# Regulation of Nitrogenase A and R Concentrations in *Rhodopseudomonas* capsulata by Glutamine Synthetase

# Duane C. YOCH

Department of Biology, University of South Carolina, Columbia, SC 29208, U.S.A.

# (Received 3 January 1980)

Nitrogen-starved purple non-sulphur bacteria have an active unregulated form of nitrogenase (nitrogenase A); however, the nitrogenase of a glutamine synthetase-negative mutant of *Rhodopseudomonas capsulata*, when nitrogen-starved, was predominantly inactive and required activation by  $Mn^{2+}$  and activating-factor protein. This regulatory form of nitrogenase has been called nitrogenase R. Treatment of wild-type cells (containing nitrogenase A) with methionine sulphoximine, an inhibitor of glutamine synthetase, converted the enzyme into nitrogenase R. Glutamine synthetase thus appears to control the intracellular concentrations of nitrogenase A and R and in this way regulates nitrogenase activity in the photosynthetic bacterium.

Nitrogenase in the phototrophs Rhodospirillum rubrum and Rhodopseudomonas capsulata exists in two enzymic forms (Carithers et al., 1979; Yoch, 1979a). Nitrogenase A, found only in N-starved cells, is identical with that of the other  $N_2$ -fixers and can be converted into a second low-molecularweight form, nitrogenase R, by the addition of either NH<sub>4</sub><sup>+</sup> or glutamate to an N-starved culture. Nitrogenase R (whose Fe protein is inactive) can be distinguished from nitrogenase A in vitro by its need for activation by an Mn<sup>2+</sup>-(and ATP)-dependent activating-factor protein (Ludden & Burris, 1976, 1978; Nordlund et al., 1977). The rapid conversion of nitrogenase A into nitrogenase R in response to  $N_2$ , amino acids and  $NH_4^+$  represents a new dimension in the regulation of nitrogenase activity (Carithers et al., 1979; Yoch, 1979a). Isolation of an R. capsulata glutamine auxotroph deficient in glutamine synthetase activity (Wall & Gest, 1979) provided an opportunity to determine if this enzyme had a role in nitrogenase A = nitrogenase R conversions. Evidence from work with this mutant, together with effects of methionine sulphoximine on wild-type cells, strongly suggests that glutamine synthetase is involved in converting nitrogenase A into nitrogenase R and therefore involved in regulating nitrogenase activity in these photosynthetic bacteria.

### **Materials and Methods**

### Organism and growth conditions

*Rhodopseudomonas capsulata* strain G29 (a glutamine auxotroph) and the wild-type strain B10

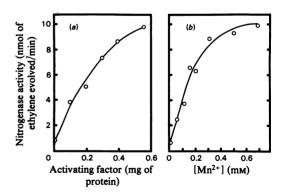
were kindly provided by Dr. Judy Wall, Department of Biochemistry, University of Missouri, Columbia, MO, U.S.A. Both R. capsulata and R. rubrum were grown photosynthetically in a medium described by Ormerod et al. (1961), which was modified by deleting the glutamate and replacing biotin with thiamin  $(300 \mu g/\text{litre})$  for growth of R. capsulata. Growth of the auxotroph (strain G29) further required that the NH<sub>4</sub>Cl be replaced with glutamine. Wild-type cells (which contain nitrogenase A) were obtained by growing them on low  $NH_4^+$  (2.5 mm) to ensure eventual N-starvation, which is identified by the vigorous photoevolution of H<sub>2</sub> from the culture. N-starvation of the auxotroph (strain G29) was achieved by growing it on 1.5 mm-glutamine. To obtain wild-type cells that contain nitrogenase R, glutamate (0.75 mm) was added to N-starved cultures, which could then be harvested at any time from 6 to 24 h later, and the nitrogenase activity was predominantly Mn<sup>2+</sup>-dependent (indicative of nitrogenase R). Similar results are obtained by adding  $NH_4^+$  to the culture.

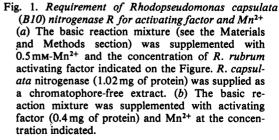
The glutamine auxotroph (strain G29) was induced to revert to prototrophy by replacing glutamine in the medium with  $NH_4^+$ , which allowed the naturally occurring revertants to grow. Although initial growth was slow, it increased on subsequent transfers; after three such transfers the prototroph-enriched culture was plated on  $NH_4^+$ -containing medium and several isolates were selected. One G29 revertant isolate (G29-R1), which grew well on  $NH_4^+$ , was selected and used for the nitrogenase experiments.

# Preparation of nitrogenase extracts and activating factor

Cells were harvested and disrupted by sonic oscillation by using the method previously described for R. rubrum (Yoch, 1979a). The nitrogenase-containing extracts were the supernatant fluid resulting from centrifugation for 10 min at 30000g (Table 1 and Fig. 2 below). An additional centrifugation for  $60 \min$  at 250000 g removed the chromatophores (and activating factor); this extract was used to determine the activating-factor requirement of R. capsulata nitrogenase (Fig. 1 below). Activating factor from R. rubrum was prepared as described by Ludden & Burris (1976). Chromatophores (30 ml) were washed once with 0.5 M-NaCl and the washings treated with poly(ethylene glycol) 4000. The protein precipitating from these washings between 10 and 30% (w/v) poly(ethylene glycol) was used as the activating-factor preparation.

#### Nitrogenase assays


Crude extracts containing either nitrogenase A or nitrogenase R were assayed for nitrogenase activity (with the acetylene technique) by methods previously described for R. rubrum (Yoch, 1979a). The basic nitrogenase reaction mixture contained, in a total volume of 1.5 ml: 50 mm-Hepes [4-(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid] buffer. pH7.4, 25 mm-phosphocreatine, 20 µg of creatine kinase, 15 mm-MgCl<sub>2</sub>, 2.9 mm-ATP, 8 mm-sodium dithionite (Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub>) (33 mM-Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub> was used in R. rubrum nitrogenase assays). This reaction mixture (non-activating) is complete for nitrogenase A; to assay for nitrogenase R (i.e., activating conditions) 0.5 mm-MnCl, and activating factor are also required. Previous work with R. rubrum (Carithers et al., 1979; Yoch, 1979a) showed that nitrogenase R can be distinguished from nitrogenase A in crude extracts (which contain chromatophores and therefore bound activating factor) by the absolute requirement of nitrogenase R for Mn<sup>2+</sup>. The percentage of nitrogenase A and nitrogenase R in any extract can be determined by assaying for nitrogenase in the absence (nitrogenase A) and presence (nitrogenase A plus nitrogenase R) of added Mn<sup>2+</sup>.


In the absence of added  $Mn^{2+}$ , the endogenous  $Mn^{2+}$  in the crude extract is probably insufficient to allow expression of any nitrogenase R. This assumption is based on the fact that the  $K_m$  for  $Mn^{2+}$  in the nitrogenase-R-activation process is 0.2 mm (Yoch, 1979*a*), and crude extracts used here contain less than one-tenth this concentration of  $Mn^{2+}$ .

### Results

Previous kinetic data suggested that the nitrogenase of R. capsulata (strain B10) was similar to that of *R. rubrum*, because  $Mn^{2+}$  greatly stimulated the nitrogenase obtained from cells grown on glutamate (Yoch, 1979*a*). The presence of nitrogenase R in *R. capsulata* is confirmed here by showing its requirement for activating factor and  $Mn^{2+}$ . The nitrogenase activity with saturating amounts of activating factor prepared from *R. rubrum* is shown in Fig. 1. The nitrogenase activity is approximately twice that attained with endogenous (chromatophore-bound) activating factor. The  $Mn^{2+}$ -dependence of this system is shown in Fig. 1(*b*).

To determine if active glutamine synthetase was essential for the control of intracellular amounts of nitrogenase A and nitrogenase R, as suggested from previous observations of R. rubrum (Yoch, 1979b), a glutamine synthetase-negative mutant of R. capsulata (strain G29) was cultured photosynthetically on low concentrations of glutamine and allowed to reach a state of N-starvation. Under these conditions the wild-type R. capsulata and R. rubrum would produce almost 100% nitrogenase A. As Table 1 shows, the nitrogenase of the R. capsulata glutamine auxotroph (G29), was predominantly (65%) in the R-form. When wild-type cells (strain B10 were grown on either glutamine or  $NH_4^+$ , N-starvation resulted in the production of a nitrogenase whose activity could not be enhanced by  $Mn^{2+}$  (i.e. nitrogenase A). This result indicates that glutamine itself played no part in the auxotroph's production of nitrogenase R under these conditions. A revertant of strain G29 (strain G29-R1) having





| Strain                                 | Nitrogen source<br>before<br>N starvation | Activating conditions | Non-activating conditions | Nitrogenase R<br>(% of total<br>nitrogenase) |
|----------------------------------------|-------------------------------------------|-----------------------|---------------------------|----------------------------------------------|
| R. capsulata G29 (glutamine auxotroph) | Glutamine                                 | 13.1                  | 4.5                       | 65.5                                         |
| R. capsulata B10 (wild-type)           | Glutamine                                 | 13.9                  | 13.7                      | 1.6                                          |
|                                        | NH₄+                                      | 13.5                  | 15.7                      | 0                                            |
| R. capsulata G29-R1 (revertant)        | Glutamine                                 | 9.0                   | 9.3                       | 0                                            |

Table 1. Characterization of nitrogenase from the R. capsulata glutamine synthetase-negative mutant (strain G29) The nitrogenase activity is expressed as nmol of ethylene/min per mg of protein; the initial velocity was determined by averaging the activity over a 20-min period. Assay methods are described in the Materials and Methods section.

normal glutamine synthetase activity was again identical with the wild-type in that it had no nitrogenase R activity under these conditions. Thus glutamine synthetase is implicated in controlling the concentrations of nitrogenase A and R in the purple non-sulphur bacteria.

Additional evidence that glutamine synthetase is involved in the control of nitrogenase A and nitrogenase R comes from experiments in which illuminated N-starved wild-type R. capsulata cultures ( $A_{660} \simeq 0.3$ ) were treated for 18h with methionine sulphoximine, an inhibitor of glutamine synthetase. The addition of 15 mm-methionine sulphoximine directly to the N-starved culture resulted in cells whose nitrogenase activity in extracts could be stimulated by the addition of Mn<sup>2+</sup> and R. rubrum activating factor (Fig. 2). Thus inhibition of glutamine synthetase activity by methionine sulphoximine results in the cells converting nitrogenase A into nitrogenase R. Control extracts derived from untreated N-starved cells showed nitrogenase kinetics (in the absence of  $Mn^{2+}$ ) indicative of nitrogenase A (Fig. 2). Similar results were obtained with R. rubrum (Yoch, 1979b).

Although nitrogenase A in these photosynthetic bacteria was converted into nitrogenase R by adding methionine sulphoximine to N-starved cultures, considerable variation was noted in the results. This variation ranged from observing no effect (i.e., Mn<sup>2+</sup> added to crude extracts had no stimulating effect on nitrogenase) to cases where activity in the presence of Mn<sup>2+</sup> was three times that in its absence. Neither the concentration of methionine sulphoximine used (5-15 mM) nor the time of exposure (0.5-24 h) added to the reproductibility of this process. The variability in the amount of nitrogenase R produced by methionine might be related to previous observations that inhibition of whole-cell nitrogenase activity by this inhibitor required an actively growing culture (Hillmer & Fahlbush, 1979). In the experiments reported here, N-starved and therefore non-growing cultures had, by necessity, to be used in order to have cells that contained nitrogenase A. The fact that N-starved cells are not growing may,

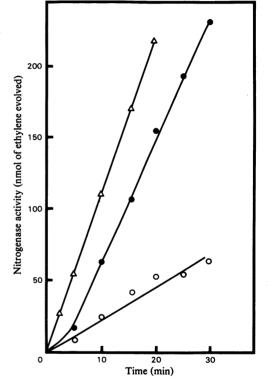



Fig. 2. Requirement of R. capsulata (B10) nitrogenase for Mn<sup>2+</sup> after treatment of the cells with methionine sulphoximine

The basic nitrogenase assay mixture is described in the Materials and Methods section. The crude nitrogenase extract from the methionine sulphoximine-treated cells was supplemented with activating factor (0.3 mg of protein) and assayed with ( $\bullet$ ) and without (O) Mn<sup>2+</sup>. The nitrogenase extract from the cells not treated with methionine sulphoximine (control) was assayed without Mn<sup>2+</sup> ( $\Delta$ ).

therefore, explain the variation observed in the concentration of nitrogenase R produced in response to this inhibitor. In conclusion, it appears that inhibition of glutamine synthetase *in vivo* causes (or permits) the conversion of a substantial amount of nitrogenase A into the R-form.

### Discussion

The inhibition in the purple non-sulphur bacteria of both glutamine synthetase (Weare & Shanmugam, 1976; Johnasson & Gest, 1977) and nitrogenase activity (Gest et al., 1950; Schick, 1971; Neilson & Nordlund, 1975; Hillmer & Gest, 1977) by NH<sub>4</sub><sup>+</sup> has suggested that a regulatory relationship might exist between these two enzymes. The strong correlation between NH4+-induced glutamine synthetase adenylylation (inactivation) and nitrogenase inhibition in R. capsulata and the reversal of this pattern when  $NH_4^+$  was depleted from the culture medium, prompted Hillmer & Fahlbush (1979) to postulate that the adenylylation state of glutamine synthetase acts as a signal in turning on and off the nitrogenase activity in response to  $NH_4^+$ . However, these workers also found that methionine sulphoximine inhibits nitrogenase activity, but unlike NH<sub>4</sub><sup>+</sup>, it has no effect on the adenylylation state of glutamine synthetase. The latter observation, although strongly suggesting that glutamine synthetase plays a role in inhibiting nitrogenase activity, indicates that it must occur by a mechanism not related to the adenylylation state of glutamine synthetase.

In the present paper, evidence is provided that shows that nitrogenase R (the form of nitrogenase that is normally produced in response to an NH<sub>4</sub><sup>+</sup> shock) is present 'constitutively' in *R. capsulata* mutants that have little or no glutamine synthetase activity. Furthermore, nitrogenase R arises from nitrogenase A in cells treated with methionine sulphoximine. These two lines of evidence argue strongly that glutamine synthetase is involved in the control of the nitrogenase A = nitrogenase Requilibrium.

The observation that cultural conditions such as the simultaneous starvation of cells for both N and C also resulted in the formation of nitrogenase R from nitrogenase A (D. C. Yoch, unpublished work) and this conversion, unlike that induced by  $NH_4^+$ , was not accomplished by a change in the adenylylation state of glutamine synthetase, further suggests that the correlation between nitrogenase activity and glutamine synthetase adenylylation state (Hillmer & Fahlbush, 1979) is coincidental. In conclusion, an active glutamine synthetase (the adenylylation state seems to be irrelevant) appears to control nitrogenase activity (nitrogenase  $A \Rightarrow$  nitrogenase R) in the purple non-sulphur bacteria. This enzyme may regulate nitrogenase activity directly or it may act by controlling the concentration of some essential metabolite involved in this process.

I thank Dr. Bert Ely for his helpful suggestions in preparing the manuscript. This work was supported in part by the College of Science and Mathematics, University of South Carolina, through a faculty research appointment and by a United States Public Health Services grant (no. AI-16040-01) from the National Institute of Allergy and Infectious Diseases.

# References

- Carithers, R. P., Yoch, D. C. & Arnon, D. I. (1979) J. Bacteriol. 137, 779-789
- Gest, H., Kamen, M. D. & Bregoff, H. M. (1950) J. Biol. Chem. 182, 153-170
- Hillmer, P. & Fahlbush, K. (1979) Arch. Microbiol. 122, 213-218
- Hillmer, P. & Gest, H. (1977) J. Bacteriol. 129, 732-739
- Johansson, B. C. & Gest, H. (1977) Eur. J. Biochem. 81, 365-371
- Ludden, P. W. & Burris, R. H. (1976) Science 194, 424-427
- Ludden, P. W. & Burris, R. H. (1978) Biochem. J. 175, 251-259
- Neilson, A. H. & Nordlund, S. (1975) J. Gen. Microbiol. 91, 53-62
- Nordlund, S., Eriksson, U. & Baltscheffsky, H. (1977) Biochim. Biophys. Acta 462, 187-195
- Ormerod, J. G., Ormerod, K. S. & Gest, H. (1961) Arch. Biochem. Biophys. 94, 449-463
- Schick, H. J. (1971) Arch. Microbiol. 75, 89-101
- Wall, J. D. & Gest, H. (1979) J. Bacteriol. 137, 1459-1463
- Weare, N. W. & Shanmugam, K. T. (1976) Arch. Microbiol. 110, 207–213
- Yoch, D. C. (1979a) J. Bacteriol. 140, 987-995
- Yoch, D. C. (1979b) Abstr. Annu. Meet. Am. Soc. Microbiol. p. 166