Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Dec 15;192(3):813–820. doi: 10.1042/bj1920813

The effect of monensin on beta-hexosaminidase transport in normal and I-cell fibroblasts.

G D Vladutiu, M C Rattazzi
PMCID: PMC1162404  PMID: 7236240

Abstract

The carboxylic ionophore, monensin, blocks the migration of glycoprotein-containing vesicles from the Golgi region to the plasma membrane in fibroblasts resulting in an accumulation of secretory products in the Golgi cisternae. Treatment of cultured I-cell fibroblasts with monensin (0.5 muM) decreased the abnormal excretion of beta-hexosaminidase to 40% of untreated cultures within 15 min. A corresponding intracellular accumulation of the enzyme to greater than 200% of untreated cultured by 24 h was also observed. A small intracellular accumulation and slightly enhanced excretion of beta-hexosaminidase occurred in treated normal fibroblasts cultures. The intra- and extra-cellular distribution of newly synthesized beta-hexosaminidase in both monensin-treated normal and I-cell fibroblasts were electrophoretically indistinguishable from the four bands characteristic of I-cell intracellular beta-hexosaminidase. The excreted enzyme from both cultures was found to be a low- or no-uptake form. This form of beta-hexosaminidase may have been excreted from a secondary route preceding the site of the monensin effect. The similar findings in monensin-treated normal and I-cell cultures suggest that the subcellular site of the biochemical defect in I-cell disease is at a location after the site of the monensin effect i.e. late in the Golgi region or at a post-Golgi-region location.

Full text

PDF
813

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach G., Bargal R., Cantz M. I-cell disease: deficiency of extracellular hydrolase phosphorylation. Biochem Biophys Res Commun. 1979 Dec 14;91(3):976–981. doi: 10.1016/0006-291x(79)91975-2. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Glaser J. H., Roozen K. J., Brot F. E., Sly W. S. Multiple isoelectric and recognition forms of human beta-glucuronidase activity. Arch Biochem Biophys. 1975 Feb;166(2):536–542. doi: 10.1016/0003-9861(75)90417-8. [DOI] [PubMed] [Google Scholar]
  4. Gonzalez-Noriega A., Grubb J. H., Talkad V., Sly W. S. Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling. J Cell Biol. 1980 Jun;85(3):839–852. doi: 10.1083/jcb.85.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hasilik A., Neufeld E. F. Biosynthesis of lysosomal enzymes in fibroblasts. Phosphorylation of mannose residues. J Biol Chem. 1980 May 25;255(10):4946–4950. [PubMed] [Google Scholar]
  6. Hickman S., Neufeld E. F. A hypothesis for I-cell disease: defective hydrolases that do not enter lysosomes. Biochem Biophys Res Commun. 1972 Nov 15;49(4):992–999. doi: 10.1016/0006-291x(72)90310-5. [DOI] [PubMed] [Google Scholar]
  7. Hickman S., Shapiro L. J., Neufeld E. F. A recognition marker required for uptake of a lysosomal enzyme by cultured fibroblasts. Biochem Biophys Res Commun. 1974 Mar 15;57(1):55–61. doi: 10.1016/s0006-291x(74)80356-6. [DOI] [PubMed] [Google Scholar]
  8. Hösli P., Vogt E. Cystic fibrosis: leakage of lysosomal enzymes and of alkaline phosphatase into the extracellular space. Biochem Biophys Res Commun. 1977 Dec 7;79(3):741–748. doi: 10.1016/0006-291x(77)91174-3. [DOI] [PubMed] [Google Scholar]
  9. Kaplan A., Fischer D., Achord D., Sly W. Phosphohexosyl recognition is a general characteristic of pinocytosis of lysosomal glycosidases by human fibroblasts. J Clin Invest. 1977 Nov;60(5):1088–1093. doi: 10.1172/JCI108860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lloyd J. B. Cellular transport of lysosomal enzymes: an alternative hypothesis. Biochem J. 1977 Apr 15;164(1):281–282. doi: 10.1042/bj1640281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pressman B. C. Biological applications of ionophores. Annu Rev Biochem. 1976;45:501–530. doi: 10.1146/annurev.bi.45.070176.002441. [DOI] [PubMed] [Google Scholar]
  12. Rothman J. E., Fine R. E. Coated vesicles transport newly synthesized membrane glycoproteins from endoplasmic reticulum to plasma membrane in two successive stages. Proc Natl Acad Sci U S A. 1980 Feb;77(2):780–784. doi: 10.1073/pnas.77.2.780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sando G. N., Neufeld E. F. Recognition and receptor-mediated uptake of a lysosomal enzyme, alpha-l-iduronidase, by cultured human fibroblasts. Cell. 1977 Nov;12(3):619–627. doi: 10.1016/0092-8674(77)90262-8. [DOI] [PubMed] [Google Scholar]
  14. Tartakoff A. M., Vassalli P. Plasma cell immunoglobulin secretion: arrest is accompanied by alterations of the golgi complex. J Exp Med. 1977 Nov 1;146(5):1332–1345. doi: 10.1084/jem.146.5.1332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tartakoff A., Vassalli P., Détraz M. Comparative studies of intracellular transport of secretory proteins. J Cell Biol. 1978 Dec;79(3):694–707. doi: 10.1083/jcb.79.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Uchida N., Smilowitz H., Tanzer M. L. Monovalent ionophores inhibit secretion of procollagen and fibronectin from cultured human fibroblasts. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1868–1872. doi: 10.1073/pnas.76.4.1868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ullrich K., Mersmann G., Weber E., Von Figura K. Evidence for lysosomal enzyme recognition by human fibroblasts via a phosphorylated carbohydrate moiety. Biochem J. 1978 Mar 15;170(3):643–650. doi: 10.1042/bj1700643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Vladutiu G. D. Effect of temperature on extracellular accumulation of beta-D-N-acetylglucosaminidase in I-cell disease fibroblast cultures. Life Sci. 1979 Jun 18;24(25):2369–2376. doi: 10.1016/0024-3205(79)90535-6. [DOI] [PubMed] [Google Scholar]
  19. Vladutiu G. D. I-cell disease. A hypothesis for the structure of the carbohydrate recognition site on beta-D-N-acetylhexosaminidase. Biochem J. 1978 May 1;171(2):509–512. doi: 10.1042/bj1710509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vladutiu G. D., Rattazzi M. C. Abnormal lysosomal hydrolases excreted by cultured fibroblasts in I-cell disease (mucolipidosis II). Biochem Biophys Res Commun. 1975 Dec 1;67(3):956–964. doi: 10.1016/0006-291x(75)90768-8. [DOI] [PubMed] [Google Scholar]
  21. Vladutiu G. D., Rattazzi M. C. Cell disease: desialylation of beta-hexosaminidase and its effect on uptake by fibroblasts. Biochim Biophys Acta. 1978 Feb 13;539(1):31–36. doi: 10.1016/0304-4165(78)90118-6. [DOI] [PubMed] [Google Scholar]
  22. Vladutiu G. D., Rattazzi M. C. Excretion-reuptake route of beta-hexosaminidase in normal and I-cell disease cultured fibroblasts. J Clin Invest. 1979 Apr;63(4):595–601. doi: 10.1172/JCI109341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. WROBLEWSKI F., LADUE J. S. Lactic dehydrogenase activity in blood. Proc Soc Exp Biol Med. 1955 Oct;90(1):210–213. doi: 10.3181/00379727-90-21985. [DOI] [PubMed] [Google Scholar]
  24. Wiesmann U. N., Lightbody J., Vassella F., Herschkowitz N. N. Multiple lysosomal deficiency due to enzyme leakage? N Engl J Med. 1971 Jan 14;284(2):109–110. doi: 10.1056/NEJM197101142840221. [DOI] [PubMed] [Google Scholar]
  25. von Figura K., Weber E. An alternative hypothesis of cellular transport of lysosomal enzymes in fibroblasts. Effect of inhibitors of lysosomal enzyme endocytosis on intra- and extra-cellular lysosomal enzyme activities. Biochem J. 1978 Dec 15;176(3):943–950. doi: 10.1042/bj1760943. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES