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Splicing junction-based classifier for the
detection of abnormal constitutive
activation of the KEAP1-NRF2 system
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The KEAP1-NRF2 system plays a crucial role in responding to oxidative and electrophilic stress. Its
dysregulation can cause the overexpression of downstream genes, a known cancer hallmark.
Understanding and detecting abnormal KEAP1-NRF2 activity is essential for understanding disease
mechanisms and identifying therapeutic targets. This study presents an approach that analyzes
splicing patterns by a naive Bayes-based classifier to identify constitutive activation of the KEAP1-
NRF2 system, focusing on the higher presence of abnormal splicing junctions as a subproduct of
overexpression of downstream genes. Our splicing-based classifier demonstrated robust
performance, reliably identifying activation of the KEAP1-NRF2 pathway across extensive datasets,
including The Cancer Genome Atlas and the Sequence Read Archive. This shows the classifier’s
potential to analyze hundreds of thousands of transcriptomes, highlighting its utility in broad-scale
genomic studies and provides a new perspective on utilizing splicing aberrations caused by
overexpression as diagnostic markers, offering potential improvements in diagnosis and treatment
strategies.

Gene expression regulation is a dynamic process that involves a complex
interplay among various key components, including transcription fac-
tors, RNA splicing machinery, and epigenetic modifications, ensuring
the appropriate production of proteins and the maintenance of cellular
homeostasis1,2. One system that plays a crucial role in gene expression
regulation is the KEAP1-NRF2 pathway3. The molecular dynamics of
this system are as follows: under normal conditions, a KEAP1 dimer
binds to the NRF2 protein (encoded by the NFE2L2 gene) by the DLG
and ETGE motifs within the Neh2 domain located in exon 2. This
interaction targets NRF2 for ubiquitination by the CUL3 complex,
ultimately leading to its degradation via the proteasome4,5. This frees the
KEAP1 molecules and allows them to interact with new NRF2 mole-
cules, closing the cycle. However, when cells are exposed to oxidative
and electrophilic insults, KEAP1 undergoes conformational changes
that prevent a proper interaction with NRF2, leading to the stabilization
and nuclear translocation of NRF23,6–8. Once in the nucleus, NRF2 binds
to the antioxidant response elements (ARE) in the promoter regions of
its target genes and activates their expression, promoting cellular
detoxification9.

Multiple inducers can activate the KEAP1-NRF2 pathway, including
endogenous signaling metabolites and external factors like UVA radiation
and dietary components10,11. Notably, mutations in the KEAP1-NRF2 sys-
tem, often seen in cancer, result in an abnormal constitutive activation of the
pathway, leading to overexpression of downstream genes which confers
resistance to chemotherapy through protection towards oxidative and
electrophilic stress, causing the cancer cells to acquire malignancy and
increased survival10,12–17. Recent progress in deciphering this pathway has
paved the way for novel therapeutic approaches, which have demonstrated
varied results18,19. Therefore, detection of abnormal constitutive activity of
the KEAP1-NRF2 pathway is crucial for a rapid medical response and
targeted therapies.

In order to explore the detection of abnormal activity of theKEAP1-
NRF2 system, several methodologies primarily focus on measuring the
pathway’s activity through the expression levels of downstream
genes20,21. However, this gene expression-based approach faces several
challenges. One significant issue is the potential bias in the genes selected
as markers of pathway activity, which can vary depending on the tissue
type and specific cancer. Many approaches fail to consider the dynamic
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nature of cellular responses at the pathway level, which is crucial for
understanding biological variation over time22. Not recognizing the
biological context and the variability of thesemarkers could render them
ineffective on different tissues or samples23. Furthermore, thesemethods
often overlook critical aspects of biological complexity. For example, the
presence of multifunctional genes and the hierarchical parent-child
relationships among some genes in these marker lists are frequently
ignored, reducing the accuracy and robustness of these detection
strategies24. Additionally, accurately quantifying absolute gene expres-
sion values, such as using housekeeping genes for reference, poses
substantial difficulties. These methods rely on the assumption that
housekeeping genes are consistently expressed across different tissues,
which does not consistently hold across all contexts25–27. Finally, these
methods typically require a cohort for comparison, limiting their

application to individual samples as they rely on relative activity levels
within a group and need normalization.

Instead, we have shifted our focus to the splicingmachinery, aiming to
approach the detection of constitutive activation of the KEAP1-NRF2
pathway often caused by mutations on the system from a perspective that
could potentially overcome the tissue-specific and sample normalization
challenges associated with current gene expression-basedmethods. Cellular
RNA splicing under normal conditions ensures the removal of erroneous
transcripts28, but this process is compromised during overexpression, a
common result of mutations in pathways like KEAP1-NRF2. This dysre-
gulation leads to an overwhelmed splicing system and an increase in
aberrant transcripts (Fig. 1a). Our research aims to use the abnormal spli-
cing junctions (SJs)—coordinateswhereRNA is cut and rejoined to remove
non-coding regions and concatenate coding sequences—of these aberrant

Fig. 1 | Concept and design. a Differential SJ Patterns due to AKR1C2 over-
expression by constitutive activation of the KEAP1-NRF2 System. Sashimi plot
illustrating the impact of AKR1C2 overexpression on SJ dynamics. The genomic
coordinates are displayed along the x-axis, while the y-axis indicates the read counts.
The thickness of the lines represents the number of reads supporting the junction.
The red section represents a control sample with no KEAP1-NRF2 system altera-
tions, exhibiting a standard junction pattern. Contrastingly, the sample affected by
KEAP1-NRF2 system disturbance shows both a pronounced AKR1C2 over-
expression, evidenced by increased SJ counts, and the presence of abnormal SJ at
previously unannotated locations. b Structure of the pipeline. Our model is first
designed using only Active and Inactive samples, settingUncertain samples aside for

posterior analysis. From this dataset, abnormal SJs and their corresponding normal
SJs were selected as the input required for the construction and evaluation of the
model generated. With the model built, we evaluated and integrated the Uncertain
mutations, leading to the rebuild of the model with an updated abnormal SJ pair
selection. An initial cross-validation analysis was performed, and then the complete
model using the relabeled dataset was generated and implemented on the SRA
dataset. cAbnormal SJ selection. For each cancer type, abnormal SJs were evaluated
using a one-tailed Wilcoxon test to compare their presence between Active and
Inactive samples. The p-values were adjusted using the Bonferroni method.
Abnormal SJs with adjusted p-value ≤ 0.001 were selected from each cancer type and
compiled as inputs for our classifier.
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transcripts as markers to identify constitutive activation of the KEAP1-
NRF2 pathway, distinguishing normal from overexpressed cellular states.

In this study, wepresent an approach to predict consistent activation of
the KEAP1-NRF2 pathway based on abnormal SJs resulting from gene
overexpression caused by dysregulation-inducingmutations.We employed
a naive Bayes-based model to infer the presence of mutations affecting the
pathway through the analysis of abnormal SJ patterns in samples. We
validated our method using The Cancer Genome Atlas (TCGA) dataset
consisting of patients with diverse genetic disorders. By comparing our
approach with a naive approach using the expression data from the same
samples, we demonstrated that our classifier can match gene expression-
based classifiers in identifying the constitutive activation of the pathway.

Results
Classifier overview
To construct a classifier for predicting the abnormal activation of the
KEAP1-NRF2 system, we used the TCGAdatabase. This database provides
comprehensive information on mutations related to the KEAP1-NRF2
pathway and allows for the acquisition of SJ information. We categorized
KEAP1-NRF2pathway relatedmutations found in theTCGAdatabase into
three classes; “Functional,” “Uncertain,” and “Non-Functional” based on
the annotation of their effect on the KEAP1-NRF2 pathway. For the con-
structionof the classifier,weused samples labeledas “Active” (havingat least
a Functional mutation) and “Inactive” (Non-Functional mutations or no
mutations in the KEAP1-NRF2 system) based on their mutation status.
Samples with only Uncertain mutations, labeled as “Ambiguous” samples,
were left out from this step for further evaluation. We constructed our
classifier using a naive Bayes approach. In order to account for the over-
dispersion observed in aberrant SJ distributions, our classifier was coupled
with beta-binomial distributions, where the beta parameters of the model
address this overdispersion by allowing for variability beyond sampling
noise29,30. More specifically, the procedure is as follows (Fig. 1b, c and
Methods for details):
1. We retrieved SJ counts using recount331. Then, we selected abnormal

SJs and their corresponding normal SJs sharing coordinates with the
abnormal SJs (which we defined as “abnormal SJ pairs”). The selection
was performed based on the presence of a significantly higher count of
abnormal SJs in Active samples versus Inactive samples.

2. Assuming the generative model of the counts of abnormal SJ pairs
follows a beta-binomial distribution, we fit beta-binomial distributions
for eachpair of SJ separately for the sets of Active and Inactive samples.

3. Then, for new samples (and their newsetof SJ counts),we can calculate
the generative probabilities for both Active and Inactive cases as the
ratio of the beta-binomial probabilities. The logarithm of the ratio of

the probabilities is defined as theNRF2 score (seeMethods for details):

NRF2 Score ¼ ln PðActiveÞ
PðInactiveÞ

� �

¼ lnðPðActiveÞÞ � lnðPðInactiveÞÞ
ð1Þ

Mutation categorization
We compiled a list of several classes of somatic genomic variants
affecting the KEAP1, NFE2L2, and CUL3 genes from 9533 TCGA
samples including single nucleotide substitutions, insertions, dele-
tions, copy number alterations, and an RNA alteration (exon skip-
ping) that potentially activates the KEAP1-NRF2 pathway. We
classified these alterations into three classes: Functional, Uncertain
and Non-Functional, based on their location, statistical recurrence
and potential effects as reported in scientific literature32.

Functional mutations: Oncogenic and Likely Oncogenic somatic muta-
tions found in KEAP133 (95 samples) as well as the somatic mutations
occurring at NFE2L2 exon 2 hotspot locations15,34 (184 samples). We
adopted the annotation of oncogenicity and hotspot as defined on
cBioPortal (see Methods).
Uncertain mutations: Comprises mutations whose effects on the path-
way are not as extensively investigated as in the case of the previous
mutations and require further exploration. This set consists of somatic
mutations in KEAP1 not labeled as Oncogenic or Likely-Oncogenic
(159 samples), somatic mutations in NFE2L2 on non-hotspot locations
of exon 2 (13 samples), somatic mutations in NFE2L2 on exons other
than exon 2 (50 samples), somatic mutations in CUL3 (146 samples),
copy number amplifications (CNA) inNFE2L2 (100 samples), and exon
2 skipping instances in NFE2L2 including the reported case of exon
2+ 3 skipping35 (29 samples).
Non-Functional mutations: Mutations that did not fall into any of the
previous categories such as 3’UTR, 5’UTR, intron and silent mutations.

Summary of the labeling is provided in Table 1. Details of themutation
categorization are provided in the Methods section.

Sample categorization
With themutation categorizations inplace,wewere able to label the samples
based on their KEAP1-NRF2 system mutation status:
– Active: Samples with Functional mutations, which are expected to

possess a constitutive activation of the KEAP1-NRF2 system (279
samples).

Table 1 | Summary and description of the mutation labeling performed in this study

Mutation Functionality label Samples Functionality label after
evaluation

Description

KEAP1 Oncogenic Functional 95 Functional Oncogenic Somatic mutations in KEAP1

NFE2L2 Exon 2 Hotspot Functional 184 Functional Somatic mutations at hotspots of NFE2L2 reported as Oncogenic or
Likely Oncogenic by OncoKB

CUL3 Mut Uncertain 146 Uncertain Somatic mutations in CUL3

KEAP1 non-Oncogenic Uncertain 159 Functional Somatic mutations in KEAP1 not reported as Oncogenic or Likely
Oncogenic by OncoKB

NFE2L2 CNA Uncertain 100 Uncertain Copy number amplification of NFE2L2

NFE2L2 Exon 2 non-
Hotspot

Uncertain 13 Non-Functional Somaticmutations at exon 2ofNFE2L2 not reported asOncogenic or
Likely Oncogenic by OncoKB

NFE2L2 Exon 2 Skipping Uncertain 29 Functional Presence of at least 2 reads supporting the skipping of exon 2 or exon
2+ 3 of NFE2L2

NFE2L2 Other Exon Mut Uncertain 50 Uncertain Somatic mutations in NFE2L2 at exons other than exon 2

None Non-Functional 8757 Non-Functional None of the previous mutations is present in the sample

The table includes a column with the labeling after the evaluation and reintegration of Uncertain mutations.
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Fig. 2 | Uncertainmutations.Evaluation ofUncertainmutations. Bar plot of theNRF2 scores obtained for everyAmbiguous sample. The table shows the number of samples
the model classified as Active or Inactive, which we used to reintegrate the mutations into the model. The NRF2 score threshold, set at 10, is indicated in red.

Fig. 3 | Model evaluation and abnormal SJ genomic location. a Boxplot of the
NRF2 scores obtained during cross-validation of the model. b IGV visualization of
the KEAP1 deletion occurring in TCGA-22-5486-01A, an alteration detected out-
side the mutations predefined in the scope of our study. c Precision-Recall curve
comparing the ssGSEA method (in blue) with the SJ-based classifier (in red) with

AUC values used for comparing both methods. d Gene overlap of the selection of
abnormal SJs. Bar graph depicting the top 20 genes ranked by the frequency of
overlap with selected abnormal SJs for our model. All the genes in the top 20 are
associated with the KEAP1-NRF2 system, indicated by color.
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– Ambiguous: Samples without any Functional but with Uncertain
mutations (497 samples).

– Inactive: Samples without any Functional or Uncertain mutations,
expected to lack constitutive activation of the KEAP1-NRF2 pathway
(8757 samples).

Evaluation of uncertain mutation classes
To assess whether Uncertain mutations should be classified as Active or
Inactive, we examined theNRF2 scores ofAmbiguous samples generated by
our classifier constructed from Active and Inactive sample data. We
extracted abnormal SJ pairs where the count of abnormal SJs was sig-
nificantly higher inActive samples compared to Inactive ones for 33 distinct
cancer type cohorts separately. Then, by compiling the abnormal SJ pairs
from every cancer type, we obtained a collection of 1623 abnormal SJ pairs.

Next, to evaluate the impact of each Uncertain mutation on the
KEAP1-NRF2 pathway activity, we calculated the proportion of samples
with NRF2 scores exceeding the threshold of 10 (see Methods). Mutation
classes with more than 40% samples scoring above the set threshold were
relabeled as Functional. Classes where 10–40% of the samples had
NRF2 scores surpassing the threshold retained their Uncertain designation
andwere subsequently excluded from further analysis. Finally, classeswhere
fewer than 10% of the samples surpassed the threshold were redefined as
Non-Functional.

The observation of elevatedNRF2 scores in 73 out of 159 samples with
KEAP1 mutations not defined as Oncogenic or Likely-Oncogenic (as
defined on cBioPortal) (45.91%) and in 23 out of 29 samples exhibiting
NFE2L2 exon 2 skipping alterations (79.31%) led to the reclassification of
these Ambiguous labels as Functional. In contrast,CUL3mutation (29/146,
19.86%),NFE2L2CNA(32/100, 32.00%),NFE2L2 exon2mutations outside
of hotspots (2/13, 13.33%) were considered inconclusive, remaining as
Uncertain. Only 2 out of 50 samples withNFE2L2mutations in other exons
(4.00%) passed the threshold, leading to the reclassification of thismutation
as Non-Functional, indicating that it likely does not influence the activity of
the pathway (see Methods, Fig. 2). The number of Active, Ambiguous, and
Inactive samples were updated to 467, 259, and 8807 respectively. The
reclassification led to allKEAP1mutations being deemed Functional in our
model. Yet, the oncogenic impact of many such mutations remains unde-
termined or unreported on cBioPortal. Consequently, this can result in low
NRF2 scores in sampleswhere theoncogenic effect of theirKEAP1mutation
is not confirmed.

Evaluation of NRF2 score on TCGA samples
Based on the updatedmutation and sample labels, we repeated the selection
of abnormal SJ pairs. This refined approach yielded a list of 1705 abnormal
SJ pairs.

We then conducted a two-fold cross-validation analysis with a new
selection of abnormal SJ pairs, splitting the Active samples and Inactive
samples inhalf for training and testing themodelwhile assuming thatActive
and Inactive samples are positive andnegative cases, respectively. Setting the
threshold of our classifier at 10 resulted in identifying 8534 Inactive samples
scoring below the threshold and 273 scoring above it. Among Active
samples, 305met the threshold, while 162 did not. These results produced a
specificity of 96.90%, a precision of 52.77% and a recall of 65.31% (Fig. 3a).
Given the considerable imbalance between Inactive and Active samples in
the dataset, these results show the challenge of this classification and reflect
the robust performance of the classifier under challenging conditions.

Although our classifier effectively identified samples with abnormal
activation of the KEAP1-NRF2 pathway, 273 out of 8534 Inactive samples
got assignedNRF2 scores of at least 10. The occurrence of highNRF2 scores
on Inactive samples suggests the presence of previously undetected altera-
tions. To further investigate this possibility, we explored the copy number
information of Inactive samples with scores surpassing the classifier
threshold. We extracted 15 samples with signs of potential copy number
alterations inKEAP1 andNFE2L2 regions andwith availablewhole-genome
sequencing (WGS) data (see Methods for details, Supplementary Table 1).

Among the 15 samples analyzed, 3 exhibited clear structural variations
uponmanual evaluation of whole-genome sequencing data. For TCGA-22-
5485-01A (NRF2 score of 516.12), a deletion of the first exon and promoter
region of KEAP1 was identified (Fig. 3b). Similarly, TCGA-78-7150-01A
(NRF2 score of 60.28) displayed a deletion spanning the entire KEAP1
region (Supplementary Fig. 1). TCGA-DD-AACZ-01A (NRF2 score of
247.35) showed a deletion downstream of KEAP1 (Supplementary Fig. 2),
which is likely to disrupt its function, potentially explaining the observed
abnormal pathway activity indicated by the elevated NRF2 score. The
identification of deletions in these three cases, originally classified as Inac-
tive, reveals previously undetected genetic modifications. This suggests that
more in-depth genomic profiling is essential to detect such critical changes
and to refine our understanding of the pathway’s activity in different
cancer types.

Comparison with other approaches
In order to evaluate the performance of ourmethod,we conducted a parallel
analysis utilizing single-sample Gene Set Enrichment Analysis (ssGSEA)36

an extension of the well-established Gene Set Enrichment Analysis (GSEA)
technique37. Unlike GSEA, which compares enrichment scores across
groups of samples for specific gene sets, ssGSEA calculates a unique
enrichment score for each individual sample. In this study, we applied
ssGSEA to analyze a set of NRF2 target genes (see Methods). The resulting
scores were then interpreted as indicators of NRF2 activation and subse-
quently used to compare the discriminative accuracy of this approach with
that of the SJ-based method.

Precision-Recall curves were generated to compare our SJ-based
classifier with the ssGSEA method. The area under the curve (PR-AUC)
served as our metric for evaluation. The SJ-based classifier demonstrated a
performancewith a PR-AUCof 0.59, whereas the ssGSEAanalysis obtained
a PR-AUC of 0.56. ssGSEA’s inability to normalize on individual samples
limits its use, since it cannot establish a universal cutoff for classification.
Conversely, our SJ-based classifier leverages pairs of altered and normal SJs
for internal normalizationwithin each sample. Since theNRF2 score is a log
ratio of probabilities, the SJ-based classifier’s natural threshold is zero (see
Methods), which facilitates its application across independent samples. This
inherent threshold, absent in the ssGSEA method, makes our SJ-based
classifier more suitable for detecting constitutive activation in the KEAP1-
NRF2 system (Fig. 3c). Additionally, the ssGSEA score is limited to the
expression levels of the selected genes (in this case, genes associated with
NRF2 transcription factor targets), which may vary across different tissues
and cancer types. This variability reduces the flexibility of the ssGSEA
approach, whereas the SJ-based classifier is better suited to handle diverse
datasets, both in quantity and type.

SJ genomic location analysis
We proceeded to investigate the specific genomic locations of the abnormal
SJs used by our classifier, particularly whether they overlap with down-
stream genes of the KEAP1-NRF2 system. Our analysis found that the
selection of 1705 abnormal SJs overlapped with 452 coding genes. Notably,
among the genes overlapping with the abnormal SJ set, the top 20 most
frequently overlapped genes were predominantly genes associated with the
KEAP1-NRF2 system (Fig. 3d). Specifically, 12 of these top 20 genes
(AKR1C1, AKR1C3, CYP4F11, AKR1B10, CYP4F3, AKR1B15, CYP4F2,
AKR1C4, ALDH3A1, GSTA5, OSGIN1 and PTGR1) were found to be
NRF2-activated as listed in the Human Gene Set: NFE2L2.V2 from https://
www.gsea-msigdb.org/. Further examination of the remaining 8 genes
revealed their linkage to thepathway:GSTA1,GSTM1,GSTM2, andGSTM4
were identified as experiencing reduced expression in NFE2L2 knockout
mice38. CES1P1 has been reported as highly expressed in cervical squamous
cell carcinoma (CSCC) patients with abnormal KEAP1-NRF2 system
activity, while also showing potential as a prognostic biomarker39. Another
study reportedAKR1C2, among other AKR genes, as being regulated by the
KEAP1-NRF2 system40. Elevated expression of WNT5A following KEAP1
knockdown or deletion was also observed41. Although no reported
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association of ADAM23 expression with the KEAP1-NRF2 system was
found, LinkedOmicsKB analysis (https://kb.linkedomics.org/) shows a
significant correlation (Spearman correlation p-value ≤ 0.001) in RNA
abundance between NFE2L2 and ADAM23 in BRCA, HNSC and LSCC.
These results align with our predictions, as activation of the pathway typi-
cally elevates the expression of downstream genes. Consequently, this
overexpression leads to a greater prevalence of abnormal SJs in these genes
compared to others not influenced by the KEAP1-NRF2 system.

SRA database analysis: overview
Having confirmed the efficacy of our method on the TCGA dataset, we
generated the final classifier. We trained it using the complete set of 9274
Active and Inactive samples, and then applied it to the project compilation
provided by the Sequence Read Archive (SRA). The SJ information of the
8592 SRA projects, comprised of 283,132 runs, were downloaded using the
R package recount3. Overall, our classifier retrieved 886 runs with a score of
at least 10, belonging to 228 different projects.

We explored the SRA projects to assess the efficacy of our classifier in
identifying high NRF2 scores in KEAP1-NRF2 related projects. The
threshold was strengthened, focusing on samples with a minimum
NRF2 score of 30, which retrieved 381 runs. Out of these 381 runs sur-
passing this threshold, 273 (71.65%) belonged to lung runs, which corre-
sponded with our expectations, as alterations in the KEAP1-NRF2 pathway
are predominantly observed in LUAD and LUSC8. Additionally, 20 runs
belonged to liver (5.25%), 19 to esophagus (4.99%), 13 to kidney (3.41%), 10
toheadandneck (2.62%) and6 tourothelial (1.57%).The remaining40 runs
(10.50%) belonged to other less frequent tissues and projects (Fig. 4a).

While most of these high-scoring runs belonged to projects that
focused on cancer, we also found 4 high-scoring runs belonging to three
distinct projects not associated with cancer. In the SRP173213 project,
healthy donor monocytes were treated with or without LPS for 1.5 and 4 h.
The NRF2 scores obtained from our classifier increased over time and
exceeded the threshold after 4 h of LPS exposure, consistent with NRF2-
mediated activation in LPS-induced inflammatory responses in
monocytes42,43 (Fig. 4b). SRP126155 assessed the impact of cigarette smoke
on nasal epithelial cells, where one sample notably scored 41.76. However,
this sample was part of a larger set of technical replicates, suggesting other
factors might influence this high score rather than smoke exposure alone
(Supplementary Fig. 3). Lastly, in SRP151606, which explored the sexual
dimorphism of preeclampsia-dysregulated transcriptomic profiles and the
endothelial function in fetal endothelial cells, two samples exceeded an
NRF2 score of 30, but insufficient project details left their link to theKEAP1-
NRF2 system unresolved.

SRA database analysis: exploration of KEAP1-NRF2 related cell
line projects
We conducted amore scrutinous analysis on specific projects involving cell
lines known to have alterations in the KEAP1-NRF2 system. The project
SRP066737 studied the activation of lncRNAs downstream of the KEAP1-
NRF2pathwayusing the cell lineA549, known for having amissense variant
in KEAP1 (p.G333C), mutation labeled as Oncogenic on cBioPortal. For
that purpose, they compared three samples transfected with siRNA tar-
geting NFE2L2 against four control samples. Our classifier successfully
differentiated the transfected samples, assigning scores above the threshold

Fig. 4 | SRA analysis. a SRA Overview: Exploration of runs with NRF2 score of at
least 30 and their associated tissue of study. Runs are plotted by NRF2 score and
colored by the tissue analyzed. b Results of our classifier on project SRP173213. The
NRF2 score increases with the duration of LPS treatment in monocytes, reflecting
the NRF2-mediated activation observed during LPS-induced inflammatory
responses in monocytes. c Results of our classifier on project SRP066737. Our

classifier successfully differentiated between A549 with and without NFE2L2
knockdown. d Results of our classifier on project SRP067630. The Caki-2 cell line
was predicted to have constitutive activation across the study. e Results of our
classifier on project SRP063938. Our classifier was capable of distinguishing between
different KEAP1mutations: the missense mutation in Huh1 and the silent mutation
in Huh7.
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to cell lines not treatedwith siRNAandnegative scores to the siRNA-treated
samples (Fig. 4c).

Using as reference the findings on NRF2 activation reported by
Taguchi et al.10 we also examined additional cell lines with abnormal acti-
vation of the KEAP1-NRF2 system from the SRA dataset. Among these cell
lines is Caki-2, a clear cell renal carcinoma line with accumulation of the
protein p62. This protein, coded by the SQSTM1 gene, functions as an
autophagosome cargo protein, targeting proteins that bind to it for selective
autophagy. The accumulation of p62 has been reported to cause the acti-
vation of the KEAP1-NRF2 pathway44. Used in the project SRP067630, the
Caki-2 cell line received a high NRF2 score in every sample explored (Fig.
4d). Another interesting result was found in the SRP063938 project, where
two hepatocellular carcinoma cell lines with KEAP1 mutations were used:
Huh1, which has a missense mutation (p.N414Y), and Huh7, which has a
silent mutation (p.Y334Y). Despite no reported oncogenicity for these
mutations on cBioPortal, the high NRF2 scores for Huh1 indicates a
potential activation of the pathway by the missense mutation, while the
negative scores for Huh7 hint at the lack of impact of the silent mutation
(Fig. 4e).

Another project analyzed, DRP001919, performed a multi-omics
catalogue of 26 lung adenocarcinoma cell lines (Fig. 5a), six of which harbor
known mutations in the KEAP1-NRF2 system. The cell line H2228 pos-
sesses a missense variant in NFE2L2 reported on cBioPortal at the hotspot
location p.G31A. Accordingly, the classifier assigned an NRF2 score of
70.07. H1648, which has a missense variant not reported on cBioPortal in
KEAP1 at p.G364C, obtained a score of 16.86, also surpassing our threshold.
The cell line A549, with a loss-of-function mutation in KEAP1 at p.G333C
labeled as Oncogenic by cBioPortal, was expected to have an NRF2 score
surpassing the threshold as it did on project SRP066737. However, it
obtained an NRF2 score of -5.40. Quality analysis via recount3 showed that
this run had the fewest mapped reads both within its project (Supplemen-
tary Fig. 4a), and when compared to the A549-specific project SRP066737

(Supplementary Fig. 4b), suggesting the low count to be the reason behind
the reduced accuracy of the classifier.

Other three samples with alterations in the KEAP1-NRF2 system but
with low scores by our classifier were H322 (missense variant in KEAP1 at
p.R460S) with a score of −14.80, RERF-LC-MS (in-frame deletion in
KEAP1 p.G119_M120delinsV) with a score of −10.35, and H2126 (mis-
sense variant in KEAP1 at p.R272C) with a score of−66.15. The H322 cell
line, whose mutation in KEAP1 was not listed on cBioPortal, has been
reported as having low expression levels of NRF2 target genes in contrast
with other KEAP1-NRF2 mutated cell lines45, matching the negative NRF2
score obtained for this cell line. Similarly, the in-framedeletionofRERF-LC-
MS cell line is not reported on cBioPortal, and therefore the lowNRF2 score
might be informative of the lack of effect of this deletion on the functionality
of KEAP1. As for the cell line H2126, our classifier failed to align the
NRF2 score with the Oncogenic missense variant alteration reported on
cBioPortal, resulting inwhat could be considered as a false negative. Further
investigation is required to determine whether this outcome accurately
reflects the KEAP1-NRF2 pathway dynamics in this cell line or a
misclassification.

Among the positive NRF2 scores obtained for the project DRP001919,
three cell lines stood out: II-18, H1437, and PC-9 with NRF2 scores of
118.16, 64.75 and81.76 respectively (Fig. 5a). II-18 andH1437 cell lineshave
been previously reported as having low KEAP1 expression levels, with no
documented genomic alterations46,47. However, our in-depth read coverage
analysis and visualization using the Integrative Genomics Viewer (IGV)
uncovered significant findings: a complete deletion of KEAP1 in the II-18
line (Fig. 5b) and a deletion encompassing the promoter region, exon 1, and
exon 2 of KEAP1 in the H1437 line (Fig. 5c). Additionally, examining the
coverage in the NFE2L2 region revealed a peak indicating an NFE2L2
amplification in the cell line II-18 (Fig. 5d). Therefore, we concluded that the
particularly high NRF2 score in the II-18 cell line could be attributed to a
combination of both KEAP1 deletion and NFE2L2 amplification.

Fig. 5 | Project DRP001919 analysis. a Results of our classifier on project
DRP001919. b IGV visualization of the KEAP1 deletion occurring in the cell line II-
18, previously unreported. c Similarly, IGV visualization of the KEAP1 region of the
cell line H1437 presents a previously unreported deletion. dCoverage exploration of

the NFE2L2 region in II-18, showing signs of amplification affecting NFE2L2
(coordinates of the genemarked in red). eCoverage exploration across chromosome
2 of cell line PC-9. Coverage analysis aswell as structural variation analysis revealed a
complex structural variation across the q arm of chromosome 2 impactingNFE2L2.
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PC-9, another cell line derived from lung adenocarcinoma studied on
this project, has been reported as having high NRF2 expression48. Indeed,
in addition to DRP001919, we found NRF2 scores surpassing our
threshold in another 37 runs across 8 SRA projects involving PC-9,
indicating the potential presence of an alteration in this cell line (Sup-
plementary Data 1). However, no reports of mutation status on the
KEAP1-NRF2 systemwere found for this cell line. Local exploration of the
coverage showed no alterations, neither inKEAP1 norNFE2L2. However,
more extensive exploration of the cell line showed that the scope of the
NFE2L2 amplification coversmore than just the locality as it happened on
the local deletions observed in II-18 and H1437. Structural variation
analysis of PC-9 using the software Genomon SV from the G-CAT
Workflow pipeline (see Methods) suggested a complex structural aber-
ration on the q arm of chromosome 2 where NFE2L2 is located (Fig. 5e).
The presence of copy number alterations impactingNFE2L2 in PC-9 cells
was further supported by independent validation from theDepMapportal
database (Supplementary Fig. 5).

Discussion
In this study, we have presented a classifier based on SJ analysis for detecting
constitutive activity of theKEAP1-NRF2pathway.Our approachmakes use
of the subtle yet informative abnormal SJs that occur as a consequence of
gene overexpression due to mutations on critical elements of the pathway,
causing its dysregulation. The results obtained from the TCGA dataset
support the potential of our classifier in identifying functional mutations
that can impact clinical outcomes, particularly in the context of cancer. Our
initial analysis focused on well-characterizedmutations within the KEAP1-
NRF2 pathway, outlining their prevalence across 33 cancer types and
establishing a baseline for the performance of our classifier. By evaluating
and integrating mutations previously labeled as Uncertain, we demon-
strated the ability of the classifier to differentiate between Functional
mutations, critical for cancer progression, and Non-Functional mutations,
refining the predictivemodel. It is important to acknowledge the limitations
of handlingUncertainmutations. By evaluating their scores, wewere able to
reclassify certainmutations as Functional,Non-Functional, or exclude them
from the analysis due to inconsistent scores. Nevertheless, this approach did
not differentiate between the various types of Uncertainmutations within a
gene. As a result, some potentially Non-Functional mutations in KEAP1
may have been misclassified as Functional, impacting the accuracy of our
classifier. Conversely, valuable information about relevantCUL3mutations
might have been lost due to their exclusion from the analysis. Our future
research direction is to gain a deeper understanding of these individual
mutations and their impact at the protein level. By utilizing advanced tools,
such as deep learning models like AlphaMissense49, we aim to refine the
classification of Uncertain mutations. Improving the distinction between
Functional and Non-Functional mutations will enhance the classifier’s
overall performance and lead to more reliable predictions.

Despite these challenges, the classifier demonstrated strong perfor-
mance in detecting pathway activity beyond Active samples. In the eva-
luation of high-scoring Inactive samples, we uncovered previously
undetected alterations, such as deletions and amplifications within the
KEAP1 and NRF2 regions, which were not apparent in the initial genomic
data analysis. This highlights the classifier’s utility not only as a diagnostic
tool but also as a means for uncovering novel genomic insights. The dis-
covery of such alterations on the reevaluation of the samples reinforces the
importance of integrative analysis in genomic studies.

A noteworthy approach found for KEAP1-NRF2 pathway activity
evaluation was the NRF2 scoring method by Härkönen et al.21. which
involves calculating the geometric mean of the linear TMM normalized
mRNA-expression of genes that form the NRF2 signature they identified.
Although similar in performance to our classifier, Härkönen’s method is
mainly tailored for the TCGAdataset and involves normalization specific to
TCGA cancer types. In contrast, our method can be applied to various
datasets and individual samples without the need for such normalization,
offering broader applicability for research and clinical analysis.

Application of the classifier to the SRA database demonstrated its
robustness and adaptability. The ability to discern between samples from
NRF2-addicted cell lines and those with siRNA-induced suppression of
NRF2 is a testament to the classifier’s specificity. Furthermore, the con-
sistent high NRF2 scores observed in cell lines with known pathway
alterations, such as Caki-2, and across diverse cancer types, highlight the
versatility of our method and potential for broad application in oncological
research.

However, our study is not without limitations. The anomalous
NRF2 score for the A549 cell line within project DRP001919 presented a
unique challenge. It revealed an important consideration for the application
of our method: the quality of input data is paramount. Low counts of both
mapped reads and canonical splicing counts compromised the classifier’s
performance, suggesting that adequate sequencing depth is crucial for
reliable predictions. This finding stresses the need for stringent quality
control measures in sequencing projects to ensure data integrity.

It is important as well to clearly present the ability of our classifier in
detecting both induced and constitutive activation of the pathway.While its
ability to detect pathway activation is beneficial, it could lead to false posi-
tives regarding somatic mutations. Usually, oxidative stress-induced path-
way activation does not involve somatic mutations in KEAP1 or NFE2L2.
This distinction means that although our classifier is versatile in detecting
pathway activation, it may not be as precise in identifying somatic muta-
tions, which could lead to incorrect conclusions. Therefore, researchers
must carefully interpret the results to avoid potential misinterpretations.

In conclusion, our study supports the hypothesis that splicing pattern
analysis is a valuable addition to the genomic toolkit for detection of
abnormal pathwayactivity. TheKEAP1-NRF2pathway,with its pivotal role
in cellular defensemechanisms, presents a prime example of how regulatory
dynamics can influence gene expression and, consequently, disease
pathology. Future work will focus on expanding the classifier’s application
to other regulatory pathways whose dysregulation causes downstream gene
overexpression, as well as exploring its potential in the context of perso-
nalized medicine. As we move towards an era of precision oncology, the
integration of comprehensive genomic analyses, like the one offered by our
classifier, will be crucial for the development of targeted and effective
therapeutic strategies.

Methods
Data downloading
We applied the recount3 package to obtain SJ data from the TCGA dataset.
Using the available_projects() function, we identified projects labeled with
project_type = “tcga”, which yielded 10,507 tumoral samples from 33 dis-
tinct cancer types. The SJ informationwas downloaded by setting the type =
“jxn” parameter in the create_rse() function. Through this process, we
extracted three critical tables:
– An overview detailing the samples for each cancer type.
– A comprehensive list of SJ, complete with coordinates and indications

of whether the junction is annotated in reference genomes.
– A matrix capturing the counts of each SJ, organized with junctions as

rows and samples as columns.

The somatic mutation information as well as the clinical information
with follow upwere obtained fromThe Pan-Cancer Atlas, a comprehensive
resource for cancer genomics research available at https://gdc.cancer.gov/
about-data/publications/pancanatlas.

Mutation categorization
We categorized these mutations based on their location and potential
effects, as reported in scientific literature and documented in the cBioPortal
database v6.0.4 (https://www.cbioportal.org/). This database classifies
mutations as ‘Oncogenic’ if they are supported by scientific literature, or as
‘LikelyOncogenic’ if they are considered hotspots based purely on statistical
recurrence. We downloaded mutation tables for both KEAP1 andNFE2L2,
using the Annotation column to select by OncoKB (oncogenicity) and
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CancerHotspot (defined as hotspot) keys. These labels were used to define
the functionality of the mutations studied in our analysis. To obtain copy
number alteration information, we gathered the masked copy number
segment sets from the Genomic Data Commons data portal, accessible at
https://portal.gdc.cancer.gov/. We defined CNAs as Segment_Mean values
exceeding log2(3/2) that included the NFE2L2 genomic coordinates in its
entirety. To integrate the presence of NFE2L2 exon 2 skipping alterations,
we employed the SJ data from the TCGA dataset. We defined samples as
havingNFE2L2 exon2 skipping if they exhibited at least 2 junctions between
NFE2L2 exon 1 and exon 3, or exon 1 and exon 4 at the exon-intron
boundaries. Exon boundary coordinates of exon 1, 3 and 4 for the different
isoforms of NFE2L2 were downloaded using UCSC Genome Browser tool
Table Browser. The coordinates used for exon skipping labeling were
177233340, 177232584 or 177232563 (exon 3 and exon 4 start coordinates)
and 177264531, 177263402, 177263436 or 177263528 (exon 1 end coordi-
nates) of chromosome 2.

In our dataset, some samples exhibit multiple labels, indicating they
possess several mutations. To improve their categorization, we ranked
mutation types by their significance, assigning the highest-rankedmutation
as the label of each of these samples. The hierarchy is as follows: Oncogenic
KEAP1mutations >NFE2L2mutations affecting exon 2 hotspots >KEAP1
mutations not labeled as Oncogenic > NFE2L2mutations affecting exon 2
on non-hotspot locations > NFE2L2 exon 2 skipping > CUL3 mutations
> NFE2L2 CNAs > NFE2L2mutations in other exons.

Dataset refinement
Due to the lack of comprehensive data on somatic mutations and copy
number alterations in all samples, our analysis used only samples with
available information for these alterations. In order to also mitigate the
influence of random mutations in samples with high mutation loads, we
excluded 12 samples exhibiting more than 20,000 mutations. These
adjustments reduced our dataset to 9533 samples.

Selection of abnormal SJ
From the data downloaded by using recount3 and for every cancer type
with aminimumof twomutated cases, we extracted abnormal SJs, which
we defined as SJs not annotated in any reference genome. We then
compiled a table detailing the counts of each abnormal SJ observed in the
samples at least 10 times. Before statistically choosing the abnormal SJs
for our classifier, we normalized each individual cancer set. To do this,
we adjusted the counts of each sample: first by dividing them by the
sample’s total count, and then by multiplying the result by 1,000,000.
Afterwards, we further normalized the data by dividing the value of each
sample by the average count of that specific abnormal SJ across the
dataset. This normalization process was exclusive to the abnormal SJ
selection and wasn’t applied in subsequent steps. Then, for each
abnormal SJ, we conducted one-sided Wilcoxon signed-rank tests
comparing the abnormal SJ counts in samples with and without
alterations. The selected abnormal SJs (Bonferroni-adjusted p-value ≤
0.001) obtained for each cancer typewere then combined to generate the
complete selection.

Construction of classifier
Our classifierwas designedbasedonanaiveBayes algorithmcombinedwith
a beta-binomial distribution. Specifically, we modeled the probability of a
sample having the KEAP1-NRF2 system in an Active or Inactive (m) state
(y) given the presence of abnormal SJs (k) as:

Pðy ¼ mjkÞ ¼ Pðkjy ¼ mÞPðy ¼ mÞ
PðkÞ ð2Þ

We then generated a Bayesian score representing the probability of a
sample being Active given the presence of abnormal SJs, which was

calculated as:

Scoreðy ¼ mjkÞ ¼ lnðPðkjy ¼ mÞPðy ¼ mÞÞ ð3Þ

The probability distribution of our model follows a beta-binomial
distribution, with the compound distribution given by:

f ðkjn; α; βÞ ¼ Γðnþ 1Þ
Γðkþ 1Þ

Γðkþ αÞΓðn� kþ βÞ
Γðnþ αþ βÞ

Γðαþ βÞ
ΓðαÞΓðβÞ ð4Þ

Here, k represents the number of reads in the feature (abnormal SJs) per
sample, n is the total number of reads in the feature location (abnormal SJ
plus normal SJ in location) per sample, and α and β are the parameters for
the beta distribution. These two parameters were estimated by maximizing
the log-likelihood function of the model, using a training set consisting of
half the samples labeled as Active to obtain and half the samples labeled as
Inactive from the TCGA dataset independently, generating two different
models in the process: amodel representing the distribution of abnormal SJ
on Active samples and a model for Inactive samples.

In order to mitigate the impact of extreme counts in specific abnormal
SJs (outliers), we implemented a threshold to limit the individual abnormal
SJ scores. If the individual scoreof anabnormal SJ exceeds this threshold, it is
truncated to match the threshold value. This limit applies to both negative
and positive values. For our analysis, we set the thresholds at a value of ±10.
This approach effectively controls the influence of outliers and ensures a
more robust analysis of the data.

For each sample, we calculated the natural logarithm of the ratio of
probabilities between the two models to determine their classification,
which we refer to as the NRF2 score.

NRF2 Score ¼ ln Pðkjy¼ActiveÞPðy¼ActiveÞ
Pðkjy¼ InactiveÞPðy¼ InactiveÞ

� �

¼ Score y ¼ Activejk� �� Score y ¼ Inactivejk� � ð5Þ

Since this score represents the difference in probabilities between the
sample being Active and Inactive, an NRF2 score of zero can be considered
as the natural threshold. A positive NRF2 score in our classifier would
indicate that there is no discernible difference between the observed
abnormal SJ in the sample and the abnormal SJ distribution observed across
the genomeof theActive samples. As a result, the samplewould be classified
asActive. To enhance our classifier’s robustness, we pursued amore suitable
threshold. Explorations of Youden’s index50 as an automatic method to
define the threshold retrieved negative values, which greatly differed from
our decision to establish a stricter threshold than the natural zero. Ulti-
mately, based on our independent assessment we selected a threshold of 10
as a more robust benchmark for our analysis.

Uncertain mutations evaluation
After generating the model using the partial dataset (using Active
samples and Inactive samples), our next step involved evaluating the
Ambiguous samples and, based on the NRF2 score obtained, con-
cluding whether some of these mutations should be considered
Functional or Non-Functional, and therefore included in the analysis.
Mutations with over 40% of instances exceeding the established
threshold would be reclassified as Functional. Mutations with 40% to
10% of instances crossing the threshold would keep their Uncertain
status and be subsequently removed from further analysis. Finally,
mutations with less than 10% of instances exceeding the threshold
would be reclassified as Non-Functional and therefore considered as
not having an impact on the KEAP1-NRF2 pathway.

Copy Number evaluation of Inactive samples with high
NRF2 score
We used the masked copy number segment sets from the Genomic Data
Commons data portal to extract copy number information for the KEAP1
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andNFE2L2 genomic regions from Inactive samples exceeding the classifier
threshold. The analysis was extended 15,000 bp upstream and downstream
of both genes. Samples were filtered based on their Segment Mean values,
selecting those with a SegmentMean ≤−0.8 forKEAP1 or≥0.5 forNFE2L2
regions. For samples with available WGS data, we conducted a detailed
examination of primary alignments using IGV to identify any copy number
alterations.ThisWGSdatawasobtained fromtheGenomicDataCommons
Data Portal.

ssGSEA analysis
For the ssGSEA analysis, we obtained expression data from the 9274 sam-
plesmatching the onesused for our SJ-basedclassifier. To infer themutation
status of the samples based on gene expression patterns we selected the
signature Human Gene Set: SINGH_NFE2L2_TARGETS, a curated col-
lection of 14 genes associated with the NRF2 transcription factor’s targets.
This gene set was obtained from the comprehensive resource jointly
developed by UC San Diego and the Broad Institute, https://www.gsea-
msigdb.org/.

Precision-recall generation
In order to calculate the AUC of the Precision Recall curve, we applied the
pr.curve function from the R package PRROC51, using as inputs the scores
obtained by both our SJ-based classifier and ssGSEA analysis, as well as the
mutation status associated with each sample.

Genomic location analysis
After updating the mutation and sample classes of our dataset by the inte-
gration of Uncertain mutations, we utilized the R package GenomicRanges
to analyze the overlap of our selection of 1705 abnormal SJs with coding
genes. For this, we used the annotation databases generated fromUCSC by
using the R library TxDb.Hsapiens.UCSC.hg38.knownGene. We limit our
overlap analysis to annotations whose accession numbers begin with NM
(mRNA) by RefSeq.

Complete model generation
After reassigning the labels of the mutations initially labeled as
Uncertain and conducting a comparative analysis with ssGSEA, we
proceeded to generate a complete model based on the entire TCGA
dataset for application in independent studies such as SRA. To develop
this model, we utilized every sample classified as Active or Inactive,
excluding those with the final label of Ambiguous from our
model’s input.

Read coverage of bam files in KEAP1 and NFE2L2 regions in
DRP001919
In order to investigate potentially missed copy number alterations
across the genomic regions of KEAP1 and NFE2L2, we explored the
chromosomal read coverage of the suspected samples. Primary
alignment reads with quality higher than 20 were counted on win-
dows of 10 kb across chromosome 2 and chromosome 19 where
NFE2L2 and KEAP1 are located respectively. Coverage was calculated
by multiplying this read count by the median of read length across
the region analyzed, dividing it by 10,000, and then visualized. For a
more detailed visualization of the structural variations shown for PC-
9, we applied the software Genomon SV from G-CAT Workflow
toolkit (https://github.com/ncc-gap/GCATWorkflow) on the subset
of chromosome 19 of the PC-9 bam file obtained from the DNA Data
Bank of Japan Sequence Read Archive (DRA). G-CAT Workflow is a
pipeline designed for cancer genome and RNA sequencing data
analysis for the detection of genomic variants and transcriptomic
changes. We followed its protocol and extracted the structural var-
iation output generated by the genomonsv module which provided
deletions, insertions and tandem duplications spanning the q arm of
chromosome 2.

Copy number exploration from DepMap
Copy number data for lung cell lineswas downloaded fromDepMap portal.
Data provided is log2 of the CN ratio with a pseudo-count of 1: log2(Copy
NumberRatio+1). The values are calculated bymapping genes to segment-
level calls from data types such as whole-genome sequencing, whole exome
sequencing, or SNP arrays, and then computing a weighted average along
the available genomic coordinates.

Statistics and reproducibility
TheWilcoxon test was conducted as one-tailed. For the cross-validation of
our model, both the sample set with Active and Inactive sample set were
divided in half. One subset from each was used for training while the other
half served as the testing set, and then the roles were reversed for the second
validation.

Data availability
SJ information for TCGA and SRA was obtained using the R package
recount3. Copy number information was obtained from https://portal.gdc.
cancer.gov/. The somatic mutation labels were obtained from https://gdc.
cancer.gov/about-data/publications/pancanatlas.

Code availability
All the code required to train the model, perform cross-validation, the SRA
exploration, and the generation of the result figures is available on GitHub:
https://github.com/rmateosr/SJ_Classifier_pipeline.
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