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Abstract
Dexmedetomidine is a centrally acting alpha-2 agonist used for initiation and 
maintenance of procedural sedation and mechanical ventilation in adult and 
pediatric settings. It is commonly used in both pediatric and neonatal intensive 
care units. Dexmedetomidine requires extensive titration, and patients can be 
over or under-sedated during titration, leading to adverse events such as hypoten-
sion and bradycardia, or inadequate sedation, which can result in self-extubation. 
There is a critical need to identify factors that contribute to variation in metabo-
lism, clearance, and downstream targets of dexmedetomidine so that individu-
alized pediatric dosing regimens can be developed. This review is focused on 
dexmedetomidine pharmacokinetics and pharmacodynamics in the pediatric 
population and dexmedetomidine-related pharmacogenes in both adults and 
children. We found that the strongest predictors of dexmedetomidine phar-
macokinetics were age and size. Multiple pharmacogenes of significance have 
been identified, including ADRA2A, UGT2B10, UGT1A4, CYP1A2, CYP2A6, and 
CYP2D6. Evidence is weak for the correlation of these individual polymorphic 
genes with dexmedetomidine pharmacokinetics/dynamics, though there may be 
a polygenetic influence on pharmacologic response. This review provides a com-
prehensive overview of the genomic data gathered to date. We aim to summarize 
current pharmacologic studies regarding dexmedetomidine use and pharmacol-
ogy in pediatric patients.
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INTRODUCTION

Children admitted to the pediatric intensive care unit 
(PICU) are frequently sedated with medications includ-
ing opioids, benzodiazepines, and the alpha-2-adrenergic 
receptor agonist, dexmedetomidine.1 Extensive dose ti-
tration and multiple drugs are often required to achieve 
sedation.2,3 Dexmedetomidine has become a mainstay of 
sedation in critically ill children due to increasing evi-
dence of impaired cognition and adverse events (AEs) 
associated with benzodiazepine use in young children, 
combined with dexmedetomidine's generic availabil-
ity and affordability.4,5 The 2022 Society of Critical Care 
Medicine Practice Guidelines recommend using dexme-
detomidine as a first-line agent for sedation in pediatric 
postoperative patients with expected early extubation.5 
However, there is an evidence gap for accurate pediatric 
dosing of dexmedetomidine, in part due to the pharma-
cokinetic variability in pediatric patients.

The Food and Drug Administration (FDA) labeling 
for dexmedetomidine states that it should be used for less 
than 24 h in adult patients for procedural sedation or for 
continuous infusion in the intensive care unit (ICU).6 In 
pediatrics, it is indicated for short-term sedation during 
noninvasive procedures, such as an MRI. However, the 
FDA determined that safety and efficacy end points have 
not been met for procedural or continuous sedation in pe-
diatric patients.6–9 The end points for procedural sedation 

included adequate sedation at least 80% of the time, no 
use of rescue sedation, and no artificial ventilation or he-
modynamic intervention.8 The end point for continuous 
sedation was a significant difference in rescue sedation 
demand between the two stratified dexmedetomidine 
dose groups. Per the FDA's clinical pharmacology review, 
the safety end points of these studies were not adequately 
quantified or objectively measured, which led to inconclu-
sive safety findings.7–10

Despite limited FDA labeling, dexmedetomidine is 
widely used for sedation during invasive procedures and 
long-term sedation in pediatric clinical settings, including 
the PICU, neonatal ICU (NICU), and cardiovascular ICU 
(CVICU).1 Dexmedetomidine is a sedative of particular 
interest in children because of its ability to mimic natu-
ral sleep and possibly reduce analgesic medication load.13 
However, continuous infusions of dexmedetomidine can 
vary widely from doses of 0.2–1.5 μg/kg/h.11,12 Dose titra-
tion is not standardized and can take up to several hours 
before achieving an appropriate comfort goal, leaving pa-
tients at risk for over or undersedation.5,10 Information 
on dose or covariate-related sedation, pain reduction, and 
AE occurrence is crucial for therapeutic optimization of 
dexmedetomidine.

The interplay between pharmacodynamics (PD), phar-
macokinetics (PK), and pharmacogenomics (PGx) of 
dexmedetomidine is important to investigate and sum-
marize, as the dose required to achieve optimal sedation 

Study Highlights
WHAT IS THE KNOWLEDGE ON THE TOPIC?
Dexmedetomidine is commonly used off-label for continuous and procedural se-
dation in pediatrics. It is a popular choice because of its safety profile, but it has 
variable response within adult and pediatric populations.
WHAT QUESTION DID THIS STUDY ADDRESS?
What is the most current knowledge of dexmedetomidine PK, PD, and PGx in 
pediatrics, and what are the identified causes of variability?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Dexmedetomidine PK depends on body size and age, with younger children po-
tentially requiring a wider dosing range. While genotype impacts dexmedetomi-
dine metabolism, current evidence does not support genotype-guided dosing. 
Data are mixed regarding cardio/renal protection, but shows promise for seda-
tion, shivering prevention, and opioid reduction in neonates with HIE.
HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR 
TRANSLATIONAL SCIENCE?
This review summarizes the impact of PK, PGx, clinical status, age, and size on 
dexmedetomidine's behavior in children. This can guide providers in identifying 
covariates that will impact their patients' PK/PD. Additionally, we summarize 
recent PGx findings regarding SNPs, which may guide future pediatric pharma-
cogenomic research on dexmedetomidine.
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can vary widely from patient to patient.11,14,15 According 
to the FDA, the weight-based volume of distribution 
and clearance are relatively consistent in all ages, rang-
ing from 0.8–1 L/kg and 0.9–1.2 L/kg/h, respectively, in 
patients 1 month old up to 17 years old.16 Adults have 
shown larger volumes of distribution, ranging from 1 to 
2 L/kg, and consistent clearance at ~0.5 L/kg/h.9,16 Inter-
individual variability in PGx and dexmedetomidine me-
tabolism can lead to PK and potentially PD alterations. 
Polymorphic variability can occur in dexmedetomidine's 
metabolic pathway through uridine 50-diphospho-glucu
ronosyltransferase (UGT) and Cytochrome p450 (CYP) 
enzymes. Based on in  vitro studies from literature and 
studies conducted in-house by our group, dexmedetomi-
dine's hepatic metabolism is primarily (70%–95%) me-
diated via UGT2B10,17–19 with small contributions from 
UGT1A4 (~5%), and CYP enzymes (~3%–20%), including 
CYP2D6 CYP3A4, CYP2A6, CYP1A2, CYP2E1, CYP2C19, 
and CYP2C9.8 As some hepatic enzymes can develop after 
birth, causing reduced clearance in certain age groups,11 
age-dependent maturation could play a role in pediatric 
PK variability with dexmedetomidine. Its site of action, 
adrenoceptor alpha 2A (ADRA2A), can also be a source 
of polymorphic variability, with eight variants reported in 
literature,20–24 PGx variability of both metabolic and ad-
renergic pathways can alter dexmedetomidine's PK and/
or PD.

PK and PD data can be combined through models to 
assess the effect of covariates, such as PGx, body weight, 
and age on clearance (CL), the volume of distribution 
(Vd), and efficacy, for example, sedation scores or AEs, 
for example, delirium scores, blood pressure, and heart 
rate. In this review, we will summarize data from PK, PD, 
and PGx studies of dexmedetomidine in pediatric patients 
(ages 0–18), and dexmedetomidine-related pharmaco-
genes in both adult and pediatric patients.

METHODS

This systematic review was carried out using PubMed 
and Ovid. The search terms used were ‘dexmedetomi-
dine’ AND (‘pharmacokinetics’ OR ‘pharmacodynam-
ics’ OR ‘pharmacogenetics’ OR ‘pharmacogenomics’). 
Additionally, we reviewed the reference lists of all iden-
tified studies and reviews. The last search using these 
terms was conducted in May 2024. A thorough review on 
dexmedetomidine PK and PD was published in 2017 by 
Weerink et al.,11 therefore, we decided to only include PK 
and PD studies published after 2017. As there are fewer 
PGx data available for dexmedetomidine as compared 
with PK and PD data, we included published PGx studies 
dating back to 2011. We included controlled trials, cohort 

studies, PopPK models, physiologically-based pharma-
cokinetic (PBPK) models, and case–control studies which 
included pediatric patients. We excluded case reports, 
meta-analyses, conference abstracts, and review papers, 
as well as non-english papers. We identified 26 studies 
that met the inclusion criteria and are evaluated in this 
review. Two reviewers collected and verified data from 
each report.

RESULTS

Allometric scaling and ontogeny

Dexmedetomidine is dosed based on weight (μg/kg/h), 
but in young pediatric patients (<3 years old) it exhibits 
variable PK, indicating that other covariates, such as age 
and organ maturation (ontogeny) may play a role in vari-
ability of drug response. Eight population pharmacoki-
netic (PopPK) studies have evaluated dexmedetomidine 
PK using weight as a covariate, either by incorporating 
data from both children and adults or using allometric 
scaling, which uses an average adult weight of 70 kg as 
a scaling factor for all PK parameters (Table 1).11,14,15,25 
We identified three studies which provide analyses of 
adult and pediatric data.14,15,25 Morse al. describe a short-
coming of target-controlled infusion (TCI) pumps, which 
are programmed to infuse medication to a target plasma 
concentration (Cp).15 Anesthesiologists use patient pa-
rameters, such as sex, weight, age, etc. to program this 
automated infusion and target a predefined Cp.27 A limi-
tation of TCIs is that their programming is based upon 
adult data only, but TCI pumps are often used in pedi-
atric patients. The goal of Morse's model was to provide 
a universal scaling factor to better predict pediatric PK 
of dexmedetomidine, improving targeted dosing for both 
children and adults.15 For this, they used PK data from 
five previously published studies27–31 to estimate the 
pharmacokinetic outcomes of TCI in a pediatric model 
(Table 1). They found a direct relationship between age 
and CL in the first few years of life, and an inverse rela-
tionship between patient size and CL after the age of 3, 
likely due to an age-related plateau in organ maturation. 
The authors used their model to provide a guide incor-
porating both age and size as scaling factors for patient 
dosing.15 Based on this guide, a theoretical neonate with 
an estimated weight of 3.6 kg would require doses of 
~0.77 μg/kg/h to maintain a target plasma concentration 
of 1 ng/mL (a target concentration which produces mod-
erate to deep sedation in most infants and children).25,32,33 
This requirement increases with age, peaking at ~1.04 μg/
kg/h by 3 years old, based on a predicted age-dependent 
(or ontogenic) increase in metabolic clearance.15 Disma 
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et al. pooled the adult literature data from Morse's model 
with their primary data collected from pediatrics to vali-
date the use of the universal model, and found that both 
models had consistent PK predictions.15,25 In their study, 
age was the primary covariate for PK in patients under 
2 years of age, and weight was the primary covariate in 
patients 2 and over.25

Independently, Ber et al.14 developed a PopPK model 
incorporating allometric scaling and ontogeny. This model 
included a wide variety of doses in adult and pediatric pa-
tients, starting at 0.7 μg/kg/h in adults and 0.8 μg/kg in pe-
diatrics without a loading dose, continuing at 0.08–2 μg/
kg/h. In contrast to Morse's PK model, which investigated 
size, age, and fat-free mass as covariates, Ber included 26 
additional covariates including PGx, hemodynamics, and 
sedation scores (Table 1).14 In addition to the significant 
covariates of age and body weight, authors found that 
noradrenaline administration significantly reduced clear-
ance (theoretically by constricting hepatic blood flow), 
and CYP1A2*1F (rs762551) allele was associated with 
increased dexmedetomidine clearance (Tables 3 and 4).14 
Due to the high amount of covariates assessed in a rel-
atively small sample size, application in clinical practice 
may be less useful than models with larger sample sizes 
and/or less covariates included in the model.

Five PK studies using exclusively pediatric data have 
included allometric scaling in their analysis and discus-
sion (Table 1).34–38 Separately, three of these studies noted 
direct effects of weight via allometric scaling on Cp and 
CL.34–36 One study by Damian et al.34 noted a linear cor-
relation between weight and Vd. These results align with 
the above data from adult and pediatric studies: Body size is 
significantly correlated with the kinetics of dexmedetomi-
dine. Morse et al.15 estimated that 83% of between-subject 
variability in their simulated pediatric patients was due 
to allometry, which can be controlled by accounting for 
weight. James et al.36 affirmed this conclusion, showing 
that age plays less of a role as patients get older, and that 
weight is the primary significant covariate for clearance 
in patients over 93 weeks postmenstrual age. Body size in 
patients over the age of ≥3, and ontogeny in patients <3, 
should be the primary considerations for providers when 
initiating dexmedetomidine in a pediatric patient.

Pharmacokinetics/pharmacodynamics

Multiple studies have investigated the relationship between 
dose, kinetics, and sedation scores. We identified 10 stud-
ies in exclusively pediatric patients that provided new, rel-
evant information on the PK and PD of dexmedetomidine 
(Table 2).32,33,39–46 These studies used plasma sampling, vital 
signs and laboratory data collection, and PK modeling to 

assess dexmedetomidine distribution, metabolism, elimina-
tion, and clinical effects in children. PD outcomes of inter-
est include sedation and responsiveness – which are direct 
measures of drug efficacy – as well as safety outcomes, such 
as bradycardia, hypotension, and delirium.

I. Procedural sedation

Physiologic changes during and after surgery may play a 
role in the PK of dexmedetomidine. As demonstrated in 
Kim et al.'s37 procedural study and PopPK model, dexme-
detomidine distribution into a third compartment is en-
hanced when patients undergo cardiopulmonary bypass. 
This dispersion within the body leads to a significant de-
crease in dexmedetomidine Cp during bypass, p < 0.016 
(Table 2).37 Both Morse et al. and Disma et al.15,25 found 
that a 3-compartment PopPK model best fit their data in 
patients undergoing procedural anesthesia for ≥2 h. This 
third spacing may occur during surgical procedures due 
to blood flow alterations and increased capillary wall per-
meability, temporarily reducing the availability of drug in 
the plasma. This can result in increased sedative demand 
due to reduced dexmedetomidine concentration at the 
target site. Such elevated sedation demand was seen in 
practice in the PK analysis of the interventional arm of 
Disma et al.'s25 study, but target sedation was obtained by 
increasing target plasma concentrations from 0.6 to 1 ng/
mL (Table 1).

When used for procedural sedation, dexmedetomidine 
may also reduce demand for other sedative and analgesic 
medications.5,11,39 Amula et  al.39 documented a statisti-
cally significant reduction in overall intraoperative benzo-
diazepine and opioid load for patients (Table 2). Of note, 
patients were exposed to significantly higher doses (12.5 
vs. 5.8 μg/kg, p = 0.04) of dexmedetomidine, and nonsig-
nificantly higher doses of propofol and acetaminophen, 
but authors did not document AEs as a result of these ex-
posures. Patients were also not exposed to higher doses of 
volatile anesthetic.39 Combined with the above study re-
sults, these data indicate that short-term exposure to dex-
medetomidine during surgery, when administered at high 
enough doses, may be a protective factor against the need 
for opioids and other sedating medications.

IA. Adverse events in procedural sedation

Dexmedetomidine PK and PD effects on target organs, in-
cluding the kidney, heart, and liver, have been reported 
in surgical pediatric patients. Jo et  al.43 investigated the 
correlation between dexmedetomidine and postoperative 
acute kidney injury (AKI). AKI is defined as an absolute 
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ra
tiv

e
G

ro
up
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Bo

lu
s: 

D
EX
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.5

 μg
/k

g +
 N

S
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on
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.5
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e
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l e
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) 
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r c
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er
y 

w
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 D
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 a
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M
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O
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D
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. c
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T 

ri
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gn
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ca

nt
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du
ce

d 
w
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 D

EX
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G

SO
4 
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 =

 0.
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2)
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R
: 0

.2
6 

fo
r D

EX
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d 

p =
 0.

00
8,

 O
R

: 0
.0

6 
fo

r 
D

EX
 +

 M
gS

O
4

Ex
tu

ba
tio

n 
tim

e,
 d

ur
at

io
n 

of
 

ca
rd

ia
c 

ca
re

 u
ni

t s
ta

y 
an

d 
to

ta
l 

le
ng

th
 o

f h
os
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ta

l s
ta

y 
w

er
e 
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gn
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ca

nt
ly
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du

ce
d 

w
ith

 D
EX

 
±
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G
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4

U
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f d
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m
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e 

w
ith
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r 

w
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ou
t M

gS
O
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m
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 c
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ac
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fe
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 o
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m
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w
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g 
ca

rd
ia

c 
su

rg
er

y,
 a
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 re
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s l
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h 
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ur
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ca

l h
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ta

l s
ta

y
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R
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do
m
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pr
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pe

ct
iv
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 p
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bo
-
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nt

ro
lle

d 
st
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y
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ng
: S

ur
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ca
l

A
ge

: 1
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s
N

 =
 29

 c
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n
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lu

s: 
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5 μ
g/

kg
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fu
si

on
: 0

.5
 μg

/k
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h
O

r P
la
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A
na

ly
si

s o
f A

K
I 
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en

ce
 in

 p
at

ie
nt
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g 

D
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pl
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o

A
K

I i
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en

ce
 w
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 si
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ca
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ly
 

hi
gh

er
 in

 th
e 

co
nt

ro
l g

ro
up

 
(6

4%
 v

s. 
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%
, p

 =
 0.

04
2)

eG
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 w
as

 si
gn

ifi
ca

nt
ly

 lo
w

er
 

in
 th

e 
co

nt
ro

l g
ro

up
 th

an
 th

e 
D

EX
 g

ro
up

 (7
2.

6 
±

 15
.1

 v
s. 
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.9

 
±

 13
.5

, p
 =

 0.
04

4)
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ri

op
er

at
iv

e 
D

EX
 re

du
ce

d 
th

e 
ri

sk
 o

f A
K

I i
n 

pe
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c 
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c 
su
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er

y 
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K
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R
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m
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pe
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e,

 p
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ce
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-
co

nt
ro
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d 

st
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y

Se
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ng
: S
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gi

ca
l

A
ge
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.5
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 ye

ar
s

N
 =

 13
9 

ch
ild

re
n

Bo
lu

s: 
1 μ

g/
kg

In
fu

si
on

: 0
.5

 μg
/k

g/
h

Po
st
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ol
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: 1

 μg
/k

g
O

r P
la

ce
bo

A
na

ly
si

s o
f A

K
I 
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cu

rr
en

ce
 in

 p
at

ie
nt

s 
re

ce
iv

in
g 

D
EX

 v
s. 

pl
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eb
o

A
K

I i
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id
en

ce
 w
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 n

ot
 

di
ffe

re
nt

 b
et

w
ee

n 
gr

ou
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 (1
7%
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 D
EX

 a
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s. 
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%

)
eG

FR
 w

as
 si

gn
ifi

ca
nt

ly
 lo

w
er

 
an

d 
cr

ea
tin

in
e 

w
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 h
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he
r i

n 
th

e 
co

nt
ro

l g
ro

up
 th

an
 D

EX
 

(p
 =

 0.
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)

In
tr
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pe

ra
tiv

e 
D

EX
 re

du
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d 
th

e 
ri

sk
 o

f A
K

I i
n 

pe
di

at
ri

c 
ca

rd
ia

c 
su

rg
er

y 
pa

tie
nt

s

Li
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Pr
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pe
ct

iv
e,
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se
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at
io

na
l s

in
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e 
ce

nt
er

 st
ud

y

Se
tti

ng
: I

C
U

A
ge

: 0
–1

6 y
ea
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N

 =
 11
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 c
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n

N
ot

 re
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ed

D
ev

el
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m
en

t o
f a
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lir
iu

m
 ri

sk
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n 
m

od
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 b
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 o

n 
da
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fte

r m
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A
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ly
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f 
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, c
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os
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er
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 o
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 D
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pa

in
 a

nd
 se
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tio

n 
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.1

%
 o

f p
at

ie
nt

s w
er

e 
di
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d 

w
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 d
el
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m
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n 
a 

m
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ia
n 
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r 
su

rg
er

y
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.5
%

 o
f p
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ie
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s w
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de
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pe

d 
de

lir
iu

m
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D
EX

, v
s. 
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%
 w

ho
 d
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 n
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de
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lo
p 

de
lir

iu
m

Si
ng

le
 p

re
di

ct
iv

e 
fa
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or

s h
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 le
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ed
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tiv
e 

pr
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ab
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 th

an
 th

e 
pr

ed
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tiv
e 

m
od

el
, i

nd
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at
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g 
th

at
 

w
he

n 
D

EX
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 c
om
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ne

d 
w

ith
 

ot
he

r r
is

k 
fa

ct
or

s, 
th

e 
pa

tie
nt
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 a

t 
in

cr
ea

se
d 

ri
sk

 o
f d

el
ir

iu
m

T
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B
L

E
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(C
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at

io
n

M
et
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R
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pP
K

 M
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Se
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: I
C

U
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N
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na

te
s w
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H
IE

A
ge

: 3
7–

41
 w

ee
ks

 
G

A
N

 =
 7 

ne
on

at
es

In
fu

si
on

:
0.

2 μ
g/

kg
/1

 h
, t

he
n 

0.
3 μ
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kg

/h
 fo

r 2
.5

 h
, t

he
n 

0.
4 μ
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kg

/h

M
od

el
: 1

 c
om

pa
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m
en

t
C

ov
ar

ia
te

s: 
A

ge
, 

w
ei

gh
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A
LT

, S
cr
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ol
in

g 
du

ra
tio

n 
an

d 
bo

dy
 te

m
pe

ra
tu

re
 

flu
ct

ua
tio

ns

V
d:

 7
.4

8 L
/k

g
C

L:
 0

.6
97

 L
/k

g/
h

C
p:

 0
.3

00
–0

.9
00

 n
g/

m
L

Si
gn
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ca

nt
 c

ov
ar

ia
te

s:
N
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e

C
L 

w
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w

, b
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d,

 M
R

T,
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t 1/
2 w

er
e 

hi
gh

er
 c

om
pa

re
d 

w
ith

 
no

rm
ot

he
rm
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, n

on
-H

IE
 n

eo
na

te
s
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 c

oo
le

d 
ne

on
at

es
 w

ith
 H

IE
, 

a 
lo

ad
in

g 
do

se
 o

r m
or

e 
ra
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d 
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tio
n 

m
ay

 b
e 

ne
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ed
D

EX
 a

de
qu
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el

y 
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ro

lle
d 

pa
in

/
se

da
tio

n 
in

 8
5%

 o
f t

he
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at
ie

nt
s, 

an
d 

co
nt

ro
lle

d 
sh

iv
er

in
g 

in
 5

 o
f 7

 
w

ith
ou

t r
es

cu
e 

m
or

ph
in

e

Ta
ke

uc
hi

46
C

lin
ic

al
 st

ud
y 

on
 a

ge
-s

pe
ci

fic
 

de
xm

ed
et

om
id

in
e 

do
si

ng
 in

 th
e 

PI
C

U

Se
tti

ng
: I

C
U

A
ge

: 4
5 w

ee
ks

 
C

G
A

- 1
7 y

ea
rs

 o
ld

N
 =

 61

<
6 y

ea
rs

 o
ld

In
fu

si
on

: 0
.2

–1
.4

 μg
/k

g/
h

≥6
 ye

ar
s o

ld
In

fu
si

on
: 0

.2
–1

.0
 μg

/k
g/

h

A
na

ly
si

s o
f D

EX
 C

p 
an

d 
ef

fe
ct

 o
n 

24
-h

ou
r r

es
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e 
m
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ol
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 o
r f

en
ta
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l 

de
m

an
d,

 A
Es

 a
nd
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tio

n 
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or
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%

 o
f p

at
ie

nt
s d

id
 n

ot
 re

qu
ir

e 
re
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ue

 m
id
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ol

am
88

.5
%

 d
id

 n
ot

 re
qu

ir
e 

re
sc

ue
 

an
al

ge
si

c 
fe

nt
an

yl

A
ge

-s
pe

ci
fic

 d
os

e 
re

gi
m

en
s 

w
ith

ou
t a

 lo
ad

in
g 

do
se

 a
ch

ie
ve

d 
ad

eq
ua

te
 se

da
tio

n 
w

ith
ou

t 
cl

in
ic

al
ly

 si
gn

ifi
ca

nt
 A

Es
A

 g
oa

l C
p 

of
 0

.3
–1

.2
5 n

g/
m

L 
m

ay
 m

iti
ga

te
 h

em
od

yn
am

ic
 a

nd
 

re
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ir
at

or
y 

A
Es

va
n 

D
ijk

m
an

33
Po

pP
K

 M
od

el
Se

tti
ng

: I
C

U
A

ge
: 3

4–
44

 w
ee

ks
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A

N
 =

 6

In
fu

si
on

: 0
.3

 μg
/k

g/
h

M
od

el
: 2

 c
om

pa
rt

m
en

t 
m

od
el

C
ov

ar
ia

te
s: 

PM
A

 a
nd

 
w

ei
gh

t

V
1:

 8
0.

4 L
V

2:
 1

42
 L

C
L:

 4
2.

1 L
/h

Q
2:

 1
2.

5 L
/h

−
83

%
 o

f p
at

ie
nt

s n
ee

de
d 

fe
nt

an
yl

 re
sc

ue
Si

gn
ifi

ca
nt

 c
ov

ar
ia

te
s:
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A

0.
3 μ

g/
kg

/h
ou

r i
nf

us
io

n 
ov

er
 2

4 h
 

re
ac

he
d 

co
nc

en
tr

at
io

ns
 ju

st
 b

el
ow

 
0.

6 n
g/

m
L,

 w
ith

 9
5%

 o
f n

eo
na

te
s 

un
de

r 1
.0

 n
g/

m
L 

an
d 

83
%

 a
bo

ve
 

0.
4 n

g/
m

L
C

L 
fo

r a
 ty

pi
ca

l n
eo

na
te

, P
M

A
 o

f 
40

 w
ee

ks
, 3

.4
 k

g,
 w

as
 2

.9
2 L

/h
H

ig
he

r t
ar

ge
t C

p 
m

ay
 b

e 
ne

ce
ss

ar
y 

fo
r n

eo
na

ta
l s

ed
at

io
n

A
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re
vi

at
io

ns
: A

E,
 a

dv
er

se
 e

ve
nt

; A
D

R
A

2A
, a

dr
en

oc
ep

to
r a

lp
ha

 2
a;

 A
K

I, 
ac

ut
e 

ki
dn

ey
 in

ju
ry

; A
LT

, a
la

ni
ne

 tr
an

sa
m

in
as

e;
 B

P,
 b

lo
od

 p
re

ss
ur

e;
 C

G
A

, c
or

re
ct

ed
 g

es
ta

tio
na

l a
ge

; C
l, 

cl
ea

ra
nc

e;
 C
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, c

ar
di

op
ul

m
on

ar
y 

by
pa

ss
; C

PG
, c

lin
ic

al
 p

ra
ct

ic
e 

gu
id

el
in

e;
 C

P,
 p

la
sm

a 
co

nc
en

tr
at

io
n;

 C
YP

, c
yt

oc
hr

om
e 

p4
50

; D
A

P,
 d

ia
st

ol
ic

 a
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er
ia

l p
re

ss
ur

e;
 D

EX
; d

ex
m

ed
et

om
id

in
e;

 e
G
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, e

st
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at
ed

 g
lo

m
er
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ltr

at
io

n 
ra

te
; G

A
, g
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ta

tio
na

l a
ge
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em
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 e
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ha
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th
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U
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 c
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e 
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V
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nt
er
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du

al
 v
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R
, i

nt
er

na
tio

na
l n

or
m
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ed
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tio
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, j

un
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io
na

l e
ct
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ar
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O
4, 

m
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ne
si
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 su

lfa
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; M
R

T,
 m

ea
n 

re
si

de
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e 
tim

e;
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S,
 n

or
m

al
 sa
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e;

 P
D

, p
ha

rm
ac

od
yn

am
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s; 
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A
, p

os
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en
st

ru
al

 a
ge

; P
op
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, p

op
ul

at
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n 
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ar
m

ac
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in
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s; 
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, p
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ac
ok

in
et
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s; 
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 p
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rm
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en
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s; 
Q

, d
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ut
io

n 
ra

te
; r

s, 
re

fe
re
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e 

si
ng

le
-n
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le

ot
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e 
po
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m
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m

 c
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st
er
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; S

A
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ol
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 a
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ur
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 S
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, s

er
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 c
re

at
in
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N

P,
 si

ng
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-n
uc

le
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e 
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m
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is

m
; t
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lif
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C
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ta
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le
d 
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fu

si
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G

T,
 u
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ne
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er

as
es

; 
U

H
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C
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M
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 u
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a 
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 c
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 m
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m
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 d
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ut
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T
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A
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d 
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at
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c 
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 C
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 d
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r c
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s7
62

55
1)

 
ge

no
ty

pe
 a

nd
 n
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 c
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s
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 p
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increase in serum creatinine of either ≥0.3 mg/dL, or ≥50%, 
or a decrease in urine output of <0.5 mL/kg/h for >6 h.47 
Compared with a matched infusion of normal saline, 
dexmedetomidine significantly reduced the incidence of 
AKI and increased estimated glomerular filtration rate 
(eGFR) in a randomized controlled trial (Table 2).43 There 
were no significant differences in pressor requirements or 
hemodynamics, and no diuretics were used during and 
after the surgery. Patients received equal doses of anes-
thesia and benzodiazepines.43 The alpha-2-agonism and 
anti-inflammatory effects of dexmedetomidine may have 
a reno-protective effect in patients who are critically ill or 
undergoing surgery.43,48,49 However, a randomized trial 
by Kim et al.44 demonstrated that this effect may not be 
significant in a larger population (n = 139 vs. 29). In chil-
dren receiving intraoperative dexmedetomidine vs. pla-
cebo, there was no significant difference in AKI or other 
clinical outcomes, although the dexmedetomidine group 
had lower overall serum creatinine and higher eGFR 
(within normal limits).43,44 Notably, Kim's study group 
was younger in age than Jo et al.'s (1.5–2 vs. 1–6 years old) 
and received a higher loading dose (1 μg/kg vs. 0.5 μg/kg). 
While there is a numerical difference in the renal out-
comes of these patients (Table 2), there is weak evidence 
of dexmedetomidine being clinically reno-protective dur-
ing surgery.43,44

Due to its mechanism of action and metabolic path-
way, dexmedetomidine may have noteworthy PK/PD 
interactions related to cardiac and hepatic function. A 
potential benefit of its alpha-2-agonism is the reduc-
tion of junctional ectopic tachycardia (JET) incidence, 
a life-threatening arrythmia that can occur after con-
genital heart surgery.42 Kim et al.'s44 study, as described 
above, found no difference in postoperative JET or 
other arrhythmia occurrence between the dexmede-
tomidine and placebo groups (Table  2). However, in a 
2024 study, Hassan et  al. compared JET occurrence in 
three groups of randomized pediatric cardiac surgery 
patients: Group MD, receiving IV dexmedetomidine and 
magnesium sulfate; Group D, receiving dexmedetomi-
dine alone; and Group C (control). JET occurred in 30% 
of the control group vs. 10% of group D and 2.5% of the 
group MD (p = 0.007). Use of dexmedetomidine alone 
or with magnesium significantly mitigated the risk of 
JET, shortening both cardiac care unit and hospital stays 
(Table 2).42 Lastly, Damian et al. studied the PK of dex-
medetomidine in patients between 1 month and 18 years 
of age after liver transplantation and determined that 
post-translation international normalized ratio (INR) 
was a covariate for clearance.34 There was not an associ-
ation between patient weight, distribution kinetics, liver 
transplant type (whole or split) donor, and dexmedeto-
midine CL (Table  2). The authors mentioned that this R
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could be due to differences in transplanted liver mass-
to-body weight (children often receive grafts which are 
bigger than their original organ).34 While liver mass 
and dexmedetomidine clearance was not correlated 
with liver mass, tBILI or ALT in this study, INR proved 
to be a significant covariate for clearance (Table  1).34 
Dexmedetomidine is hepatically metabolized, and liver 
transplant patients are a unique case where weight may 
be a poor indicator of dose kinetics and response.10,11,34 
The results of these studies provide consistent but weak 
evidence of reno-protection and mixed evidence of ar-
rhythmia reduction from perioperative dexmedetomi-
dine. Damian et al.'s study also provides evidence that 
patients undergoing liver transplant should not be dosed 
exclusively based on body weight due to fluctuations in 
the function of the adapting liver.

II. Continuous sedation

The PK of dexmedetomidine differs when used for con-
tinuous sedation instead of procedural sedation. The 
concentration shift of dexmedetomidine into a third com-
partment may still occur, as many critically ill patients 
can experience dramatic fluid shifts and hypotension.1,5,37 
However, in contrast to the data from procedural seda-
tion, most models for continuous sedation in the ICU 
found that a two-compartment model provided the most 
accurate data fit (Tables 1 and 2).14,33,34,38 The relationship 
between dexmedetomidine distribution and clinical effect 
or AEs is not well documented. However, it is clear that 
both age and body size impact dexmedetomidine metabo-
lism and demand.

In contrast to data on procedural opioid-sparing ef-
fects, continuous infusions of dexmedetomidine may not 
decrease the overall analgesic demand in the ICU. There 
have been several documented protocol implementations, 
in which investigators have made dexmedetomidine the 
first tool for patient comfort while allowing opioids to 
be used as a secondary therapeutic. Dexmedetomidine 
and opioids are titrated to a target effect (shivering, pain, 
or sedation level), in patients. The implementation of a 
dexmedetomidine clinical practice guideline did not sig-
nificantly reduce opioid exposure in the NICU.40 In their 
recently published study, and a follow-up chart review, 
Dersch-Mills et  al. showed a clinical reduction in total 
opioid exposure and duration of opioid use but failed to 
demonstrate statistical significance (Table 2).40,50 Authors 
argue that dexmedetomidine should not be given exclu-
sively for opioid reduction in the NICU. In a study con-
ducted by McAdams et  al. on shivering prevention for 
neonates with hypoxic ischemic encephalopathy (HIE), 
it was found that dexmedetomidine could serve as a 

potential alternative to morphine, providing a non-opioid 
route for HIE care in the NICU (Table 2).32 A larger study 
from Elliott et al.41 in the HIE population demonstrated 
that dexmedetomidine can effectively and safely serve as 
a first-line alternative to morphine and other opioids for 
both sedation and shivering prevention. In this particu-
lar population, initiation of a protocol using dexmede-
tomidine as a first-line sedative led to decreased opioid 
exposures of 87%–95% (Table 2).41 However, in the gen-
eral neonatal ICU populations, there appears to be mixed 
evidence of opioid reduction with dexmedetomidine.40,50 
At the minimum, it seems to provide a clinical and nu-
merical benefit in terms of overall patient comfort and 
analgesic burden.

In regards to sedation level, Song et  al. found that 
during a short, continuous infusion of dexmedetomi-
dine, there was no difference in sedation scores between 
patients randomized to high dose (0.5 μg/kg loading 
dose + 0.5 μg/kg/h) and low dose (0.25 μg/kg loading 
dose + 0.25 μg/kg/h) groups.38 Patients in both groups 
attained the target of moderate to deep sedation, but it 
should be noted that these patients were recovering from 
immediate surgery where they had received a propofol 
TCI as well as sufentanil. This was the only study in our 
search which compared the effect of dexmedetomidine 
dose on sedation in the ICU.38 Van Dijkman et al. did not 
compare sedation scores among doses but found that five 
of six neonates receiving 0.3 μg/kg/h of dexmedetomidine 
for 24 h needed rescue fentanyl for pain/sedation. While 
this is a small sample size, it suggests that in an extended 
duration of continuous sedation, higher doses may be 
needed to maintain target comfort and sedation scores.33

IIA. Adverse events in continuous sedation

When used in continuous sedation, dexmedetomidine 
may induce bradycardia and hypotension due to its al-
pha-2 agonism and has been independently associated 
with delirium risk.13,40,41,51 According to the package 
insert, bradycardia occurs in up to 42% of adults and 
57% of children, hypotension occurs in up to 56% of 
adults and 31% of children, and delirium has been docu-
mented at unspecified occurrence rates.10 Dersch-Mills 
et al.'s study reported that 50% of patients on high dose 
(≥0.5 μg/kg/h) dexmedetomidine experienced hypoten-
sion and 27.3% experienced severe bradycardia, with 
only 25% and 7.7% of patients on low dose (<0.5 μg/kg/h) 
experiencing the same effects, respectively (Table  2).40 
These results were from a small sample, and were not 
statistically significant. In Elliott et  al.'s study, 9.6% of 
neonates receiving ≤0.4 μg/kg/h discontinued dexme-
detomidine due to bradycardia.41 While no patients in 
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this study received ≥0.5 μg/kg/h (Table 2), this percent-
age aligns with data from Dersch-Mill et al., as well as 
previous studies and literature reviews.40,52 Takeuchi 
et al. reported that 4.9% of children and infants experi-
enced dexmedetomidine-related hypotension, and 11% 
experienced dexmedetomidine-related bradycardia, 
with no correlation to plasma concentration or dose.46 
Song et  al's38 group also noted no difference in brady-
cardia or hypotension between high and low doses of 
dexmedetomidine, although patients in this study only 
received an hour-long infusion.

Other pediatric studies have failed to show the cor-
relation between dexmedetomidine concentration and 
adverse effects. A meta-analysis from Wang et al.53 deter-
mined that there was no correlation between the clinical 
dose of dexmedetomidine and pediatric AEs, including 
bradycardia and hypotension. A model by Greenberg 
et  al. showed no difference in critically ill infants be-
tween the average concentration of dexmedetomidine 
and the predicted concentration in moments of hypo-
tension (0.42 ng/mL [0.28–0.56] vs 0.56 ng/mL [0.25–
0.77], respectively; p = 0.58).35 A confounding factor in 
these studies is the critical condition of the patients, 
which can cause hemodynamic alterations and changes 
in heart rate.5,35,41,53 An interesting study conducted by 
Lin et al. showed that in critically ill patients, those who 
were receiving dexmedetomidine were at a higher risk 
for delirium than those who were not (Table 2).45 This 
risk was considered additive with other factors, indicat-
ing that this adverse event occurs more frequently when 
patients have multiple risk factors, such as younger age, 
higher pain scores, or developmental delay.45 Contrarily, 
Takeuchi et al.'s46 group reported no delirium in 61 pa-
tients between 4 months and 6 years of age. Their de-
mographic included young patients as well as high pain 
scores (91% receiving fentanyl for postoperative pain) 
but did not include patients with developmental delay.46 
Delirium with dexmedetomidine appears inconsistently 
in pediatrics, and may or may not be correlated with dex-
medetomidine. The studies noted above show that dex-
medetomidine's cardiovascular and vasoactive effects 
appear consistently in pediatrics, but do not appear to 
be dose-dependent during continuous sedation. The de-
gree of hypotension and bradycardia may be dependent 
on genetic variability at the site of action, the ADRA2A, 
which is discussed in the next section.

Pharmacogenomics

PGx helps predict individual patients' response to tar-
get medications.54 When considering genes relevant to 
dexmedetomidine response, there are two main areas 

of focus: (1) Variation in genes involved in metabolism 
and (2) variation in the adrenergic receptor, which is 
dexmedetomidine's site of action. Dexmedetomidine is 
extensively metabolized by direct N-glucuronidation by 
UGT2B10 and 1A4 and, to a lesser degree, hydroxylation 
by CYP enzymes, including CYP2A6 and1A2.11,14,17–19

PGx has been incorporated into PopPK models of dex-
medetomidine. Ber et  al. incorporated PGx, PD and PK 
data into their PopPK model (Table 3).14 They found that 
the CYP1A2*1F (rs762551) allele presence was associated 
with ~1.5-fold higher clearance than wild-type (Table 4).14 
However, authors did not report associations between se-
dation scores and kinetics. The authors also noted that 
the identified covariates are of low clinical significance 
for dose adjustment, as they accounted for only ~5% over-
all variability. This variability may have been magnified 
by the heterogeneity of the studied population.14 James 
et  al. incorporated electronic health record data from a 
group of children under 2 years, post-cardiac surgery, into 
their PopPK model and estimated the pharmacokinetic ef-
fects of several genomic variants for UGT1A4, UGT2B10, 
CYP2A6.36 In this large population, no genomic covariates 
were statistically significant (Table  4). UGT1A4 variants 
of any kind were expected to have 20% reduction in clear-
ance but did not appear to have a clinical effect according 
to the model.36 Notably, their model did not incorporate 
the CYP2A6 (rs835309), which was found to be a signifi-
cant covariate in an earlier study of 260 pediatric surgical 
patients by Guan et  al.55 This study found that patients 
with this allele had significantly lower dexmedetomidine 
Cp than wild-type (Tables 3 and 4).55 Further studies on 
this genomic mutation are needed to determine its clinical 
effect. Thus far, PopPK studies have not shown a correla-
tion between metabolic genomic variants and clinical out-
comes for dexmedetomidine. As noted above, UGT2B10 
has been determined to be a major contributor to the dex-
medetomidine metabolic pathway.17–19 There have been 
two clinical studies from James et  al. and Fang et  al. to 
date on the relationship between this enzyme and dexme-
detomidine pharmacology with no demonstrated associ-
ation between polymorphisms and PK/PD (Tables 3 and 
4).36,56 The data from James et  al.'s cohort was recently 
incorporated into a genome-wide association study by 
Shannon et al.57 Their study found that while about 35% 
of dexmedetomidine pediatric PK is impacted by pharma-
cogenomics, there is no significant correlation between 
dexmedetomidine clearance and any specific single poly-
morphism (SNP), including UGT2B10 (Tables 3 and 4).57

An alternative cause for variability in patient re-
sponse is genomic variance at the drug's target receptor; 
ADRA2A. Associations between ADRA2A polymorphisms 
and dexmedetomidine response have been studied in 
five different distinct homogenous adult populations 
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(Table 3).20–58,59 Specifically, in Yaar et al.'s study on adult 
patients undergoing cardiac surgery, and a separate study 
from Ding et  al. on those undergoing hand surgery, pa-
tients with the ADRA2A gene polymorphism (rs1800544) 
had lower sedation scores (indicating higher amounts of 
sedation) than wild-type (Table  4).20,59 In contrast, Zhu 
et  al.'s 2019 study of surgical patients showed no differ-
ence in sedation scores between groups, but showed a sig-
nificantly reduced heart rate in the ADRA2A (rs1800544) 
cohort (Tables 3 and 4).58 These studies provide contradic-
tory results, with reduced sedation (i.e. reduced efficacy) 
in one cohort, but increased bradycardia (potentially in-
creased adrenergic effect and heightened AEs) in another. 
Importantly, the study from Zhu et al. did not elaborate 
on subject's concomitant medications that may have im-
pacted heart rate.58 Choi et al.'s study in an adult cohort 
with ADRA2A SNPs, including rs1800544, showed no 
such correlation with sedation, and did not report any 
data on heart rate (Tables 3 and 4).22 The link between the 
rs1800544 polymorphism and dexmedetomidine effect 
remains unclear. Other ADRA2A gene polymorphisms 
(rs1800035, rs201376588, rs775887911) were studied by 
Fu et al. in a cohort of women undergoing cesarean de-
livery.21 Patients carrying any of these variant alleles had 
reduced anesthetic and analgesic effect from dexmedeto-
midine during and after surgery, which was considered 
statistically and clinically significant (Tables 3 and 4).21 Of 
note, there were no cardiovascular or circulatory correla-
tions observed in the cohort.

A study by Fang et al. investigated the relationship be-
tween dexmedetomidine PD and polymorphisms of the 
GABRA1 and 2 receptors in addition to looking at ADRA2A 
receptor and metabolic enzyme polymorphisms.56 These 
alleles play a role in GABAergic neurotransmission; a 
pathway that alpha-2 agonists have been shown to in-
hibit.56,60 This study, conducted in females, found that 
carriers of the G allele of GABRA2 rs279847 had a much 
higher incidence of bradycardia than wild-type patients. 
These individuals may have reduced GABRA2 expression, 
and thus have increased parasympathetic activity down-
stream of the ADRA2A receptor.56,60 This study found no 
correlation between ADRA2A polymorphisms and phar-
macokinetic or pharmacodynamic alterations in patients 
(Tables 3 and 4).56

It is important to note that the cohorts in the above 
studies were not healthy volunteers and had a wide vari-
ety of factors impacting their PK and clinical status. These 
studies show varying effects of dexmedetomidine in pa-
tients with ADRA2A SNPs, but do not provide definite 
causation of AEs or altered sedation. Assessed as a whole, 
these trials indicate a potential, but weak correlation be-
tween ADRA2A PGx and clinical outcomes for adults re-
ceiving dexmedetomidine for procedural sedation.

Few pediatric studies have been conducted regarding 
the relationship between PGx and PD effects of dexme-
detomidine. Our group studied dexmedetomidine dosing 
in a PICU cohort and compared cumulative medication 
burden in patients with ADRA2A (rs1800544) polymor-
phisms.23 This study found there was no significant 
correlation between dexmedetomidine response and gen-
otype (Tables 3 and 4).23 While this study had a relatively 
low sample size (n = 40), and included critically ill pa-
tients with alterations to PK, it provided the first and only 
data on ADRA2A polymorphisms and dexmedetomidine 
response in pediatrics.23,24 Based on this study, there does 
not appear to be a correlation between ADRA2A variants 
in children and PD effect of dexmedetomidine.

DISCUSSION

Our systematic literature review summarizes informa-
tion on various pediatric cohorts, ranging from neonates 
to adolescents, relatively healthy surgical patients to 
critically ill, and includes studies specific to diseases and 
procedures, including liver transplant and cardiopulmo-
nary bypass, that affect pediatric patients. Due to low 
dexmedetomidine clearance in early infancy, neonates 
and younger infants may have reduced dexmedetomidine 
demand, independent of weight.15,32,33 However, provid-
ers should be cautioned against empirically under-dosing 
younger patients. As shown in both Greenberg et al. and 
Disma et  al.'s studies, some infants and children under 
two require high target plasma concentrations between 1 
and 2 ng/mL to achieve target sedation goals.25,35 Young 
children appear to display more varied PK than adoles-
cents, with children under 6 years old requiring a wider 
dosing range (0.2–1.4 μg/kg/h) than children of 6 years old 
and older (0.2–1.0 μg/kg/h).46 studies included in this re-
view include a significant number of covariates that were 
found to impact dexmedetomidine PK and PD in chil-
dren. The most common of these were patient size and 
age. A good resource for providers would be the Dutch 
Pediatric Formulary, which provides weight, age, and tar-
get plasma concentration-based dosing for patients older 
than 1 month of age.61 These dosing recommendations 
include procedural sedation and premedication, and pre-
vention of postoperative agitation/delirium.61 We believe 
our review adds to this body of knowledge by providing 
insight on continuous sedation in pediatrics. Based on 
the data collected, we recommend that providers start at 
lower doses (0.2–0.4 μg/kg/h) in infants and young chil-
dren, and titrate up based upon effect (sedation) and tol-
erance (absence of adverse effects).38,40,46 Children above 
3 years old have demonstrated a higher clearance rate for 
dexmedetomidine, and based on the studies above, it may 
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be safe to initiate these patients at 0.4 or even 0.5 μg/kg/h, 
titrating the dose according to the sedation goal.32,33,38

While genotype appears to play a role in the variabil-
ity of metabolism and PD effect of dexmedetomidine, the 
current data do not provide strong evidence for genotype-
guided dosing. For ADRA2A, there has only been one 
pediatric study conducted, which showed no significant 
effect of the polymorphic variants on sedation scores, as 
compared with adults.23 It is noteworthy that this study 
had robust polymorphic distribution, with 10 wild-type 
patients, 15 heterozygous, and 15 homozygous for the rs 
polymorphic allele rs1800544.23 While some adult studies 
have shown an impact of this and other ADRA2A poly-
morphisms on dexmedetomidine's effect,20,21,58,59 other 
studies have shown no such difference,22,56 indicating that 
dexmedetomidine's PD variability may have one or many 
different causes. In our systematic review, we have shown 
that pediatric patients undergoing continuous sedation 
do not have a tight correlation between dexmedetomi-
dine dose and sedation scores or adverse events,38,40,41,46 
implying that dose alterations do not significantly impact 
dexmedetomidine's adrenergic effect in this population. 
Additionally, while there have been some associations 
between CYP1A2 and 2A6 and dexmedetomidine phar-
macokinetics, no significant pharmacodynamic effects 
have been shown in studies involving the pediatric pop-
ulation.14,55 Based on the current evidence, metabolic 
polymorphisms should not be considered when dosing 
dexmedetomidine in pediatric patients.

When using dexmedetomidine for the prevention of 
agitation or delirium, providers should also be aware of 
the post-surgical delirium risk prediction model by Lin 
et  al.,45 and screen patients for additive covariates that 
may increase delirium risk when combined with dexme-
detomidine. Children undergoing surgery will also have 
an altered PK, and third spacing should be accounted for 
in patients undergoing cardiac bypass.37 These patients 
may need higher procedural doses of dexmedetomidine 
due to a larger Vd.43

Several studies have summarized the impact of proce-
dural dexmedetomidine on target organs.42–44 Pediatric 
postoperative data are mixed on dexmedetomidine's reno 
and cardioprotective properties. Jo et al.'s study design was 
similar to the larger cohort that Kim et  al. analyzed for 
dexmedetomidine-related AKI.43,44 Kim et al.'s 2020 study 
failed to demonstrate renal protection, indicating that dex-
medetomidine should not be given intraoperatively solely 
for AKI reduction.44 Cardiac results from Hassan et  al. 
and Kim et  al. are difficult to compare directly, as Kim 
et al.'s intervention did not include a postoperative dexme-
detomidine infusion, and their primary end point did not 
include cardiac outcomes.42,44 Unlike their study, Hassan 
et  al.'s trial was designed to identify cardiac outcomes, 

which may have led to small differences in study design 
and implementation.42 Their reduction of JET with dex-
medetomidine alone and dexmedetomidine combined 
with magnesium indicate that the inclusion of peri-
operative dexmedetomidine may be useful for prevention 
of JET.42 Kim et al's study, while not demonstrating JET 
reduction with dexmedetomidine, showed no increase in 
adverse event risk when dexmedetomidine is used periop-
eratively.44 Finally, this review presents updated data on 
the potential numeric reduction of dexmedetomidine on 
analgesic load.39,43,50 Although the compiled evidence of 
perioperative dexmedetomidine benefits is weak, it will 
likely be used more in the pediatric surgical population 
due to it safety profile. With its growing popularity, it is 
more important than ever to optimize dexmedetomidine 
dosing.

Our systematic review also covers specific groups of 
pediatric patients, including liver transplant and neo-
nates with HIE.32,34,41 Approximately, 551 pediatric pa-
tients per year undergo liver transplants in the United 
States.62 Since dexmedetomidine undergoes complete 
hepatic transformation, these patients will likely have an 
altered PK and PD response to dexmedetomidine.34,62 In 
these patients, it has been found that post-transplantation 
INR and sedation scores may be the best predictors of 
dexmedetomidine Cp and PK.34 This aligns with the FDA 
biopharmaceutics review, which recommends that dex-
medetomidine doses should be reduced in patients with 
hepatic failure.16 Providers should consider these covari-
ates, as they may guide dosing better than age and weight 
in this population.

HIE typically occurs within the first few days of life 
and is classified as an intrapartum-related hypoxic event, 
which causes 1 out of every 5 neonatal deaths globally.63 
HIE has a 25% mortality rate in the presence of therapeu-
tic hypothermia, the standard of care.63,64 McAdams et al. 
provides data on dexmedetomidine as an alternative to 
morphine to sedate neonates and prevent shivering.33 In 
a case study of seven neonates, reduced overall CL and in-
creased half-life were shown. Despite a small sample size, 
most patients showed adequate pain and shivering con-
trol in response to dexmedetomidine.32 Elliott et al.'s 2024 
cohort of 135 neonates validated these results, providing 
neonates with adequate comfort and sedation, and sig-
nificantly decreasing overall opioid exposure.41 Providers 
may consider dexmedetomidine for comfort, shivering re-
duction, and opioid exposure reduction in this population. 
From a PK perspective, it is important to note that these 
patients had reduced overall CL and longer half-life, indi-
cating that they may benefit from a lower dose. They also 
took more time to reach Cmax (12–24 h), which may have 
been due to ~5% drug loss via sorptive tubing.33 Based on 
study results, neonates with HIE may require a more rapid 
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titration or use of a loading dose to provide adequate com-
fort and reduce shivering.

CONCLUSIONS AND FUTURE 
STUDIES

Although PK and PD studies have increased our understand-
ing of dexmedetomidine dosing in the pediatric population, 
there remains a wide range of patient-to-patient variability 
in response, including hypotension and bradycardia. These 
adverse effects appear more pronounced in continuous 
sedation than during procedural sedation. While not all 
studies found significant reductions in analgesic demand, 
there appears to be a mild anti-analgesic effect produced by 
dexmedetomidine. Few studies have evaluated the PGx of 
dexmedotomidine. This review of PGx studies done thus far 
can be used to guide future genomic research on this drug. 
GABRA2 has only been studied in one adult population, 
and it would benefit the pediatric population to confirm 
the significance of its correlation with dexmedetomidine 
pharmacodynamics in the pediatric population. As the pri-
mary metabolizing enzyme of dexmedetomidine, UGT2B10 
should be a key target for future research before it is fully 
ruled out as a covariate. One avenue for investigation of 
dexmedetomidine pharmacogenomics and kinetics would 
be PBPK modeling. We found no PBPK models of dexme-
detomidine in our search, and this would provide a granular 
investigation into the physiologic breakdown of dexmedeto-
midine. For the general pediatric population, weight, age, 
and clinical status are the most reliable predictors of PK. 
Special populations and patients receiving procedural vs. 
continuous sedation may have different dexmedetomidine 
PK, and different demands for sedation and comfort. The 
goal is to eliminate uncertainty in dexmedetomidine dos-
ing, reduce the need for titration, and mitigate AEs. Further 
research, incorporating real-world evidence, PK modeling, 
and clinical studies, is needed to further guide dosing in this 
understudied and complex population.
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