
our predicted PM2:5–10,Cu and PM2:5–10,Zn concentrations remained
constant over the study period, but it is unlikely that all have (e.g.,
traffic patterns may have changed, the weight and weight distribu-
tions of vehicles may have changed, and/or the materials used to
make brake and tires may have changed). It is clear that there
remains much to be known about these pollutants, and we view our
study as a starting point for subsequent research that advances the
temporal dimension ofmeasuring these exposures.

In addition, positioning our 3-y TRAP estimates prior to cog-
nitive assessments meant that our results are based on an average
of 2.2 observations per CHAP participant, which limited our abil-
ity to assess rates of cognitive change over time. Although the
results of our sensitivity analysis using 5-y exposure windows
showed stronger effects with respect to processing speed, it is
challenging to compare these findings with those from the pri-
mary analyses, because the 5-y exposure findings are based on a
smaller analytic sample (n=5,251 vs. 6,061 in our primary anal-
yses). Having a 5-y exposure window also led to relatively fewer
total observations per participant (30% with more than two cogni-
tive measurements vs. 42% in our primary analytic sample; <1%
had more than three measurements vs. 8% in our primary analytic
sample). As discussed above, following participants for longer
periods may be needed to detect the effects of TRAP on cognitive
decline. Finally, although our analyses were adjusted for self-
identified race, it should be acknowledged that this variable is at
best a proxy for exposure to racism of all types and degrees,
including redlining and other injustices that differentially subject
Black individuals in the United States to higher exposure to
TRAP and higher susceptibility to poor cognitive outcomes in
older adulthood.

In conclusion, the evidence from our study did not support
noteworthy adverse associations of TRAP exposure with cogni-
tive decline in a well-characterized cohort of older adults.
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