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Abstract

We present Clinical Prediction with Large Language Models (CPLLM), a method that

involves fine-tuning a pre-trained Large Language Model (LLM) for predicting clinical dis-

ease and readmission. We utilized quantization and fine-tuned the LLM using prompts. For

diagnostic predictions, we predicted whether patients would be diagnosed with a target dis-

ease during their next visit or in the subsequent diagnosis, leveraging their historical medical

records. We compared our results to various baselines, including Retain and Med-BERT,

the latter of which is the current state-of-the-art model for disease prediction using temporal

structured EHR data. In addition, we also evaluated CPLLM’s utility in predicting hospital

readmission and compared our method’s performance with benchmark baselines. Our

experiments ultimately revealed that our proposed method, CPLLM, surpasses all the

tested models in terms of PR-AUC and ROC-AUC metrics, providing state-of-the-art perfor-

mance as a tool for predicting disease diagnosis and patient hospital readmission without

requiring pre-training on medical data. Such a method can be easily implemented and inte-

grated into the clinical workflow to help care providers plan next steps for their patients.

Author summary

We introduce Clinical Prediction with Large Language Models (CPLLM), a novel method

that fine-tunes a pre-trained Large Language Model (LLM) to enhance predictions of clin-

ical diseases and patient readmissions. By leveraging historical medical records, we aimed

to predict whether patients will be diagnosed with a specific disease or be readmitted. Our

method is compared against the current state-of-the-art model for using structured elec-

tronic health record (EHR) data. Our findings demonstrate that CPLLM significantly out-

performs state-of-the-art models in both PR-AUC and ROC-AUC metrics. Additionally,

our method does not require pre-training on clinical data, making it straightforward to

implement with existing LLMs. By integrating CPLLM, healthcare providers can make

informed decisions about patient care, ultimately leading to better outcomes. CPLLM can

be readily adopted within clinical workflows, assisting care providers in planning appro-

priate next steps for their patients.
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Introduction

Large Language Models (LLMs) are a type of artificial intelligence (AI) tool shown to be effec-

tive in performing a variety of natural language processing tasks [1]. LLMs are trained on large

amounts of textual data, which allows them to learn the statistical relationships between words

and phrases. LLMs are used for different types of tasks, including natural language compre-

hension, natural language generation, knowledge-intensive tasks, and reasoning [2]. This

makes them well-suited for tasks that require understanding the meaning of a text, such as text

classification [3, 4] and even clinical predictions in the medical domain [5, 6].

Clinical predictions are used to estimate a patient’s susceptibility to disease, gauge the likeli-

hood of treatment response, or forecast the course of a given medical condition. [7, 8]. These

predictions have been implemented via classical models such as logistic regression [9] and ran-

dom forest models. However, these traditional methods do not model the order of medical

events (diagnoses, procedures, medications, etc.). Instead, they rely solely on the absence or

presence of these events (features).

Modern event order prediction models, which are more advanced than the traditional pre-

dictive models mentioned above, are based on recurrent neural networks or transformers, of

which the latter have been shown to be superior [10], including BERT-style models like BERT

[11], RoBERTa [12], and Deberta [13]. GPT-style language models comprise another trans-

former-based architecture. These GPT models are trained to generate the next token in a

sequence. GPT models are used in a wide range of downstream tasks such as summarization,

translation, and the answering of questions. [14]. Notable GPT models include LLaMA [15],

Falcon [16], Bloom [17], and GPT4 [18].

The significance of the mentioned language models for handling sequential data is particu-

larly important in the context of clinical predictive models that rely on Electronic Health

Record (EHR) data. Structured EHR data encompasses a patient’s clinical history, which is

notable for its irregular temporal sequence of events and observations [6]. Previous studies

have sought to model EHR diagnostic data as a sequence using BERT models including

BEHRT [19–22], Med-BERT [23], and Medic-BERT [24] (for predicting length of stay). How-

ever, these models represent each diagnosis code as an index and do not address the textual

description of the ICD code. In addition, these models are pre-trained using clinical data, and

have a limited sequence length input.

There has been limited research focused on developing clinical prediction models using

pre-trained LLMs as a starting point for further fine-tuning. One of the main focuses of apply-

ing LLMs in the clinic has centered on the chat capability of these models [5, 25] or using an

LLM for medical text-based tasks like text generation [26, 27] and text comprehension [28–

31]. In addition, [32] proposed a method called ClinTaT for cancer prediction. Their focus

was on cancer prognostic prediction using few-shot learning, and their data modeling was not

designed for structured EHR data that consists of a sequence of diagnoses. However, we want

to harness the power of LLMs to understand sequences of tokens derived from structured

EHR data for the specific training of predictive models. For this effort, we chose to present the

structured data as a text by representing each medical concept with a word, treating admis-

sions as visits, and considering patient history as a document. The objectives of this study were

to develop a novel method for using LLMs to train clinical predictors and to evaluate the per-

formance of this method on real-world datasets.

Our proposed method uses an LLM to predict future patient diagnoses and readmission

through the fine-tuning of LLMs. For this approach, medical concepts were represented by text

descriptions, and fine-tuning was performed using a prompt that feeds the model with training

samples. We used two different LLMs: Llama2, which is a general LLM [15], and BioMedLM,
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which was trained on biological and clinical text [33]. We used four prediction tasks and two

datasets and compared the performance of the resultant models to baseline models.

Our method demonstrates improved performance compared to state-of-the-art methods,

even without pre-training on medical data. We have been able to use a general-purpose pre-

trained model (Llama2) on non-medical data, effectively adapting it to EHR structured data

despite its sequential structure. Our generic method can be used for a variety of tasks and is

not specific to any particular LLM. Moreover, our method is also suitable for different clinical

domains such as demographics, diagnoses, laboratory test results, measurements, procedures,

and more.

Contributions.

1. We propose Clinical Prediction with Large Language Models (CPLLM), a novel method for

LLM-based clinical prediction that outperforms state-of-the-art models for predicting dis-

ease and patient readmission based on structured EHR data. CPLLM does not require pre-

training on clinical data and achieves better performance than alternative methods. More-

over, our method has a longer sequence length limit compared to baseline methods.

2. We show that adding additional tokens to the pre-trained tokenizer of the LLM before fine-

tuning enhances the clinical predictive model’s performance.

3. Our code is flexible for any LLM, available for use, and can be readily adapted to various

clinical prediction tasks.

Methods

Disease prediction—Problem definition

Formally, for a given patient p, let n denote the total number of diagnoses in their medical his-

tory. Thus, the patient’s sequence of diagnoses is represented as {Dp,1, Dp,2, Dp,3, . . ., Dp,n},

where each Dp,i (1� i� n) corresponds to a medical diagnosis in the patient’s history. We

considered two types of binary diagnostic predictions: next diagnosis and next visit diagnosis.

Next diagnosis prediction. Given a patient’s medical history, we predict whether the

patient’s next diagnosis will be a target disease of interest. More formally, we predict whether

patient p will be diagnosed with a specific disease Dx (a text that describes the disease) as the

Dp,i+1 diagnosis, given previous diagnoses. Our model relies on the patient’s medical records

up to the i-th diagnosis, denoted as {Dp,1, Dp,2, . . ., Dp,i}, where Dp,i (1� i< n) indicates the

most recent diagnosis observed for patient p. The predictive model utilizes this patient-specific

historical medical information to determine whether patient p’s next diagnosis is a specific dis-

ease or not.

Next visit diagnosis prediction. In some cases we cannot predict the next diagnosis for a

patient. Predicting the next diagnosis requires knowledge of the precise timing of each diagno-

sis. However, these data may occasionally be unavailable, such as when diagnoses are docu-

mented at the end of an admission. Therefore, we conceptualize the next visit diagnosis

prediction task. Next visit diagnosis prediction is defined as predicting, based on a patient’s

medical history, whether the patient will be diagnosed with the disease of interest during their

next admission visit. Consequently, in the context of the MIMIC-IV dataset [34], we forecast

whether a patient will receive a specific diagnosis in the subsequent admission.

Prediction of patient hospital readmission

Based on a patient’s medical history, including procedures, diagnoses, and medications, our

objective is to forecast whether the patient will experience hospital readmission within the
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next X days. We follow the definition of X as specified by the PyHealth benchmark [35]. In our

experiments with the MIMIC-IV dataset, we predict hospital readmission within a 15-day win-

dow. For the eICU-CRD dataset, the prediction time-frame is 5 days.

Data

In this study, we used data from the eICU-CRD database [36] and data from the MIMIC-IV

database [34]. Our datasets included ICD-9-CM (eICU-CRD) and ICD-10-CM (MIMIC-IV)

diagnoses and their descriptions. In the eICU-CRD database, each diagnosis is associated with

a timestamp. Consequently, we arranged the diagnoses in chronological order based on their

respective diagnosis times. Our disease prediction task aims to anticipate whether the forth-

coming diagnosis will correspond to a specific disease. Unlike the eICU-CRD dataset, the

MIMIC-IV data lacks information on the exact timing of each diagnosis assignment. However,

it provides start times for admission and discharge times for each patient. As a result, our pre-

diction task for this dataset revolves around determining whether a patient will be diagnosed

with a specific disease during their subsequent visit.

Med-BERT adopts a pre-training strategy and trains BERT using Masked Language Model-

ing (MLM) and Length of Stay (LOS) prediction tasks [23]. Therefore, we extracted the neces-

sary data from the databases, including the diagnosis codes for each patient. Additionally, we

also included information on the LOS of each admission and the number of visits of each

patient. However, in our approach, we did not conduct an additional pre-training step, as we

focused on LLM fine-tuning. In our proposed method, it is not required to note during which

visit each diagnosis was made. Furthermore, the duration of hospital stay is not required.

Data Preprocessing. For the prediction of readmission, we followed PyHealth’s data pre-

processing methodology. We included drugs, procedures, and diagnosis codes alongside their

respective descriptions. Additionally, we incorporated both ICD-9 and ICD-10 codes and con-

vert them to Clinical Classification Software (CCS) codes [37]. For drugs, we converted the

codes to ATC codes [38]. For procedures, we included ICD-9 and ICD-10 procedure codes

and converted them to CCS codes using PyHealth. For diagnostic prediction based on the

MIMIC-IV dataset, we excluded patients with only one visit, as there was no medical history

for such cases. Similarly, for the eICU-CRD dataset, patients with just one diagnosis were

removed. We also excluded patients who have the disease we are trying to predict at the first

visit (or the first diagnosis for eICU-CRD data). We converted our ICD-10 codes to their cor-

responding CCS categories for MIMIC-IV, while for eICU-CRD, we retained the ICD-9 codes

as they were. This decision was motivated by the higher number of ICD-10 codes compared to

ICD-9 codes [39]. Based on the sequence of diagnoses for each patient, we determined whether

the patient exhibited a specific diagnosis based on ICD diagnosis codes related to the specific

disease according to the relevant CCS category [40]. Table 1 provides an overview of the num-

ber of patients, the count of final patients after preprocessing, average diagnoses, and average

visits for each disease prediction task.

Clinical outcomes. We evaluated our model’s performance through four prediction tasks:

prediction of patient hospital readmission and three diagnostic prediction tasks focused on

Chronic Kidney Disease, Acute and Unspecified Renal Failure, and Adult Respiratory Failure.

The first two diagnoses were derived from the MIMIC-IV dataset, and the last was derived

from the eICU-CRD dataset. The corresponding CCS codes for these diseases were 157 for

Acute and Unspecified Renal Failure, 158 for Chronic Kidney Disease, and 131 for Adult

Respiratory Failure. For each prediction task, patients with specific disease ICD codes were

assigned a positive label, and their diagnosis history encompassed all diagnostic codes

recorded until the specific code was indicative of the outcome of interest.
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Baseline methods

We conducted a rigorous performance assessment of the CPLLM against three baseline meth-

ods. For diagnosis prediction task, the baseline models included Med-BERT with a classifica-

tion layer [23], logistic regression [9], and Retain—a disease prediction model featuring

double GRUs and attention modules [41]. We compared CPLLM with these baseline methods

to gain valuable insights into its performance in clinical prediction tasks. The comparison was

conducted using two metrics: the area under the precision-recall curve (PR-AUC) and the area

under the receiver operating characteristic curve (ROC-AUC). Disease prediction tasks are

typically imbalanced, and ROC-AUC is less suitable for binary classifiers with imbalanced data

[42]. Therefore, our main evaluation metric was the PR-AUC, although we also report

ROC-AUC for consistency with the baseline methods. When predicting readmission, as men-

tioned earlier, we compared CPLLM with PyHealth baselines, including the following models:

ConCare [43], Retain [41], Deepr [44], and GRASP [45].

Our proposed method

We propose a method called CPLLM. This method involves fine-tuning a LLM using prompts

tailored to medical concept sequences. Through fine-tuning using prompts (inputs for LLM

guidance), we direct the LLM to grasp intricate relationships among medical concepts.

We utilized two LLMs: Llama2 (13B parameters) [15] and BioMedLM (also called Pub-

MedGPT, 2.7B parameters) [33]. To enhance time and memory efficiency when fine-tuning

these LLMs, we used QLoRA [46] and PEFT [47]. QLoRA is a PEFT approach that decreases

the number of parameters requiring fine-tuning and also performs quantization [46]. This

combined approach effectively optimized the models’ efficiency, enabling single-GPU fine-

tuning for both BioMedLM and Llama2 models.

We performed separate fine-tuning of each LLM, leveraging specific prompts tailored to

our patients’ medical codes and their corresponding labels. In Fig 1, we present an example of

the prompts utilized during the fine-tuning process for both Llama2 and BioMedLM. We also

indicated the target disease in the prompt, and the prompts were designed to incorporate

patients’ individual medical code histories with the goal of improving the models’ perfor-

mance. When predicting readmission, the prompt was very similar, but also included drugs

and procedures. For diagnostic prediction tasks, we added tokens of diagnosis descriptions

missing from the original tokenizer vocabulary of the LLM. We performed an ablation study

that compared model performance with and without changing the vocabulary of the pre-

trained tokenizer.

For the clinical prediction downstream task, we performed fine-tuning as depicted in Fig 1.

Each sample in our training data consisted of a prompt (text) and a label. We used prompts to

ask the LLMs to generate a single binary token (0 or 1) in response, by adding a fully connected

Table 1. Task statistics for the prediction tasks.

Dataset Task # of patients Final # of patients Disease prevalence (%) Median # of visits (IQR) Median # of diagnoses (IQR)

MIMIC-IV Chronic kidney disease 84,453 26,161 8.157 1 (1–2) 11 (7–19)

MIMIC-IV Acute and unspecified renal

failure

84,453 26,736 19.465 1 (1–2) 11 (7–19)

eICU-CRD Adult respiratory failure 132,677 56,419 14.549 1 (1–1) 1 (1–2)

Disease prevalence denotes the percentage of cases diagnosed with a specific disease. Visit and diagnosis counts are calculated from the patient’s medical history after

preprocessing. IQR—Interquartile range.

https://doi.org/10.1371/journal.pdig.0000680.t001
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classification layer as the final layer of the LLM corresponding to the number of labels. We

used QLora [46] for our fine-tuning process and froze all layers except the linear layers of the

LLM. By training the models with all patient data using Binary Cross Entropy loss for the spec-

ified number of epochs, we obtained the fine-tuned LLM tailored to our specific clinical pre-

diction task.

Experiments

Experimental setup

When predicting readmission, we compared our method to the PyHealth benchmark. For the

diagnostic prediction tasks, we compared our method to three baseline models. The first was a

simple logistic regression that does not model the data as a sequence, but as simple indepen-

dent, unordered variables [48]. For the logistic regression inputs, we used one-hot encoding

because it cannot handle text input directly. The second was Retain which is a two-level neural

attention model [41]. The third baseline was Med-BERT, the state-of-the-art for structured

EHR data for disease prediction. Retain was the baseline for Med-BERT. We split our data

using an 70–10-20 ratio to allocate samples to the training, validation, and testing sets, respec-

tively. For Med-BERT, we trained the pre-training model with the MLM and LOS tasks on the

training samples from the MIMIC-IV dataset with the TensorFlow package [49]. The training

of the Med-BERT’s MLM phase was performed according to the fixed number of steps in the

original implementation. The training took about 1.5 days on an RTX1080 GPU. Subse-

quently, we fine-tuned the pre-trained model for the specific clinical prediction downstream

tasks. The Retain and Med-BERT baselines trained for 500 epochs with early stopping based

on the PR-AUC values derived from the validation set, using a maximum number of epochs

without improvement of 5 [50]. During training of the baselines, we experimented with vari-

ous batch sizes {32, 100} and different learning rates {1e−5, 2e−5}. For each prediction task, we

selected the hyper-parameters that achieved the best results on the validation set. For logistic

regression training, we utilized the scikit-learn package [51] and trained the model on a CPU.

To determine the optimal hyper-parameters for logistic regression, we conducted a grid search

encompassing penalty (L1 and L2 regularization), C, solver, and the maximum number of iter-

ations. We explored values of {0.1, 1, 10} for C, {‘liblinear’, ‘saga’} for solver, and {100, 200,

500} for the number of iterations. We took the best hyper-parameters based on the validation

PR-AUC values for each prediction task.

Fig 1. Illustration of the fine-tuning process for diagnostic prediction. A: An example of EHR structured data. The patient has three

diagnoses. B: Patient’s historical data is extracted from the EHR and decoded to a textual list of descriptions. C: The decoded textual data is

then injected into a designed prompt for fine-tuning the LLM. Fine-tuning prompts consist of a general description, the patient’s diagnostic

history, and a label. The label is set to 1 when the patient is diagnosed with the outcome of interest (e.g., Adult respiratory failure in the

subsequent diagnosis or during the next admission, depending on the task.

https://doi.org/10.1371/journal.pdig.0000680.g001
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For CPLLM experiments, we fine-tuned two LLMs, Llama2 (13B) and BioMedLM (2.7B),

using HuggingFace [52]. [46]. Specifically, we used a learning rate of 2e−5, Lora alpha of 32,

Lora dropout of 0.1, and set the bias to none. Given the resource constraints, we meticulously

determined and employed the maximum batch size that our GPU memory could accommo-

date. We fine-tuned each model over six epochs (four epochs for readmission due to the larger

dataset), selecting the best checkpoint based on validation PR-AUC values. Fine-tuning

Llama2 for six epochs required about one day of training on an RTX 6000 GPU, while Bio-

MedLM took about two hours on the same hardware. Our fine-tuning process used PEFT, and

we did not perform additional pre-training in the clinical domain, yet our CPLLM method

outperformed the baseline models.

Results

Diagnostic prediction results. We considered various models for the clinical prediction

task: logistic regression, Med-BERT with a classification layer, Retain, and our proposed

method, called CPLLM. To examine the statistical significance of the results, we ran each

model three times. Table 2 shows the mean and 95% confidence intervals for the PR-AUC and

ROC-AUC values derived from these models.

Our findings demonstrate that our method, CPLLM, outperformed all tested models,

including Retain, Med-BERT, and logistic regression, across both PR-AUC and ROC-AUC

metrics. Specifically, in the context of the Adult Respiratory Failure task, CPLLM-Llama2

achieved a noteworthy PR-AUC value of 35.962%, signifying an absolute improvement of

0.912% over the best-performing baseline model, logistic regression, which obtained a PR-AUC

score of 35.05%. This improvement corresponds to a relative enhancement of 2.6% in terms of

PR-AUC. Additionally, our method exhibited a relative increase of 5.1% in PR-AUC when

compared to Retain and a 3.31% increase when compared to Med-BERT. With respect to

ROC-AUC performance, CPLLM also outperformed the baseline models. The Precision-Recall

and ROC curves for Adult Respiratory Failure can be found in the supplementary material (see

S3 and S4 Figs). Furthermore, CPLLM-Llama2 demonstrated superior performance in this

Table 2. Performances of various models assessed across multiple tasks and datasets.

Task Model PR-AUC ROC-AUC

Adult respiratory failure Logistic regression 35.050 74.664

Retain 34.22 ± 0.299 74.454 ± 0.173

Med-BERT 34.81 ± 0.208 75.407 ± 0.073

CPLLM-Llama2 35.962 ± 0.380 76.407 ± 0.262

CPLLM-BioMedLM 35.494 ± 0.352 75.975 ± 0.214

Chronic kidney disease Logistic regression 32.230 83.016

Retain 31.407 ± 1.379 81.692 ± 0.899

Med-BERT 33.37 ± 0.891 83.12 ± 0.173

CPLLM-Llama2 33.992 ± 1.262 83.034 ± 0.511

CPLLM-BioMedLM 33.984 ± 1.077 83.404 ± 0.429

Acute and unspecified renal failure Logistic regression 42.075 77.486

Retain 43.603 ± 0.409 77.364 ± 0.394

Med-BERT 42.237 ± 0.408 77.427 ± 0.185

CPLLM-Llama2 45.442 ± 0.839 78.504 ± 0.684

CPLLM-BioMedLM 45.161 ± 1.622 78.484 ± 0.403

The highest score per task is highlighted in bold.

https://doi.org/10.1371/journal.pdig.0000680.t002
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specific task compared to CPLLM-BioMedLM. Logistic regression outperformed Retain in

terms of both PR-AUC (35.05%) and ROC-AUC (74.664%), but it also outperformed Med-

BERT in PR-AUC, albeit not in ROC-AUC (74.664% vs. 75.407% for Med-BERT).

For Chronic Kidney Disease prediction using the MIMIC-IV dataset, Retain exhibited the

worst performance in both metrics. Med-BERT outperformed logistic regression and Retain.

CPLLM-Llama2 had the highest PR-AUC score of 33.992%, followed by CPLLM-BioMedLM

with 33.984% and Med-BERT with 33.37%. However, in terms of ROC-AUC, CPLLM-Bio-

MedLM outperformed all models with a score of 83.404%, followed by CPLLM-Llama2 with

83.034% and Med-BERT with 83.12%.

For Acute and Unspecified Renal Failure, CPLLM-Llama2 achieved the highest perfor-

mance metrics, boasting a PR-AUC score of 45.442% and an ROC-AUC score of 78.504%.

This signifies a notable improvement of 4.22% in PR-AUC compared with the leading baseline

model, Retain, in this task. Additionally, it demonstrated a 1.31% improvement in ROC-AUC

compared to the best-performing baseline, logistic regression, with an ROC-AUC score of

77.486%. Furthermore, it is worth highlighting that in this specific task, Retain outperformed

Med-BERT in terms of PR-AUC but not ROC-AUC. Additionally, CPLLM-Llama2 demon-

strated superior performance compared to CPLLM-BioMedLM. As we found that

CPLLM-Llama2 outperformed CPLLM-BioMedLM, the remainder of our analyses will be

based on CPLLM-Llama2.

Hospital readmission prediction results. To demonstrate the robustness of CPLLM, we

expanded our analysis beyond diagnosis to include procedures and drugs. We compared

CPLLM against several baseline methods from the PyHealth benchmark. Table 3 presents the

results for patient hospital readmission prediction. In the case of MIMIC-IV, CPLLM with

LLama2–13B achieved a PR-AUC of 68.986%, outperforming ConCare, the second-best per-

forming model, by 1.46% (absolute). For eICU-CRD, CPLLM exhibited the highest PR-AUC

among the baselines, achieving a PR-AUC of 94.115%. Additionally, CPLLM achieved the

highest ROC-AUC in both datasets. The Precision-Recall and ROC curves for readmission

prediction can be found in the supplementary material (see S1 and S2 Figs).

Ablation study

We conducted an ablation study to investigate the impact of adding tokens to the pre-trained

tokenizer of the LLMs before fine-tuning. Table 4 provides a comprehensive overview of the

Table 3. PR-AUC and ROC-AUC values for the hospital readmission prediction task for the MIMIC-IV and eICU-CRD datasets.

Dataset Model PR-AUC ROC-AUC

MIMIC-IV CPLLM-Llama2 68.986 ± 0.499 68.155 ± 0.38

ConCare 67.523 ± 0.697 67.242 ± 0.269

Retain 67.343 ± 0.558 66.893 ± 0.421

Deepr 66.891 ± 0.604 66.575 ± 0.371

GRASP 65.656 ± 2.929 65.302 ± 3.369

eICU-CRD CPLLM-Llama2 94.115 ± 0.704 77.916 ± 1.026

ConCare 93.429 ± 0.733 77.024 ± 1.156

Retain 93.615 ± 0.340 77.149 ± 1.048

Deepr 93.814 ± 0.422 77.814 ± 0.385

GRASP 93.677 ± 1.824 77.515 ± 3.899

The highest score per dataset is highlighted in bold.

https://doi.org/10.1371/journal.pdig.0000680.t003
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associated PR-AUC and ROC-AUC values, comparing scenarios with and without the addi-

tion of extra tokens. For the task of predicting Acute and Unspecified Renal Failure, adding

the tokens yielded enhancements in both PR-AUC and ROC-AUC for CPLLM-Llama2

(0.499% absolute increase in PR-AUC and a 0.554% absolute increase in ROC-AUC). Simi-

larly, CPLLM-BioMedLM showed substantial improvements with a 1.631% absolute increase

in PR-AUC, representing a relative enhancement of 3.746%, and a 0.414% absolute increase in

ROC-AUC. In contrast, for the prediction of Chronic Kidney Disease, the inclusion of extra

tokens did not significantly impact PR-AUC and ROC-AUC values for CPLLM-Llama2. How-

ever, CPLLM-BioMedLM demonstrated improvements, specifically an absolute enhancement

of 0.686% in ROC-AUC and an increase in PR-AUC from 32.638% to 33.984%. It is worth not-

ing that the PR-AUC of BioMedLM exhibited less stability, as evidenced by a larger confidence

interval when no additional tokens are employed (4.358%). Nevertheless, we conducted two

additional runs to get a better estimate of the PR-AUC. Subsequently, we observed that the

PR-AUC for these five experiments amounted to 33.078%, and the confidence intervals were

reduced to 1.773%. When predicting Adult Respiratory Failure, the presence of additional

tokens resulted in improved PR-AUC and ROC-AUC for CPLLM-Llama2, whereas it

enhanced PR-AUC but did not influence ROC-AUC for CPLLM-BioMedLM. In summary,

the findings of this ablation study suggest that, in the majority of cases (9 out of 12 measure-

ments across three prediction tasks), incorporating the added tokens leads to enhanced perfor-

mance in clinical prediction tasks.

Discussion

Our proposed CPLLM method outperformed the baselines on all four tasks (3 diagnostic

predictions and readmission prediction) across two different datasets. We used the MIMI-

C-IV and eICU-CRD datasets to assess the model’s ability to handle two diagnostic coding

systems (ICD9 and ICD10) and two data types (homogeneous data from the same hospital

in MIMIC-IV and multi-center data in eICU-CRD). CPLLM was superior to all baselines.

CPLLM-Llama2 was the best model overall, and only for the prediction of Chronic Kidney

Disease did CPLLM-BioMedLM outperform CPLLM-Llama2, doing so even then only in

Table 4. PR-AUC and ROC-AUC for CPLLM-Llama2 and CPLLM-BioMedLM, across three distinct medical tasks.

Task Model Added Tokens PR-AUC ROC-AUC

Acute and unspecified renal failure CPLLM-Llama2 + 45.442 ± 0.839 78.504 ± 0.684

- 44.943 ± 1.268 77.95 ± 0.814

CPLLM-BioMedLM + 45.161 ± 1.622 78.484 ± 0.403

- 43.53 ± 1.101 78.07 ± 0.625

Chronic kidney disease CPLLM-Llama2 + 33.992 ± 1.262 83.034 ± 0.511

- 34.563 ± 1.578 83.178 ± 1.02

CPLLM-BioMedLM + 33.984 ± 1.077 83.404 ± 0.429

- 32.638 ± 4.358 82.718 ± 1.191

Adult respiratory failure CPLLM-Llama2 + 35.962 ± 0.38 76.407 ± 0.262

- 35.683 ± 0.164 75.776 ± 0.085

CPLLM-BioMedLM + 35.494 ± 0.352 75.975 ± 0.214

- 35.714 ± 0.516 75.794 ± 0.194

The Added Tokens column indicates whether additional tokens were incorporated into the pre-trained tokenizer. “+” and “-” respectively indicate that additional

tokens were or were not added.

https://doi.org/10.1371/journal.pdig.0000680.t004
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terms of ROC-AUC. Using CPLLM-Llama2, we achieved relative PR-AUC improvements

of 3.309%, 1.864%, and 7.588% over Med-BERT for these three tasks, and corresponding

relative ROC-AUC improvements of 1.326% and 1.391% on the Adult Respiratory Failure

and Acute and Unspecified Renal Failure prediction tasks. For the prediction of hospital

readmission, CPLLM achieved relative improvements of 2.17% compared to ConCare in

terms of PR-AUC for the MIMIC-IV dataset. For eICU-CRD-based predictions of readmis-

sion, CPLLM showed a relative improvement of 0.31% relative to the second-best result,

Deepr.

For the Chronic Kidney Disease task, CPLLM (both CPLLM-Llama2 and CPLLM-Bio-

MedLM) demonstrated superior performance over logistic regression in terms of PR-AUC

when considering the 95% confidence intervals. However, in terms of ROC-AUC, the logistic

regression performance fell within the confidence intervals of CPLLM. This outcome may be

attributable to the limited number of positive cases (8% of the labels, as detailed in Table 1,

which can significantly impact ROC-AUC, a metric known to be sensitive to class imbalance

[42]. As a result, the ROC-AUC values for Chronic Kidney Disease are higher across all models

and closer to one another, potentially explaining why CPLLM does not exhibit a substantial

advantage over logistic regression in this metric. ROC-AUC was included to maintain consis-

tency with related studies, such as Med-BERT.

We hypothesize that CPLLM’s superior performance compared to the baselines is due to its

larger number of parameters and the substantial amount of training tokens used during pre-

training. For instance, CPLLM-Llama2 was pre-trained on 2 trillion tokens and has 13 billion

parameters [15]. This reasoning may also explain why CPLLM-Llama2 outperformed

CPLLM-BioMedLM in nearly all tasks. The greater parameter count and more extensive train-

ing data of CPLLM-Llama2, in comparison to BioMedLM’s 2.7 billion parameters and 34.6 bil-

lion tokens, provide a substantial advantage, despite BioMedLM being pre-trained on PubMed

abstracts and full articles [33].

In addition, we found that including additional tokens in the LLM’s tokenizer before fine-

tuning improved the measurement of the prediction model in most cases. For instance, as

Llama2 was not initially pre-trained on clinical data, supplementing it with missing descrip-

tion codes can enhance its understanding of the medical domain.

Regarding the comparison between Med-BERT and Retain, in the original Med-BERT

paper, improvements over Retain were demonstrated in terms of ROC-AUC for three disease

prediction tasks [23]. We also found that Med-BERT consistently outperformed Retain in all

prediction tasks based on ROC-AUC. However, it is worth noting that, as previously men-

tioned, ROC-AUC may not be an optimal metric for imbalanced datasets [42]. In contrast,

when considering PR-AUC, Med-BERT exhibited superior performance compared to Retain

in two out of three tasks, although it did not outperform Retain in the prediction of Acute and

Unspecified Renal Failure (with PR-AUC values of 43.603% for Retain and 42.237% for Med-

BERT), despite achieving a higher ROC-AUC than Retain.

Strengths and limitations

CPLLM has several advantages compared to existing approaches.

First, Unlike existing approaches that necessitate pre-training with medical concept

sequences, our method eliminates the need for additional pre-training tasks. For instance,

Med-BERT entails both MLM and LOS prediction tasks using patient sequences of medical

concepts. Based on our findings and results, it is evident that LLMs possess the capability to

adeptly represent sequential clinical data without the need for specific pre-training based on

clinical sequences. Beyond that, our method can be used even without the LOS data
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corresponding to each patient’s hospitalizations, which is required for Med-BERT pre-train-

ing. Sometimes, these data are not available, for example, when there is no hospitalization, but

rather data collected among patients who visited a physician in outpatient settings, or when

LOS data is not available as in claims data.

Second, the strength of our proposed method lies in its remarkable capacity to handle lon-

ger sequences compared to the current state-of-the-art models for structured EHR data. With

maximum sequence lengths of 1024 tokens for CPLLM-BioMedLM and 4096 tokens for

CPLLM-Llama2, our approach far surpasses the limitations imposed by Med-BERT and

BEHRT [19]. Med-BERT is constrained by maximum of 512 tokens, which significantly

restricts its ability to handle longer inputs [11]. Without the need for additional training, our

method also handles longer sequences compared to Hi-BEHRT, which is specially trained and

designed to handle sequences with a maximum of 1220 tokens [20].

Third, during the fine-tuning training of CPLLM, it is not necessary to know which diagno-

ses were given in which visit but only the diagnoses as a sequence. This differs from Med-

BERT, which relies on this information for fine-tuning. Notably, we achieved superior perfor-

mance even without these specific details.

Fourth, CPLLM demonstrated flexibility for various input types and clinical prediction out-

comes beyond disease prediction. This was evident in the readmission prediction experiment,

where our approach seamlessly incorporated diagnoses, drugs, and procedures into the

sequence with minimal adjustments to the prompt text.

While our method demonstrates promising performance in the utilization of LLMs for clin-

ical prediction tasks, it is important to acknowledge several limitations. We pre-trained Med-

BERT on the MIMIC-IV dataset rather than a large corpus as described in the original paper,

due to our lack of access to larger datasets and the unavailability of pre-trained Med-BERT

weights, which are not publicly accessible because of patient privacy concerns. In addition,

while our method accommodates sequences of up to 4096 tokens for CPLLM-Llama2 and

1024 tokens for CPLLM-BioMedLM, our tests did not include exceptionally long sequences

that could fully explore the implications of this extended token limit. That is because the data-

sets we used do not contain very long observations or many diagnoses of a single patient.

Moreover, due to the greater number of parameters in LLMs, our method demands more

computational resources, inference time, and training time. Specifically, CPLLM-Llama2 had

a longer training time than Med-BERT. However, CPLLM-BioMedLM requires less training

time compared to Med-BERT. That is because CPLLM-BioMedLM does not require addi-

tional pre-training, in contrast with the requirement for MLM and LOS pre-training in Med-

BERT. In addition, our method requires using a specific prompt, a requirement that does not

apply to the baseline models. As a result, sometimes the prompt must be adapted according to

a base model.

Future work

We hypothesize that combining retrieval augmentation [53, 54] with CPLLM can improve its

performance, as it enables inclusion of general updated knowledge about the diseases with

which a given patient has been diagnosed in their medical history. Additionally, this approach

can incorporate general knowledge and known risk factors into research pertaining to a given

disease we are trying to predict.

Conclusion

In this work, we presented CPLLM, a novel method for the prediction of clinical disease diag-

noses and patient hospital readmission based on the medical history of a given patient.

PLOS DIGITAL HEALTH CPLLM: Clinical prediction with large language models

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000680 December 6, 2024 11 / 15

https://doi.org/10.1371/journal.pdig.0000680


CPLLM has the potential for practical application. By surpassing the state-of-the-art in clinical

task prediction performance, our method enables more accurate and robust disease forecast-

ing, and can more reliably gauge the odds of patient hospital readmission. CPLLM demon-

strated superior performance across all four tasks on two different datasets (MIMIC-IV and

eICU-CRD). It processes ICD9 and ICD10 diagnoses, procedures, and drugs to inform its pre-

dictions. We showcased its robustness in dealing with homogeneous and multi-center data.

Our method’s advantage lies in eliminating any need for additional pre-training tasks, in con-

trast with Med-BERT. Furthermore, our method remains adaptable even when information

pertaining to length of stay data is unavailable, making it suitable for a broader range of health-

care scenarios, including those involving non-hospitalized patients. In addition, CPLLM’s

fine-tuning process requires patients’ diagnoses as a sequence, without requiring information

regarding which diagnoses were made during which visit. Notably, our method can handle

much longer sequences than existing state-of-the-art models.

We believe that CPLLM has significant practical applications. For instance, healthcare

stakeholders are increasingly seeking methods to enhance patient care without compromising

data privacy. The two LLMs we tested can be deployed and utilized on-site or in secure envi-

ronments, eliminating the need to share personal data over the internet.

Supporting information

S1 Fig. Precision-recall curves. Precision-Recall for predicting readmission in the MIMIC-IV

dataset, showcasing the performance of the two best models, CPLLM-Llama2 and ConCare.
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S2 Fig. ROC curves. Receiver Operating Characteristic curves for predicting readmission in

the MIMIC-IV dataset, showcasing the performance of the two best models, CPLLM-Llama2

and ConCare.

(EPS)

S3 Fig. Precision-recall curves comparison: CPLLM-Llama2 vs. Med-BERT. Comparison of

CPLLM-Llama2 and Med-BERT using Precision-Recall for predicting Adult Respiratory Fail-

ure in the eICU-CRD dataset.

(EPS)

S4 Fig. ROC curves comparison: CPLLM-Llama2 vs. Med-BERT. Comparison of

CPLLM-Llama2 and Med-BERT using ROC curves for predicting Adult Respiratory Failure in

the eICU-CRD dataset.
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