Abstract
Some characteristics of the energized uptake of safranine by rat heart mitochondria were studied. When monitored by changes in differential absorbance (between 524 and 554 nm) of a whole suspension in safranine-containing medium, the changes seen are not linearly related to the quantity of the safranine moving. It happens coincidentally that the changes observed are nearly linearly related to the logarithm of the ratio between the accumulated safranine and its residual concentration in the medium; this explains why the changes of absorbance have been found by other authors to be linearly related to the logarithms of the ratio of internal/external concentrations of such other cations as are permeable. The uptake process appears to compete for energy with Ca2+ uptake and vice versa. Energized safranine uptake has an anion requirement, which is seen when movement of endogenous Pi has been inhibited; the small residual safranine uptake obtained when energy is provided in the presence of mersalyl may be attributable to internal Pi. However, a limited anion-independent energized uptake of safranine, in exchange for internal K+, may be elicited in the presence of nigericin. Adding ATP to the energized system in the presence of an inhibitor of Pi movement elicits an additional uptake of safranine that is oligomycin-sensitive and that probably arises on account of generation of internal Pi by hydrolysis of the entering ATP.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akerman K. E. Changes in membrane potential during calcium ion influx and efflux across the mitochondrial membrane. Biochim Biophys Acta. 1978 May 10;502(2):359–366. doi: 10.1016/0005-2728(78)90056-7. [DOI] [PubMed] [Google Scholar]
- Akerman K. E., Wikström M. K. Safranine as a probe of the mitochondrial membrane potential. FEBS Lett. 1976 Oct 1;68(2):191–197. doi: 10.1016/0014-5793(76)80434-6. [DOI] [PubMed] [Google Scholar]
- Brand M. D., Harper W. G., Nicholls D. G., Ingledew W. J. Unequal charge separation by different coupling spans of the mitochondrial electron transport chain. FEBS Lett. 1978 Nov 1;95(1):125–129. doi: 10.1016/0014-5793(78)80066-0. [DOI] [PubMed] [Google Scholar]
- CHANCE B. THE ENERGY-LINKED REACTION OF CALCIUM WITH MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2729–2748. [PubMed] [Google Scholar]
- Estrada S., de Céspedes C., Calderón E. Accumulation of calcium and phosphate stimulated by carboxylic antibiotics into mitochondria. J Bioenerg. 1972 Aug;3(5):361–375. doi: 10.1007/BF01516075. [DOI] [PubMed] [Google Scholar]
- Fiskum G., Reynafarje B., Lehninger A. L. The electric charge stoichiometry of respiration-dependent Ca2+ uptake by mitochondria. J Biol Chem. 1979 Jul 25;254(14):6288–6295. [PubMed] [Google Scholar]
- Harris E. J., Al-Shaikhaly M., Baum H. Stimulation of mitochondrial calcium ion efflux by thiol-specific reagents and by thyroxine. The relationship to adenosine diphosphate retention and to mitochondrial permeability. Biochem J. 1979 Aug 15;182(2):455–464. doi: 10.1042/bj1820455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris E. J. Anion/calcium ion ratios and proton production in some mitochondrial calcium ion uptakes. Biochem J. 1978 Dec 15;176(3):983–991. doi: 10.1042/bj1760983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris E. J., Cockrell R., Pressman B. C. Induced and spontaneous movements of potassium ions into mitochondria. Biochem J. 1966 Apr;99(1):200–213. doi: 10.1042/bj0990200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris E. J. Mitochondrial ion movements with special reference to calcium ions and heart mitochondria. Biochem Soc Trans. 1979 Aug;7(4):770–775. doi: 10.1042/bst0070770. [DOI] [PubMed] [Google Scholar]
- Harris E. J. Modulation of Ca2+ efflux from heart mitochondria. Biochem J. 1979 Mar 15;178(3):673–680. doi: 10.1042/bj1780673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris E. J. The uptake and release of calcium by heart mitochondria. Biochem J. 1977 Dec 15;168(3):447–456. doi: 10.1042/bj1680447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris E. J., van Dam K. Changes of total water and sucrose space accompanying induced ion uptake or phosphate swelling of rat liver mitochondria. Biochem J. 1968 Feb;106(3):759–766. doi: 10.1042/bj1060759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kauffman R. F., Lardy H. A. Biphasic uptake of Ca2+ by rat liver mitochondria. J Biol Chem. 1980 May 10;255(9):4228–4235. [PubMed] [Google Scholar]
- Moore C. L. Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem Biophys Res Commun. 1971 Jan 22;42(2):298–305. doi: 10.1016/0006-291x(71)90102-1. [DOI] [PubMed] [Google Scholar]
- Rossi C., Azzi A., Azzone G. F. Ion transport in liver mitochondria. I. Metabolism-independent Ca++ binding and H+ release. J Biol Chem. 1967 Mar 10;242(5):951–957. [PubMed] [Google Scholar]
- Scarpa A., Azzone G. F. The mechanism of ion translocation in mitochondria. 4. Coupling of K+ efflux with Ca2+ uptake. Eur J Biochem. 1970 Feb;12(2):328–335. doi: 10.1111/j.1432-1033.1970.tb00854.x. [DOI] [PubMed] [Google Scholar]
- Vasington F. D., Gazzotti P., Tiozzo R., Carafoli E. The effect of ruthenium red on Ca 2+ transport and respiration in rat liver mitochondria. Biochim Biophys Acta. 1972 Jan 21;256(1):43–54. doi: 10.1016/0005-2728(72)90161-2. [DOI] [PubMed] [Google Scholar]
- Zanotti A., Azzone G. F. Safranine as membrane potential probe in rat liver mitochondria. Arch Biochem Biophys. 1980 Apr 15;201(1):255–265. doi: 10.1016/0003-9861(80)90510-x. [DOI] [PubMed] [Google Scholar]