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Abstract

Accurately determining the binding affinity of a ligand with a protein is important
for drug design, development, and screening. With the advent of accessible protein
structure prediction methods such as AlphaFold, several approaches have been
developed that make use of information determined from the 3D structure for a
variety of downstream tasks. However, methods for predicting binding affinity
that do consider protein structure generally do not take full advantage of such
3D structural protein information, often using such information only to define
nearest-neighbor graphs based on inter-residue or inter-atomic distances. Here,
we present a joint architecture that we call CASTER-DTA (Cross-Attention with
Structural Target Equivariant Representations for Drug-Target Affinity) that makes
use of an SE(3)-equivariant graph neural network to learn more robust protein
representations alongside a standard graph neural network to learn molecular
representations, and we further augment these representations by incorporating an
attention-based mechanism by which individual residues in a protein can attend
to atoms in a ligand and vice-versa to improve interpretability. In this manner,
we show that using equivariant graph neural networks in our architecture enables
CASTER-DTA to approach and exceed state-of-the-art performance in predicting
drug-target affinity without the inclusion of external information, such as protein
language model embeddings. We do so on the Davis and KIBA datasets, common
benchmarks for predicting drug-target affinity. We also discuss future steps to
further improve performance.

1 Introduction

Determining drug-target affinity (DTA) is a critical component of the drug design and discovery
process, serving as a metric of which drugs (ligands/molecules) may be high-priority for further
testing in terms of binding to a target (protein) [1]. While experimental affinity determination is
the gold standard, it is often not feasible or practical to perform experiments to determine affinity
for what may be millions or billions of possible drug candidates for a given target. To address this,
various computational methods have been developed for the purpose of predicting the binding affinity
of an arbitrary protein and an arbitrary ligand to help prioritize or rank drugs for further exploration.
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Some state-of-the-art methods, such as DeepDTA and AttentionDTA make use of deep learning used
primarily sequence information, using the protein amino-acid sequence and the molecule Simplified
Molecular Input Line Entry System (SMILES) string [2, 3]. Other methods make use of graph
neural networks (GNNs), such as GraphDTA and DGraphDTA, which both used GNNs to process
molecular graph information to learn molecular representations that were then used alongside trained
sequence-based protein representations [4, 5].

More recently, there are methods that have made use of 3D protein information, such as DGraphDTA,
which used predicted protein contact maps to construct a k-nearest-neighbors protein graph and then
used graph neural networks to extract graph-based protein representations alongside graph-based
molecular representations [5]. Additionally, several methods, including some of the above, have
made use of external embeddings, such as protein language model embeddings, to augment their
protein or molecule representations. For example, DGraphDTA made use of calculated position-
specific-scoring-matrix (PSSM) embeddings [5].

However, to the present day, few methods have made use of the underlying geometric information
contained within protein 3D structure beyond defining nearest-neighbor graphs for predicting binding
affinity, despite work that has made use of this information in other paradigms. This includes infor-
mation obtained from the protein backbone, such as bond angles to represent torsion, distance vectors
between residues, and sidechain orientation directional vectors, among many others. Furthermore, to
our knowledge, no methods have made use of SE(3)-equivariant graph neural networks to use these
protein-level features in a rigorous way for the purposes of drug-target affinity prediction.

We present in this paper a method, Cross-Attention with Structural Target Equivariant Representations
for Drug-Target Affinity (CASTER-DTA), inspired by work done in other paradigms [6, 7, 8], that
makes use of SE(3)-equivariant graph neural networks in the form of Geometric Vector Perceptron
(GVP)-GNNs to incorporate this 3D backbone information at the protein level alongside cross-
attention to improve drug-target affinity prediction. We show that CASTER-DTA exceeds the
performance of several existing state-of-the-art methods without the need for external pretrained
embeddings on two different benchmark datasets. We additionally show that the use of equivariant
graph neural networks provides a performance improvement for the prediction of drug-target affinity
over non-equivariant GNNs.

2 Methods

2.1 Dataset Details and Preparation

We used two established datasets for the purposes of predicting drug-target affinity: the Davis dataset
[9] and the KIBA dataset [10]. Davis contains binding affinity information for 30056 protein-molecule
pairs, with 442 unique proteins and 68 unique molecules in the dataset. KIBA contains binding
affinity information for 118254 protein-molecule pairs, with 229 unique proteins and 2111 unique
molecules in the dataset. Amino-acid sequences for each protein and SMILES (Simplified Molecular
Input Line Entry System; text strings that fully define the chemical structure of a compound) strings
for each molecule are available in the Davis dataset. The same information is available for each
protein and molecule in the KIBA dataset.

For Davis, the target is the Kd value representing the binding affinity between each protein-molecule
pair. Kd values are converted to scaled pKd values by performing the following transformation:

pKd = − log10(
Kd

109
)

For KIBA, the target is an integrated bioactivity score that integrates Kd, Ki, and IC50 values from
each protein-ligand pair. For training, targets from each dataset are standardized to z-scores to
improve training dynamics by subtracting the mean and dividing by the standard deviation to compute
a distribution with a mean of 0 and a standard deviation of 1.

We acquired ligand-free (apo) structures for every protein in each dataset in the following manner,
using the first method that yielded a result:
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Figure 1: A visualization of the process of generating protein and molecular graphs, starting from
protein sequence and molecular SMILES strings. Protein structures are acquired from PDBank or
folded with AlphaFold2 and molecule SMILES are converted to graphs using RDKit.

1. Search the Protein DataBank (PDBank) [11] for experimentally-determined structures with
100% sequence identity, filtering out any structures with any ligands bound (essentially,
filtering down to only apo structures).

2. Search the AlphaFold2 database (co-hosted on PDBank) for pre-folded structures with 100%
sequence identity [12].

3. Use a local version of AlphaFold2 [13] (ColabFold, using colabfold_batch [14]) to fold
any remaining proteins using the sequences provided, with settings described in Appendix
Table A1.

A visualization of the process of creating protein and molecule graphs can be seen in Figure 1.

2.2 Protein Graph Representations

We construct protein graphs from AlphaFold, inspired by previous work into using equivariant graph
neural networks for other protein-related tasks; in particular, we took inspiration from the PocketMiner
GNN for predicting cryptic pocket opening within proteins [8] and the original GVP-GNN papers
and its extension [6, 7]. Similarly to PocketMiner and GVP-GNN, we define each residue as a node.
Like PocketMiner and GVP-GNN, we also connect each residue with edges based on geometric
distance; however, instead of connecting to the 30 nearest neighbors as in those two approaches, we
instead connect each residue to every residue within a 4 Angstrom distance in 3D space, with the
distance threshold determined through an ablation study.

For protein node (residue) and edge features, we include both scalar and vector-based features as
inspired by PocketMiner and other work, as described in Appendix Section B. We additionally
concatenate a one-hot-encoded representation of the amino acid identity (with 20 unique amino acids)
to the node scalar features.

2.3 Molecular Graph Representations

We construct 2D molecular graphs from SMILES strings by using RDKit, where each node represents
an atom and each edge represents a bond between atoms. For molecule node (atom) and edge (bond)
features, we include a variety of features for atomic representations based on prior work, all of which
were computed using RDKit, as described in Appendix Section C.
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Figure 2: A visualization of the architecture used to predict drug-target affinity from protein and
molecule graphs. GVP = Geometric Vector Perceptron; GINE = Graph Isomorphism Network with
Edge Enhancement.

Additionally, a one-hot-encoded representation of the atomic identity is concatenated to the above
features. We use 10 unique types representing hydrogen, carbon, nitrogen, oxygen, fluorine, phospho-
rus, sulfur, chlorine, bromine, iodine, and other, respectively, where "other" captures all other atomic
identities. Additionally, a one-hot-encoded representation of whether the bond is a single, double,
triple, or aromatic bond is concatenated to the bond features as a representation of the bond type.

2.4 Architecture

CASTER-DTA includes two graph neural networks that produce learned representations at the node
level. Protein graphs are processed by Geometric Vector Perceptron (GVP) and GVPConv layers
which are SE(3)-equivariant, as proposed by Jing et al. [6, 7]. Initial GVPs are used to create richer
representations of the node and edge features before processing by GVPConv layers to update the
node-level (residue) representations. Molecule graphs are processed by GINEConv layers, which
represent an edge-enhanced version of the Graph Isomorphism Network (GIN) as described by Xu et
al. and Hu et al. [15, 16]. Each GINEConv layer updates the node-level (atom) representations.

The node-level representations for proteins and molecules are subsequently processed by a linear layer
and then used as queries, keys, and values in a cross-attention paradigm, where each cross-attention
block updates either the protein or molecule embeddings based on the attention weights computed for
residues attending to atoms or vice-versa. These updated node embeddings are processed by another
linear layer and are each then pooled by taking the mean over all nodes to create a singular graph
embedding for proteins and molecules; these embeddings are subsequently concatenated and passed
into several fully-connected (FC) layers for the final regression prediction.

A visual summary of this architecture can be seen in Figure 2.

2.5 Training and Evaluation

We split each dataset into 70% training, 15% validation, and 15% testing splits, doing so multiple
times to evaluate the model’s performance and consistency. The output values for the dataset are
standardized to have a mean of 0 and a standard deviation of 1. The model results are subsequently
unscaled for the purposes of reporting and evaluation.

We trained CASTER-DTA on the training splits for 2000 epochs using an Adam optimizer with a
base learning rate of 1e-4 on a Mean-Squared Error (MSE) loss function, using the validation split to
tune hyperparameters. We reduced the learning rate after 50 epochs of no observed improvement
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in the validation loss by multiplying it by 0.8. We additionally implemented early stopping, ending
training early if the validation loss did not improve for 200 epochs. In most cases, CASTER-DTA
terminated early around 1000 epochs.

Due to variations in the size of protein and molecule graphs, the number of elements (including
padding) in the batched attention matrix can vary substantially and so memory usage can fluctuate
dramatically from batch to batch. To address this and stabilize training, we employ a dynamic
mini-batching paradigm wherein we limit the total size of a batch to 16 million residue-atom pairs (as
initialized in the attention matrix) with a maximum of 128 protein-molecule pairs in each batch for
the Davis dataset. For the KIBA dataset, we limit the total size of a batch to 8 million residue-atom
pairs and a maximum of 64 protein-molecule pairs. The difference in batch sizes is due to different
memory requirements due to larger proteins being present in the KIBA dataset.

We used the model with the best validation loss during each of the above training cycles for down-
stream evaluation on the test set. To evaluate the model, we used the testing split and calculated the
corresponding mean-squared error as well as the concordance index (CI) as a marker of performance,
assessing performance across multiple iterations of training/validation/testing. To compare, we also
trained and evaluated several preexisting state-of-the-art models on the same dataset splits, including
DeepDTA, GraphDTA, DGraphDTA, and AttentionDTA. All hyperparameters for these models were
replicated from their respective papers for both datasets, and these hyperparameters are described in
Appendix Section D.

2.5.1 Ablation Studies

We also assessed how using edge definitions versus connecting to the 30 nearest neighbors to connect
residues impacted performance of the model. We tested Angstrom distance thresholds of 4 Angstroms,
6 Angstroms, and 8 Angstroms, as well as defining edges as in PocketMiner by connecting to the 30
nearest neighbors on the Davis dataset.

We additionally assessed how much the GVP-GNN and 3D protein representation contributed to the
model by performing an ablation study where we replaced the protein GNN with a graph attention
network (GATv2) convolutional layer [17, 18] instead, as GAT has been used in prior work for
protein graph processing [5]. We also assessed the use of a variety of molecular GNN architectures
to assess the flexibility of GVP-GNN in working alongside various molecule representations and to
determine the best architecture, including GIN [15], GINE [16], GATv2 [18], and AttentiveFP [19].
We performed these tests on a single seed/split of the Davis dataset.

3 Results

3.1 Performance on the Davis dataset

The performances of CASTER-DTA on Davis, as well as several other models that have been
considered state-of-the-art in various ways, can be seen in Table 1.

As can be seen, CASTER-DTA improves on or closely matches the performances of other state-
of-the-art models that make use of deep learning for drug-target affinity prediction, achieving an
average MSE of 0.209 on the Davis dataset. For the MSE criterion, CASTER-DTA outperforms every
architecture by a fairly substantial margin, and the next best architecture (DGraphDTA) achieves
an average MSE of 0.225 on the same dataset splits. For the MAE criterion, CASTER-DTA has
a performance of 0.232, second only to DGraphDTA which performed similarly with an MAE of
0.229. For the Pearson correlation (PCC) metric, CASTER-DTA exceeds every other method with an
average PCC of 0.854 (which can be said to be comparable to DGraphDTA with a PCC of 0.852).
For the concordance index (CI) metric, CASTER-DTA matches DGraphDTA with a CI of 0.895 and
outperforms all other methods, with the next best being AttentionDTA with a CI of 0.893.

3.2 Performance on the KIBA dataset

Similarly, the performances of CASTER-DTA and the same comparison models on the KIBA dataset
can be seen in Table 2.
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Table 1: Performance of Architectures on the Davis dataset

Architecture MSE ↓ MAE ↓ PCC ↑ CI ↑
CASTER-DTA 0.209 ± 0.009 0.232 ± 0.004 0.861 ± 0.007 0.895 ± 0.004
DeepDTA 0.236 ± 0.016 0.252 ± 0.013 0.840 ± 0.013 0.889 ± 0.005
GraphDTA 0.241 ± 0.012 0.271 ± 0.008 0.836 ± 0.009 0.885 ± 0.003
DGraphDTA 0.220 ± 0.010 0.229 ± 0.008 0.852 ± 0.008 0.895 ± 0.004
AttentionDTA 0.225 ± 0.014 0.240 ± 0.008 0.848 ± 0.011 0.893 ± 0.005
± values are standard deviation.

As the table shows, CASTER-DTA beats all other methods except for DGraphDTA on the KIBA
dataset. For the MSE criterion, CASTER-DTA obtains an MSE of 0.159, second only to DGraphDTA
which has an MSE of 0.141, and GraphDTA performs similarly to CASTER-DTA with an MSE of
0.161. For MAE, CASTER-DTA exhibits an MAE of 0.215 while DGraphDTA has an MAE of 0.199.
For the Pearson correlation (PCC) metric, CASTER-DTA has an average PCC of 0.880, similar to
GraphDTA which has a PCC of 0.878, and second only to DGraphDTA which has a PCC of 0.895.
For the concordance index (CI) metric, CASTER-DTA with a CI of 0.886 is second in performance
to DGraphDTA (0.897) and outperforms all other methods.

Table 2: Performance of Architectures on the KIBA dataset

Architecture MSE ↓ MAE ↓ PCC ↑ CI ↑
CASTER-DTA 0.159 ± 0.002 0.215 ± 0.003 0.880 ± 0.003 0.886 ± 0.002
DeepDTA 0.189 ± 0.003 0.254 ± 0.003 0.856 ± 0.003 0.863 ± 0.004
GraphDTA 0.161 ± 0.002 0.233 ± 0.003 0.878 ± 0.002 0.877 ± 0.003
DGraphDTA 0.141 ± 0.004 0.199 ± 0.003 0.895 ± 0.002 0.897 ± 0.002
AttentionDTA 0.180 ± 0.003 0.259 ± 0.003 0.864 ± 0.003 0.861 ± 0.002
± values are standard deviation.

3.3 Edge Definition Ablation Performance

The results of the ablation study where we assessed the performance of the CASTER-DTA architecture
as described above on different edge definitions on the Davis dataset can be seen in Table 3. We
present the average and standard deviation of various metrics on 5 different seeds of the Davis dataset.
The edge threshold of 4 Angstroms performed the best of all of the edge definitions, though all
definitions including the 30 nearest neighbors definition performed well, with most still outperforming
all of the methods on the Davis dataset as detailed in Table 1.

Table 3: Performance of CASTER-DTA with Different Edge Definitions (on Davis)

Edge Definition MSE ↓ MAE ↓ PCC ↑ CI ↑
4 Angstroms (Distance) 0.209 ± 0.009 0.232 ± 0.004 0.861 ± 0.007 0.895 ± 0.004
6 Angstroms (Distance) 0.220 ± 0.003 0.239 ± 0.003 0.853 ± 0.003 0.890 ± 0.001
8 Angstroms (Distance) 0.224 ± 0.011 0.240 ± 0.006 0.849 ± 0.009 0.891 ± 0.005
30 nearest (KNN) 0.217 ± 0.014 0.233 ± 0.007 0.854 ± 0.010 0.890 ± 0.004
± values are standard deviation.

3.4 Graph Convolution Ablation Performance

The results of the ablation study where we replaced the GVP-GNN layers in CASTER-DTA with
GAT convolutional layers and tested various molecular GNN architectures can be seen in Table 4.
For brevity and computational resource management (as some of the other architectures take a very
long time to train), we simply report the performance on one seed of the Davis dataset.

The architecture using the GVP-GNN for proteins and GINE for molecules achieved the best
performance of all of the architectures evaluated, with other architectures using the GVP-GNN for
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the protein having MSEs in the range of 0.230-0.240 and the architecture replacing the GVP-GNN
with GAT having an MSE of 0.320. All other metrics (MAE, PCC, and CI) show similar trends, with
the GVP-GNN + GINE combination as used in CASTER-DTA outperforming all other combinations.

Table 4: Ablation Study of Various GNN Architectures

Protein GNN Molecule GNN MSE ↓ MAE ↓ PCC ↑ CI ↑
GVP-GNN* GINE* 0.220 0.235 0.854 0.892
GATv2 GINE 0.320 0.306 0.783 0.846
GVP-GNN GIN 0.240 0.247 0.841 0.886
GVP-GNN GATv2 0.237 0.245 0.842 0.887
GVP-GNN AttentiveFP 0.230 0.240 0.847 0.887
*Represents combination used in CASTER-DTA.

4 Discussion

CASTER-DTA exhibits performance that exceeds or matches those of other models on the Davis
drug-target affinity dataset. Specifically, CASTER-DTA exhibits the best performance on the MSE,
Pearson correlation (PCC), and concordance index (CI) metrics, and it is the second-best on the MAE
metric. On the KIBA dataset, CASTER-DTA performs very well; specifically, it has the second-best
performance for all of the four metrics studied behind DGraphDTA, which is the best performing for
all four metrics. Notably, DGraphDTA, makes use of external information obtained from multiple
sequence alignment (MSA) in the form of position-specific-scoring-matrix (PSSM) embeddings,
which are costly to compute. Determining these MSAs and computing their associated features is not
necessary when a protein 3D structure is given in CASTER-DTA, which uses only features available
within the protein 3D structure, and so while DGraphDTA performs better on KIBA, it requires much
more preprocessing to run than CASTER-DTA, comparatively.

Ultimately, CASTER-DTA is able to perform well in predicting binding affinity with no external
information beyond the structural information other than fundamental amino acid properties (such as
molecular weight, hydrophobicity, and others), which are fixed values for each residue type across
proteins. Furthermore, from preliminary performance benchmarking, this architecture is capable of
evaluating tens of thousands of protein-drug pairs in under a minute on an NVIDIA 2080TI GPU,
which greatly increases its ability to be used for arbitrary drug screening against specific targets.

Additionally, we find through our ablation studies evidence that the GVP-GNN is able to effectively
make use of the 3D structural information and that it contributes to the prediction. Specifically,
when we replace the protein GVP-GNN in CASTER-DTA with a GATv2 architecture, we find
that performance is noticeably reduced, with the MSE going from 0.220 to 0.320, indicating that
the equivariant expressiveness of the GVP-GNN was essential for the performance of the overall
architecture. Furthermore, we find that other molecular GNNs such as GIN, GATv2, AttentiveFP
are able to perform relatively well alongside the GVP-GNN with MSEs of 0.240, 0.237, and 0.230,
respectively, with some of these subpar combinations still outperforming several existing state-of-the-
art methods on the Davis dataset. This exhibits the flexibility of equivariant graph neural networks
for processing protein representations in working with a variety of different molecular representation
approaches and exhibiting a strong potential for improvement as molecular representation learning
advances.

5 Future Directions

There are several promising avenues for improvement and continued evaluation that we plan to
explore in future work with this architecture. Most notably, the work and performance described in
this paper is the result of relatively simplistic fine-tuning of architecture and hyperparameters in part
due to time and computational constraints. Furthermore, we have obtained preliminary results that
seem to imply that the performance can be further improved by tweaking the architecture slightly (for
example, embedding rather than one-hot-encoding the amino acid and atom identities), by changing
the training hyperparameters (for example, using a lower learning rate of 5e-5), by increasing the
batch size from 128 protein-molecule pairs to 256 if memory allows, and by setting the dropout rates
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in a heterogeneous manner (for example, having the protein GNN dropout being higher than the
molecule GNN rather than being equivalent).

In this paper, we have also not fully explored the interpretability that using graph neural networks
in this way allows - through introspecting the cross-attention module by extracting the attention
matrices for each protein-molecule pair, we can identify which residues and atoms contribute most
to the prediction. Furthermore, we have preliminarily implemented a form of GNNExplainer that
allows us to identify important residues and atoms within the graphs for the prediction, which allows
one to identify the substructures within each of the two modalities that may contribute to the affinity
or binding prediction, further improving our ability to iterate on drug structures.

Additionally, there are other datasets that people have used in the paradigm of drug-target affinity,
such as BindingDB [20] and PDBbind [21], which all have different distributions of noise and data
completeness. Our hope is to further benchmark CASTER-DTA against other methods on these
datasets, to better understand the properties of the protein-ligand pairs where CASTER-DTA performs
well and where it performs poorly, and to better characterize the advantages and disadvantages
of our approach across related paradigms. Notably, in this approach, we did not make use of 3D
structural information for the molecules (drugs) due to the relative lack of availability of 3D molecular
conformations for arbitrary molecules; however, there do exist some resources, such as GeoMol, that
can produce 3D molecular conformers in the form of ensembles [22]. By making use of predicted 3D
molecular conformers, we could implement another equivariant GNN to process the molecular graphs
in a way that may provide even more useful information for the prediction of binding affinity or other
related tasks. Alternatively, even using 2D coordinates of the drug graph may provide information
on bond lengths and putative bond angles, serving to add additional feature information that further
improves performance.

In addition to the aforementioned datasets, a new resource known as PLINDER has recently become
available; this resource provides a much more robust means for splitting datasets to avoid leakage
and purports to provide a wealth of binding affinity information as well as structural information on
protein-ligand interactions [23]. We plan to evaluate our architecture as well as other state-of-the-art
architectures on this dataset as an extension to this paper. Furthermore, with the wealth of data that
PLINDER provides, it is possible to develop a modified version of CASTER-DTA that not only
predicts binding affinity, but also predicts the 3D conformation of the protein-ligand complex as a
whole; we are actively exploring this possibility in future work involving equivariant graph neural
networks.
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A AlphaFold2/ColabFold Parameters

Parameters that were used to fold any proteins not already present in the Protein DataBank or the
AlphaFold2 database can be found in A1.

Table A1: ColabFold parameters (blank indicates a flag)

Argument Parameter

–num-models 5
–num-recycle 3
–stop-at-score 85
–random-seed 9
–templates
–amber
–num-relax 1
–relax-max-iterations 2000

B Protein Graph Features

B.1 Node Features

Each node (residue) has 17 scalar features and 3 vector features:

• The sin and cos of the three dihedral angles computed from the residue’s central carbon to
its bonded atoms. (6 scalars)

• Various amino acid properties, including weights, pK and pI, hydrophobicity, and binary
features of aliphaticity, aromaticity, whether the residue is acidic or basic, and whether the
residue is polar neutral. (11 scalars)

• A unit vector pointing from the residue’s central carbon towards the sidechain, computed by
normalizing from tetrahedral geometry. (1 vector)

• One unit vector each pointing from the residue’s central carbon to the next residue’s central
carbon and the previous residue’s central carbon. The first and last residues have zero-vectors
for their backward and forward vectors, respectively. (2 vectors)

B.2 Edge Features

Each edge (as constructed between the 30-nearest-neighbors of each residue) has 32 scalar features
and 1 vector feature:

• Gaussian RBF encodings of the distance between the two residues. (16 scalars)
• Sinusoidal positional encodings of the difference in residue indices in sequence. (16 scalars)
• The unit vector pointing in the direction of the source residue’s central carbon to the

destination residue’s central carbon. (1 vector)

C Molecule Graph Features

C.1 Node Features

Each node (atom) has 41 total features:

• Multiple one-hot encodings of various properties, including: chirality, hybridization, number
of bound hydrogens, degree, valence, formal charge, and number of electron radicals. (38
features)

• Binary features for whether the atom is in a ring and is aromatic. (2 features)
• Computed Gasteiger partial charges. (1 feature)

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2024. ; https://doi.org/10.1101/2024.11.25.625281doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.25.625281
http://creativecommons.org/licenses/by-nc-nd/4.0/


C.2 Edge Features

Each edge (bond) has 9 features:

• The stereoconfiguration of the bond. (7 features)
• Binary features for whether the bond is conjugated and in a ring. (2 features)

D Benchmark Method Implementation Details

Information about the implementations of other benchmark drug-target affinity methods can be found
in D2. All methods with the exception of DeepDTA were implemented using their original source
code, while DeepDTA was reimplemented using PyTorch to facilitate easier comparison.

Table D2: Parameters and Settings for Benchmark Methods

Method Code source LR Epochs Batch Size

DeepDTA Reimplemented 0.001 100 256
GraphDTA Original code 0.0005 1000 128
DGraphDTA Original code 0.001 2000 512
AttentionDTA Original code 0.0001 100 512
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