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A B S T R A C T

In recent decades, 3D bioprinting has garnered significant research attention due to its ability to manipulate 
biomaterials and cells to create complex structures precisely. However, due to technological and cost constraints, 
the clinical translation of 3D bioprinted products (BPPs) from bench to bedside has been hindered by challenges 
in terms of personalization of design and scaling up of production. Recently, the emerging applications of 
artificial intelligence (AI) technologies have significantly improved the performance of 3D bioprinting. However, 
the existing literature remains deficient in a methodological exploration of AI technologies’ potential to over-
come these challenges in advancing 3D bioprinting toward clinical application. This paper aims to present a 
systematic methodology for AI-driven 3D bioprinting, structured within the theoretical framework of Quality by 
Design (QbD). This paper commences by introducing the QbD theory into 3D bioprinting, followed by sum-
marizing the technology roadmap of AI integration in 3D bioprinting, including multi-scale and multi-modal 
sensing, data-driven design, and in-line process control. This paper further describes specific AI applications 
in 3D bioprinting’s key elements, including bioink formulation, model structure, printing process, and function 
regulation. Finally, the paper discusses current prospects and challenges associated with AI technologies to 
further advance the clinical translation of 3D bioprinting.

1. Introduction

3D bioprinting technology can be explored to fabricate well-defined 
multi-scale structures by precisely manipulating biomaterials and cells 
within three-dimensional space [1–3]. In the field of regenerative 
medicine, 3D bioprinted products (BPPs) can be used as patient-specific 
implants for regenerative repair of damaged organs/tissues or as 
patient-specific in vitro models for disease modeling and drug screening 
[4,5]. Despite recent progress in 3D bioprinting technology, clinical 
cases of BPPs applied in humans remain scarce. We identify several 
challenges at the R&D and production stages that hinder 3D bio-
printing’s clinical translation: 

(i) Personalization of design: The BPPs for clinical practice should 
be patient-specific [6], due to the immunity-, tissue-, structure-, 

and function-specific nature of repaired parts [7–9]. This neces-
sitates that the design of BPPs replicates the complexity and 
specificity of natural tissues across multi-materials and 
multi-scale structures. In this regard, optimized design ensuring 
effectiveness introduces an extensive range of design parameters, 
requiring significant trial and error. However, because of the 
large differences and small batches of BPPs, it is difficult to 
amortize the R&D costs, resulting in the contradiction of “effec-
tiveness-economy” [9].

(ii) Scaling up of production: Considering regulation, international 
regulatory frameworks for the commercialization of a medical 
device or an Advanced Therapeutic Medicinal Product (ATMP) 
require strict quality control to ensure that BPPs are manufac-
tured in a reproducible and contamination-free manner [10]. 
However, current BPPs are typically designed and produced by 
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skilled researchers in academic laboratories, which involves a 
number of complex manual operations. As a result, BPPs are 
small-scale, poorly repeatable, expensive, and difficult to regu-
late [6,9].

Therefore, to facilitate the clinical translation of BPPs, it is essential 
to enhance quality in both the R&D and production stages. The tradi-
tional Quality by Testing approach emphasizes post-production testing, 
which is impractical for the clinical application of BPPs, as changes in 
the clinical stage are costly and difficult [6]. Furthermore, Quality by 
Testing typically focuses on optimizing individual variables, making it 
inadequate for addressing the multi-material and multi-scale design 
requirements of BPPs. To address the above deficiencies, Quality by 
Design (QbD) is a promising solution for BPPs requiring effectiveness, 
economy, and regulatory compliance. This approach has been widely 
adopted by the U.S. FDA to enhance quality and efficiency, as well as to 
reduce costs and regulatory burdens, in fields related to 3D bioprinting 
such as biopharmaceuticals [11]. Compared to Quality by Testing, QbD 
posits that all problems affecting the quality of the final product are 
related to its design. Accordingly, in the beginning R&D stage, products 
should be designed correctly considering quality optimization. In the 
production stage, QbD uses process control to develop robust and reli-
able production procedures based on an in-depth understanding of 
products and processes. Currently, the introduction of QbD into 3D 
bioprinting is currently being discussed by the academic community, 
industry, and government [12–14].

In the field of 3D bioprinting, Artificial intelligence (AI), represented 
by machine learning (ML), has seen widespread application [15]. This 
revolutionary technology holds great potential in accelerating the 
deployment of QbD in 3D bioprinting. For example, deep learning can be 
used to automatically acquire critical quality attributes of BPPs from 
various sensor data, eliminating the need for extensive manual charac-
terizations and thereby reducing costs. Supervised learning can be used 
to model the complex mapping relationship between critical material 
attributes/process parameters and critical quality attributes of BPPs. 
Given the vast number of design parameters, this approach significantly 
reduces the need for trial-and-error experiments. Reinforcement 
learning can be used to construct control strategies of 3D bioprinting, 
adapting to dynamic working scenarios based on interactions with the 
environment to meet the needs of scaling-up production. To summarize, 
AI-driven QbD will accelerate the translation of 3D bioprinting from 
bench to bedside [4,16–18].

Although recent review papers have elaborated on the utilization of 
AI in 3D bioprinting [10,19–22], most take a workflow-centric 
approach, primarily summarizing the specific applications of AI in 
various steps of 3D bioprinting. In contrast, this paper adopts a clinical 
product perspective, leveraging the QbD theory from industrial pro-
duction to propose a systematic framework for applying AI to 3D bio-
printing. We begin by analyzing the fundamental methodologies and the 
technology roadmap of integrating AI with 3D bioprinting within the 
QbD framework, focusing on multi-scale and multi-modal sensing, 
data-driven design, and in-line process control. Next, we explore the 
current research status and application potential of AI across key ele-
ments of 3D bioprinting, including bioink formulation, model structure, 
printing process, and function regulation. Lastly, we propose future di-
rections and challenges for AI in 3D bioprinting. We believe our theo-
retical framework will further guide the application of AI in broader 
fields such as tissue engineering, biofabrication, and related domains. 
We hope this review enables AI scientists to more effectively engage 
with the 3D bioprinting field, while helping 3D bioprinting researchers 
deepen their understanding of AI technologies and adopt the latest 
advancements.

2. AI-driven QbD framework and roadmap for 3D bioprinting

3D bioprinting comprises four key elements: bioink formulation, 

model structure, printing process, and function regulation. Each element 
consists of multiple unit operations (UOs) [23–25] within which 
AI-driven QdD can be integrated, such as design of bioink materials, 
design of microstructures, control of printing processes, and character-
ization and assessment of functions (Fig. 1). This chapter aims to offer a 
comprehensive analysis framework outlining the primary application 
scenarios of AI technology in 3D bioprinting. Specific applications of AI 
technology within separate UOs will be detailed in Chapters 3, 4, 5, and 
6. Additionally, focusing on the application of AI technologies in 3D 
bioprinting, this paper has not included a detailed introduction to basic 
methods and concepts of AI technologies, which can be found in other 
references [26].

2.1. QbD theory for 3D bioprinting

Given the inherent complexity of original QbD theories, this section 
simplifies the relevant terms and concepts, with further details of QbD 
available in other specialized references [27–33]. Following this, inte-
grating 3D bioprinting, we provide a detailed explanation of the 
simplified QbD terminology: 

(i) Critical quality attributes (CQA): CQA refer to a physical, 
chemical, or biological property that reflects product quality 
[33]. In this regard, we propose two approaches: the 
forming-based and the function-based (Table 1). The 
forming-based CQA of BPPs are directly evaluated by their 
printability, which can be predicted by the rheological and 
gelation properties of bioinks. Printability is a critical category of 
CQA for mimicking functions of natural organs/tissues, as ge-
ometry profoundly determines mechanical and biological prop-
erties [34–36]. Further details on printability can be found in 
other comprehensive reviews [37]. The function-based CQA 
mainly include transport, mechanical, and biological properties. 
The transport properties are crucial for the survival and func-
tionalization of BPPs, which ensure the delivery of oxygen, nu-
trients, biological factors, and drugs, as well as the removal of 
metabolites [38]. Moreover, it is imperative to form effective 
vascular networks in large-scale thick tissues [39]. BPPs should 
possess mechanical responses matching those of natural tissues as 
well as suitable degradation and swelling properties for in vitro 
culture and in vivo implantation [40]. The biological properties 
of BPPs can be assessed at various levels, including tissue, cell, 
and gene expression. Further details on biological properties can 
be found in other comprehensive reviews [41].

(ii) Critical material attributes (CMA)/Critical process parame-
ters (CPP): CMA and CPP respectively refer to material attributes 
and process attributes that have a significant impact on product 
CQA [33]. For example, in the design of culture conditions, the 
compositions of the culture medium serve as CMA, and the cul-
ture process parameters serve as CPP. In the design of printing 
parameters, the bioink formulations serve as CMA, and the 
printing process parameters serve as CPP.

(iii) Design space: In QbD, CQA are determined by CMA and CPP. In 
this context, the design space describes the distribution of CQA 
under combinations of CMA/CPP within a certain range. In low- 
dimensional cases, the design space can be visualized in the form 
of phase diagrams or process windows, serving as a guide for 
designing CMA/CPP.

(iv) Control strategy: Control strategy refers to a planned set of 
controls over CMA/CPP, derived from product and process un-
derstanding, ensuring CQA of the production process [33].

(v) Risk Assessment: Risk assessment refers to a process of quality 
risk management that can identify the impact of individual CMA/ 
CPP on product CQA and the interactions among CMA/CPP [33]. 
This process enables a deeper understanding of the underlying 
process mechanisms.
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2.2. Roadmap of AI-driven QbD for 3D bioprinting

Within the QbD framework, AI technologies enable the faster, more 
economical, and more scalable design and production of BPPs with 
higher CQA. This helps address the challenges of personalized design 
and scaling-up production in 3D bioprinting, accelerating the translation 

from bench to bedside. Here, we discuss the roadmap of AI technology 
for 3D bioprinting from three dimensions: 

(i) Multi-scale and multi-modal sensing: The structural and 
functional features across various scales are extracted by diverse 
sensors to rapidly and economically acquire CQA, CMA, and CPP.

Fig. 1. Roadmap of AI-driven QbD for 3D bioprinting, containing multi-scale and multi-modal sensing, data-driven design, and in-line process control, which can be 
used in four key elements, including bioink formation, model structure, printing process and function regulation.

Z. Zhang et al.                                                                                                                                                                                                                                   Bioactive Materials 45 (2025) 201–230 

203 



(ii) Data-driven design: The intricate relationship between CMA/ 
CPP and CQA is modeled through data to precisely determine the 
optimal design space.

(iii) In-line process control: The control procedures of process 
quality are then implemented through the established control 
strategy, which integrates AI technology in the former two 
dimensions.

In 3D bioprinting, each UO corresponds to the application of AI 
technology in one of the aforementioned three dimensions (Fig. 1). 
Thus, it is crucial to clarify the application scope of QbD-related terms. 
For the latter two dimensions, the corresponding UOs create products 
(such as cells, printed models, and BPPs), thus defining the application 
scope of QbD-related terms as the UOs themselves. For the first 
dimension, the corresponding UOs aim to determine the CQA, CMA, and 
CPP of products from other UOs, thus defining the application scope of 
QbD-related terms as their associated products.

2.2.1. Multi-scale and multi-modal sensing
In 3D bioprinting, each UO integrates various sensors to capture 

multi-modal data, facilitating the acquisition of multi-scale information 
crucial for personalized design and scaling-up production. The sensing 
process typically encompasses three sequential stages: (i) pre-sensing, 
involving pre-processing of the sensed object, such as tissue section 
preparation and staining; (ii) sensing, entailing the utilization of various 
sensors to measure specific attributes of the sensed object and gener-
ating corresponding sensor data, and (iii) post-sensing, involving pro-
cessing and analyzing the collected sensor data to derive quantitative 
sensing results, including CQA, CMA, and CPP. Traditional sensing 
methodologies exhibit deficiencies in precision, rapidity, economy, 
repeatability, safety, and scalability, thereby impeding the clinical 
translation of BPPs. We attribute these deficiencies primarily to the 
following three key factors: 

(i) “Scale-depth-precision” contradiction: Imaging, as the pri-
mary sensing methodology [42], can sense objects in 3D bio-
printing spanning scales from micrometers to centimeters [43]. 
Typically, larger objects necessitate greater imaging depth but 
exhibit lower resolution, and vice versa, hindering the extraction 
of detailed information of large-scale objects and 3D spatial in-
formation of small-scale objects (Fig. 2a).

(ii) Insufficient information abundance: Complex objects encom-
pass multiple attributes, yet single sensing modalities excel in 

detecting specific attributes only, resulting in difficulties in pre-
cisely sensing multiple attributes simultaneously and biased 
sensing results.

(iii) Low automation: Traditional sensing methodologies rely on 
skilled operators to perform tedious manual operations with 
professional equipment and reagents in the pre-sensing and post- 
sensing stages. This reliance results in poor economy and 
rapidity. Moreover, manual operations entail subjective errors, 
contamination risks, and scaling-up challenges, further impeding 
repeatability, safety, and scalability.

AI technology, particularly deep learning methodologies, presents 
viable solutions to the above challenges [41,44]. Based on input data 
from diverse sensors, specific feature extraction methods such as artifi-
cial neural networks (ANNs), convolutional neural networks (CNNs), 
recurrent neural networks (RNNs), and auto-encoders (AEs) are 
deployed to execute distinct AI tasks, including regression, classifica-
tion, segmentation, and generation. Consequently, during the 3D bio-
printing process, AI-driven sensing yields comprehensive results 
encompassing aspects such as the design and manufacturing of printed 
structures, as well as biochemical and morphological functions (Fig. 2b).

AI technology serves as a remedy for the contradiction of “scale- 
depth-precision,” enabling precise imaging of objects across various 
scales. In the realm of large-scale objects, as encountered in medical 
imaging modalities such as computed tomography (CT) and magnetic 
resonance imaging (MRI), AI-based super-resolution and denoising can 
enhance image resolution [45]. Super-resolution enhances overall 
image clarity, whereas denoising mitigates artifacts induced by patients’ 
motion. Conversely, in the realm of small-scale objects, AI technology 
facilitates the extraction of 3D spatial information. Notably, studies have 
demonstrated the efficacy of AI-based automatic segmentation and 3D 
reconstruction in elucidating the spatial structure of minute tissues from 
serial sections [46], as well as the spatial distribution of the nucleus from 
confocal laser scanning microscopy (CLSM) images [47].

AI technology has the capacity to significantly augment information 
abundance and achieve precise and robust sensing of complex objects. 
Multi-modal machine learning (MML) stands as a prime example, inte-
grating attribute information gathered from diverse sensors to markedly 
enhance the sensing precision of complex objects. Numerous studies 
have explored the application of MML across fields pertinent to 3D 
bioprinting. Examples include the segmentation of soft tissue sarcomas 
utilizing four types of medical images including CT, T1 MRI, T2 MRI, 
and Positron Emission Tomography (PET) [48], virtual staining of tissue 
sections through non-linear multi-modal imaging (NLM) [49], and 
monitoring of the printing process leveraging three types of sensor data 
(layerwise electro-optical, acoustic, and multispectral), alongside 
off-line process parameters [50].

AI technology can extract complex features and recognize complex 
patterns to reduce and replace manual operations. On the one hand, AI 
technology can emulate humans’ sensing patterns, replacing humans in 
repetitive and labor-intensive tasks automatically, such as segmenting 
medical images [44] and assessing the matching degree of CMA/CPP 
during the printing process. On the other hand, AI technology can 
recognize patterns that are challenging for humans to learn from phys-
ical phenomena, thereby simplifying the sensing process and manual 
operations and minimizing reliance on expensive equipment and re-
agents. For instance, virtual staining technology [51–53] can compre-
hend the transformation patterns between different stained images, thus 
eliminating the need for multiple dyeing operations. The “digital 
rheometer twins” can derive rheological constitutive models from 
rheological data, reducing the dependence on rheometers [54]. In 
essence, the replacement and reduction of manual operations by AI 
technology serve to mitigate subjective errors, contamination risks, and 
costs while simultaneously enhancing repeatability, safety, and econ-
omy. Moreover, automatic sensing processes contribute to enhanced 
rapidity and scalability.

Table 1 
Examples of CQA in 3D bioprinting.

Approach Examples of CQA

Forming- 
based

Printability Extrudability, filament formation, shape 
fidelity

Rheological 
properties

Shear-thinning, viscoelasticity, yield stress, 
constitutive model

Gelation 
properties

Gelation time, gel fraction

Function- 
based

Transport 
properties

Effective mass diffusion rate, vascularization

Mechanical 
properties

Mechanical response: Young’s modulus, 
response curve, constitutive model, strength
Degradation properties: degradation rate
Swelling properties: swelling rate

Function- 
based

Biological 
properties [41]

Gene expression: cell differentiation and 
phenotype, cell health, genomic stability
Protein expression: matrix production, cell 
differentiation and phenotype, cell health
Cell metabolism: nutrient and waste analysis, 
cell signaling, cellular products, cell health
Cell properties: viability, morphology, 
motility, confluence, cell number, cell health
Tissue properties: morphology, function
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2.2.2. Data-driven design
The core principle of QbD asserts that CQA is contingent upon CMA/ 

CPP. Consequently, the procedural framework for personalized design 
within QbD can be succinctly outlined as follows: (i) modeling of the 
potential mapping relationship between CMA/CPP and CQA, (ii) 
determination of the optimal design space of CMA/CPP, taking 
enhancement of CQA as the primary objective, and (iii) risk assessment 
to scrutinize the effect of each CMA/CPP on CQA. In the field of 3D 

bioprinting, personalized design involves various objects, including 
culture conditions for sampled cells, bioink materials, microstructures of 
printed models, printing parameters, and maturation conditions of BPPs 
(Fig. 1). Notably, in tackling modeling problems, the dilemma of “pre-
cision-cost” frequently arises [55]. As model precision (or problem 
complexity) escalates, a corresponding increase in associated costs (such 
as financial investment, time, and human resources) is observed, while 
the marginal precision incrementally diminishes (Fig. 3a).

Fig. 2. Multi-scale and multi-modal sensing. (a) A “scale-depth-precision” contradiction of imaging technologies. (b) A pipeline of AI-driven multi-modal sensing 
methodologies to obtain comprehensive results.
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Presently, four modeling paradigms have emerged, including the 
design-of-experiment (DoE), theoretical, computational, and data- 
driven paradigms (Fig. 3a) [26,56]. Although widely applicable, the 
DoE paradigm requires a substantial number of manual experiments to 
traverse the parameter space [57], resulting in labor-intensive pro-
cesses. Additionally, the conventional response surface methodology for 
DoE has a limited ability to model complex relationships. To augment 
precision and mitigate the necessity for manual experiments, theoretical 
and computational paradigms have been developed. Both paradigms 
construct mathematical models based on domain knowledge (such as 
physics and biology) to expound process mechanisms, offering a “white 
box” effect [56]. The disparity lies in the approach. The theoretical 
paradigm entails the manual construction of theoretical formulas, 
providing prediction with faster speed but lower precision. In contrast, 
the computational paradigm relies on numerical simulations, such as 
finite element analysis (FEA) and computational fluid dynamics (CFD). 
This paradigm necessitates substantial computational resources, 
providing prediction with higher precision but slower speed. With ad-
vancements in computational precision, numerical simulations are 
progressively superseding manual experiments.

The aforementioned three paradigms have achieved certain 

advancements in the field of 3D bioprinting [58–62]. However, as 3D 
bioprinting advances towards clinical translation, especially in con-
structing substitutes of natural tissues/organs, the demand for higher 
modeling precision continues to increase. We identify three key di-
mensions that increasingly highlight the inherent complexity of 3D 
bioprinting: 

(i) Multi-domain fusion: 3D bioprinting necessitates the integra-
tion of knowledge spanning diverse domains, including biology, 
machinery, materials, and medicine. Constructing mathematical 
models in the theoretical and computational paradigms has 
proven challenging due to this multi-disciplinary nature.

(ii) Multi-scale coexistence: Within the realm of 3D bioprinting, 
factors such as CQA, CMA, and CPP operate across multiple 
scales. These scales encompass nano scale (such as molecular 
fragments of bioink materials), micro scale (such as microstruc-
tures of printed models), and macro scale (such as mechanical 
properties of BPPs). The theoretical and computational para-
digms encounter difficulties in addressing these multi-scale 
modeling problems due to a dearth of constitutive models and 
the burden of excessive computational loads [63].

Fig. 3. Data-driven design. (a) A “precision-cost” landscape of four modeling paradigms. (b) A typical workflow of ML-based data-driven paradigm. (c) Three main 
ML tasks within data-driven design.

Z. Zhang et al.                                                                                                                                                                                                                                   Bioactive Materials 45 (2025) 201–230 

206 



(iii) Multi-property coupling: For certain design objects within 3D 
bioprinting, such as bioink materials and microstructures of 
printed models, conflicting property requirements arise for 
design parameters. Examples include printability versus 
biocompatibility necessitating considerations of viscosity [40] 
and stiffness versus transport properties necessitating consider-
ations of porosity [64]. Furthermore, certain CMA/CPP exhibit 
coupling, such as extrusion speed versus printing speed. These 
complexities yield a narrow feasible design space and impose 
stringent requirements on modeling precision.

Given the complexity of these challenges and the cost constraints, 
traditional paradigms face bottlenecks and are transitioning toward the 
data-driven paradigm based on machine learning (ML).

The ML-based data-driven paradigm typically employs supervised 
learning approaches, which can be succinctly defined as constructing a 
generalizable mapping model between input fingerprints and output 
properties (Fig. 3b). It primarily includes three key steps [57]: 

(i) Fingerprinting: The fingerprints (serving as CMA/CPP) and 
properties (serving as CQA) of samples are digitally represented, 
and a structured dataset is constructed. Fingerprinting typically 
requires domain knowledge and can be conducted manually or 
automatically (see Section 2.2.1 for details of automatic finger-
printing). Depending on the research objectives, fingerprints can 
be defined at various scales. Generally, smaller-scale fingerprints 
entail higher costs for the construction of datasets and ML 
models, but provide deeper insights, and vice versa.

(ii) Training: The mapping model between input fingerprints and 
output properties is established, predominantly through super-
vised learning methods such as support vector machines (SVMs), 
random forests (RFs), k-nearest neighbors (KNNs), and artificial 
neural networks (ANNs).

(iii) Prediction: Following training, the ML model can output the 
corresponding predicted property for any input fingerprints.

In the context of personalized design within QbD, we summarize 
three primary tasks for machine learning (Fig. 3c): 

(i) Forward design: In scenarios where the parameter space is low- 
dimensional, a forward design approach is effective, where the 
candidate CMA/CPP serve as inputs and the predicted CQA serve 
as outputs. Following training, forward design (or fingerprint- 
property) ML models using fingerprints as inputs and properties 
as outputs, can predict the property distribution of the design 
parameter space through traversal, generating visual represen-
tations such as process phase diagrams (or windows) [65]. 
Through visualization, suitable design space meeting property 
requirements can be determined.

(ii) Inverse design [57]: Conversely, in scenarios where the 
parameter space is high-dimensional, an inverse design approach 
is preferable where the expected CQA serve as inputs and the 
recommended CMA/CPP serve as outputs. To address the chal-
lenge of multi-property coupling in 3D bioprinting, Pareto 
optimal combinations of design parameters can be identified 
using multi-objective optimization techniques [66]. To this end, 
two solutions are proposed: i) forward-design models are initially 
trained, followed by the utilization of heuristic intelligent algo-
rithms such as genetic algorithms to search for the optimal design 
parameters; ii) inverse design (or property-fingerprint) ML 
models using properties as inputs and fingerprints as outputs, are 
directly designed and trained, such as generative ML models 
based on AEs [67,68] and generative adversarial networks 
(GANs) [69].

(iii) Risk assessment: Unlike the “black-box” modeling of traditional 
machine learning approaches, interpretable machine learning 

approaches offer a “white-box” effect. Specifically, following 
training, interpretable ML models use explainers to quantify the 
impact of each fingerprint on the property, as well as the in-
teractions between fingerprints [70,71]. This interpretability fa-
cilitates the risk assessment of CMA/CPP on CQA, enabling a 
deeper analysis of process mechanisms, such as the printing 
process and function regulation [72].

2.2.3. In-line process control
To ensure the effectiveness and economy of BPPs for clinical appli-

cation, two primary considerations govern the production process [6]. 
The first is quality, requiring the production process to consistently meet 
regulatory requirements, to ensure safety and effectiveness. The second 
is scalability, requiring an easily scalable production process to enable 
large-scale production at an affordable cost.

In 3D bioprinting, continuous production is involved in two key UOs: 
control of culture processes and control of printing processes. Due to 
interference factors such as the process drift and model error, the CQA 
may deviate from expectations in the actual production process, if the 
optimal CMA/CPP derived from off-line design is continuously adopted. 
This error probability is particularly heightened for organ-scale BPPs, 
due to the large number of required cells and the extended printing 
cycle. Additionally, long-term, low-latency, high-precision monitoring 
and calibration of the production process pose challenges for human 
intervention. Manual operations relying on experience, struggle to scale 
rapidly, posing difficulties and expenses in increasing production 
capacity.

To address the above problems, based on methodologies in Section 
2.2.1 and 2.2.2, we propose a general AI-based in-line process control 
pipeline (Fig. 4a). To maintain the CQA at a high level, the CQA, CMA 
and CPP are monitored in situ by multiple sensors, and the CMA/CPP is 
corrected in-line according to the reasonable control strategy. We 
identify four primary categories of AI models involved in the outlined 
processes: 

(i) CMA/CPP design model: Upon the operator inputting the 
desired CQA, the AI model outputs the optimal CMA/CPP setting 
[73].

(ii) CMA/CPP prediction model: Various sensors capture in-line 
sensor data throughout the production process, based on which 
the AI model assesses the matching degree of current CMA/CPP 
(such as whether extrusion speed is too fast or slow) that will be 
transmitted to the control strategy [74].

(iii) CQA/Process prediction model: Utilizing the in-line data (such 
as images and numerical data) and off-line data (or CMA/CPP), 
the AI model predicts CQA or process evolution, which will be 
transmitted to the control strategy. Following visualizing, the 
predicted CQA facilitate defect detection and quality monitoring, 
supporting for the operator’ decision-making. The predicted 
process evolution offers the operator early warning of errors and 
a deeper understanding of process mechanisms.

(iv) Control Strategy: The control strategy leverages input infor-
mation to issue CMA/CPP correction commands, achieving 
closed-loop correction of the production process. Traditional 
control strategies rely on rule-based human experience, lacking 
the ability to learn, which can only address specific and static 
scenarios [74]. By contrast, the reinforcement learning-based 
control strategy can learn from interactions with the environ-
ment to adapt to complex and dynamic scenarios [75]. The 
reinforcement learning-based control strategy sets the reward 
value based on CQA, and takes information such as the matching 
degree of CMA/CPP and predicted CQA as inputs (or environ-
ment state) as well as the correction commands of CMA/CPP as 
outputs (or action). The reinforcement learning model is trained 
according to the updated environment state, and will be adopted 
as the control strategy when the reward value reaches highest. 
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The main algorithms of reinforcement learning include deep 
q-network (DQN), proximal policy optimization (PPO), and 
deterministic policy gradient (DPG).

In the field of industrial production, a rapidly emerging research 
focus is digital twins, which refers to a virtual replica of a physical 
product or process [6]. This trend has also extended to the field of 3D 
bioprinting, where digital twin-driven 3D bioprinting is becoming a 
promising direction [76]. By leveraging the AI models described above, 
we can establish digital twins for the 3D bioprinting process. Leveraging 
the aforementioned AI models, the process principles of 3D bioprinting 
in the digital world of computers can be established, to simulate 3D 
bioprinting in the real world. Through this approach, we can construct a 
digital twin of 3D bioprinting, which can operate off-line in the digital 
world and enable in-line operation through real-time data exchange 
between the real and digital worlds.

In the design stage, off-line digital twin models enable the rapid 

execution of numerous virtual experiments in the digital world. Conse-
quently, the design and optimization of CMA/CPP can be accomplished 
with fewer real experiments, thereby mitigating costs and risks. In the 
production phase, in-line digital twin models are linked with the real 
production process through monitored data and control commands, 
aiming to enhance production efficiency and quality (Fig. 4b). By 
simulating the process evolution and predicting its outcomes in the 
digital world, a comprehensive understanding is fostered, facilitating 
continuous process improvement.

3. AI-driven approaches for bioink formulation

As the primary element of 3D bioprinting, bioinks serve as a crucial 
foundation for ensuring the immune, tissue, and function specificity of 
BPPs. Typically, bioinks contain cells and biomaterials. For cells, the 
preparation process typically involves: first characterizing cells derived 
from the patient or shared cell bank and screening suitable ones, as 

Fig. 4. In-line process control. (a) An AI-based in-line process control pipeline, containing four categories of AI models. (b) An illustration of in-line digital twin 
models for 3D bioprinting, linked to the real production process through monitored data and control commands. Copyright 2020, AAAS.
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described in Section 3.1; then performing differentiation/proliferation 
to obtain high-quality cells, as described in Sections 3.2 and 3.3. For 
bioink materials, the formulations are designed aimed at specific prop-
erties, as described in Section 3.4. AI technology can be applied to each 
UO in these processes to accelerate the design and production of 
personalized bioinks for BPPs (Fig. 5a).

3.1. Characterization of sampled cells

Considering the diverse applications of BPPs, selecting appropriate 
cell sources is a critical factor. Given the inherent immuno-specificity of 
BPPs, autologous cells derived from the patient are the ideal option. This 
approach is feasible when fewer cells are required, such as for disease 
modeling and drug screening. However, for constructing organ-scale in 
vivo implants, the need for a large number of cells makes this approach 
less viable. With the continuous advancements in stem cell technology, 
the issue of immune rejection is being addressed [9]. Several countries 
and regions have established phenotype-specific stem cell banks [77,

78], enabling the rapid provision of large quantities of appropriate cells 
for patients with varying phenotypes. Allogeneic stem cells obtained 
through these methods could serve as a new source of cells for con-
structing organ-scale in vivo implants. Upon selecting the appropriate 
cell sources, rigorous characterization and screening procedures should 
be conducted to ensure cell viability and compliance with differentiation 
and proliferation requirements.

However, conventional destructive characterization methods, such 
as tissue section preparation and staining, pose numerous challenges in 
the scaling-up production of cells. Characterized cells often face diffi-
culty undergoing subsequent differentiation, proliferation and other 
characterizations, which leads to wasting the limited amount of sampled 
cells and affecting the production efficiency of cells. Furthermore, the 
extended characterization cycle, spanning from several days to weeks, 
significantly delays clinical treatment and poses challenges for real-time 
monitoring of the production process. Additionally, the high cost of 
specialized equipment and reagents utilized in the characterization 
process, coupled with labor-intensive and time-consuming manual 

Fig. 5. AI-driven approaches for bioink formulation. (a) A pipeline of personalized design of bioinks. (b) Experimental results of virtual staining for salivary gland 
tissue based on adversarial learning. Copyright 2021, Nature Publishing Group. (c) A workflow of real time monitoring and regulation of PSCs’ differentiation 
process, using multiple AI algorithms. Copyright 2023, Nature Publishing Group. (d) Prediction results of “digital rheometer twins” on rheology of hydrogels. 
Copyright 2022, PNAS. (e) Risk assessment and mechanism analysis of bioink materials using interpretable ML models. Copyright 2022, Wiley. (f) A general 
workflow for the design of self-assembling peptide using HydrogelFinder-GPT. Copyright 2024, Wiley.
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operations, exacerbates these challenges.
AI-based virtual staining technology offers a solution, enabling non- 

destructive and rapid characterization of sampled cells [52]. This 
technology has found application across various organs, such as the liver 
[79–81], kidney [82–84], stomach [85], and lung [86]. Two types of 
tasks can be implemented by supervised learning (using paired images 
for training) or unsupervised learning methods (using unpaired images 
for training): (i) generating stained images from the raw images of un-
stained samples, thus obviating cell-consuming staining procedures 
[87–89], and (ii) generating diverse and complex staining images from 
basic staining images, facilitating the characterization of multiple 
properties through single staining processes [90,91]. For instance, Philip 
O. Scumpia and Aydogan Ozcan’s groups [92] have integrated the 
aforementioned virtual staining techniques to facilitate the rapid and 
precise acquisition of multi-modal virtual histology of skin through Al 
models based on adversarial learning (Fig. 5b). These methods mitigate 
cell loss, expedite the characterization process, and exhibit significant 
potential for application in 3D bioprinting.

However, considering the deployment of virtual staining technolo-
gies in 3D bioprinting, there are still significant limitations in dataset 
construction and model evaluation. Regarding datasets, current datasets 
for virtual staining are primarily focused on pathological/tissue sec-
tions, which are insufficient to meet the tailored requirements of 3D 
bioprinting. For example, the absence of staining data for stem cells and 
the inability of sectioning methods to provide non-destructive charac-
terization of cell states present significant challenges. Regarding model 
evaluation, existing evaluation metrics to verify the effectiveness of AI 
models for virtual staining are mostly based on custom loss functions 
[92], lacking standardization and generalizability. Considering the 
safety and regulatory requirements for clinical applications, there is an 
urgent need to establish a standardized and comprehensive evaluation 
system to quantitatively assess model performance.

3.2. Design of culture conditions

The inter-patient variation of autologous cells significantly surpasses 
the batch-to-batch variation observed in mature cell lines for laboratory 
use. Consequently, ensuring cell quality (serving as CQA) necessitates 
the personalized design of patient-specific media (serving as CMA) and 
culture process parameters (serving as CPP) [14,93]. Given the intricate 
composition of the medium, such as carbon sources, amino acids, vita-
mins and growth factors, which leads to the expansive parameter space, 
the DoE paradigm encounters challenges [94], whereas the ML-based 
data-driven paradigm offers substantial advantages [95]. Currently, 
studies have utilized ML methods to model mapping relationships be-
tween media composition [96]/culture process parameters [97] (such as 
the temperature and duration) and cell quality (such as viability, cell 
density, and metabolites), accelerating the design of culture conditions. 
For instance, Dong-Yup Lee’s group has utilized the principal compo-
nent analysis (PCA) algorithm to screen and optimize the culture me-
dium components for Chinese hamster ovary cells, resulting in a 30–40 
% improvement in viable cell density during the early growth phase 
[98].

However, the aforementioned methods necessitate the construction 
of independent datasets corresponding to specific patients, which proves 
impractical for the clinical application of 3D bioprinting. The limited 
quantity of cells sampled from patients hinders high-throughput dataset 
generation. Meanwhile, since the time-intensive nature of individual 
culture experiments (usually taking several days), it’s also unfeasible to 
construct datasets in a low-throughput manner, failing to meet clinical 
urgency. To address the aforementioned issue, a promising solution is to 
develop patient-universal ML models untied to specific patients, using 
electronic health records (EHRs) containing characteristics of the pa-
tients themselves as inputs. Trained by a large dataset of patients’ EHRs, 
the ML model can quickly output personalized culture conditions when 
new patients’ EHRs are input, eliminating the need for patient-specific 

cell experiments. This paradigm has already been widely applied in 
clinical diagnosis and treatment [99].

3.3. Control of culture processes

Due to factors such as process drift and model error, deviations in cell 
quality (serving as CQA) may arise during the actual culture process, if 
the optimal culture conditions (serving as CMA/CPP) derived from off- 
line design are continuously employed. Hence, implementing in situ 
monitoring and in-line correction becomes imperative for maintaining 
cell quality [14,42]. Deep learning-based label-free detection technol-
ogy, in the form of CQA prediction models, serves to sense cell quality 
throughout the culture process, both in-line and non-destructively. This 
technology operates through two avenues: (i) morphological informa-
tion, including cell types and cell status, which can be extracted through 
segmentation of cell images such as cell nucleus, single cells, and cell 
clusters [100–104]; and (ii) non-morphological information, including 
the genomic, proteomic, and metabolic [105–110], which can also be 
gleaned through cell images.

Moreover, the obtained in-line data is input into the CMA/CPP pre-
diction model, offering a real-time assessment of the congruence be-
tween ongoing culture conditions and desired outcomes, which will be 
subsequently fed back to the control strategy for in-line correction. For 
instance, Yang Zhao’s group [111] has employed AI algorithms to 
intervene in the differentiation process of pluripotent stem cells (PSCs) 
into cardiomyocytes (CMs). They optimized the initial state of PSC 
colonies and applied real-time, non-destructive characterization and 
regional purification of cells during the culture process. As a result, they 
significantly improved the efficiency of CM induction, increasing the 
successful differentiation rate from 63 % to 94.7 % (Fig. 5c).

Furthermore, inputting in-line data into a process prediction model 
can forecast the future status of cell culture, enabling proactive inter-
vention to mitigate risks. Notably, Ming-Dar Tsai’s group [112] has 
employed the RNN algorithm to predict the future status of cell colonies 
during the reprogramming process of human induced pluripotent stem 
cells (hiPSCs) based on time-lapse bright-field microscopy images.

3.4. Design of bioink materials

Owing to the tissue- and function-specific nature of the repaired part 
[113], personalized design for bioink materials is necessary to fulfill 
specific properties (or CQA) [114–118]. Typically, this entails signifi-
cant domain expertise and extensive trial and error, which are both 
time-consuming and expensive. However, ML methods offer avenues for 
improvement in two key aspects: (i) reduction of time and cost associ-
ated with property characterization for high-throughput screening of 
bioink materials, and (ii) modeling the intricate mapping relationship 
between the fingerprints and properties of bioink materials, thereby 
enabling the property prediction and expediting the design process.

ML-based property characterization of bioink materials: Rheo-
logical properties are paramount in characterizing bioink materials, yet 
traditional characterization methods relying on rheometers suffer from 
high cost and limited throughput. These challenges can be addressed 
through ML-based characterization methods. For instance, Min Zhang’s 
group [119] has used characterization data from near-infrared (NIR) 
spectroscopy and low-field nuclear magnetic resonance (LF-NMR) as 
inputs of ML models, such as CNN, SVM, long short-term memory 
(LSTM), and Transformer, to predict the rheological characteristics of 
hydrogel inks. Blake N. Johnson’s group [120] has devised a measure-
ment approach utilizing robots and ML models, enabling 
high-throughput and cost-effective determination of gelation status. 
These approaches have offered promising solutions for rapid and 
high-throughput characterization of rheological properties. Addition-
ally, Safa Jamali’s group [54,121] and Gareth H. McKinley’s group 
[122] have employed ML methods, specifically based on 
physics-informed neural networks (PINNs), to develop precise 
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rheological constitutive models of hydrogels. Termed as “digital 
rheometer twins”, this approach can accurately predict the complete 
rheological behavior of hydrogels with minimal experiments (Fig. 5d), 
offering a potential alternative to physical rheometers and markedly 
reducing characterization-related time and costs. Furthermore, the 
rheological constitutive model potentially contributes to a deeper un-
derstanding of the rheological mechanism underlying bioink materials.

ML-based design of bioink materials: The properties of bioink 
materials encompass the form-based and function-based characteristics 
(Table 1). Bioink materials, represented by hydrogels, typically exhibit 
multi-scale structures [123]. Consequently, we attribute the construc-
tion of ML models to fingerprints at three scales: 

(i) Property-based scale: This approach focuses primarily on 
composition ratios and rheological properties. Adjusting 
composition ratios of bioink materials is straightforward for the 
operator and enables rapid modification of various properties. 
Studies have utilized ML models to predict a range of properties, 
including printability [65,124], rheological properties 
[124–126], gelation properties [127–129], mechanical response 
[130], degradation properties [131,132], swelling properties 
[133–136], and cell behavior [126,137,138], with composition 
ratios of bioink materials serving as inputs. Additionally, as the 
rheological properties of bioink materials serve as predictors of 
printability [37], studies employing ML models have explored the 
relationship between rheological properties and printability [72,
125], enhancing the understanding of the printing mechanism. 
For instance, Jürgen Groll’s group [72] has utilized interpretable 
ML methods to analyze the effect of rheological fingerprints on 
printability and the interaction between these fingerprints, 
further elucidating printing behavior. This offers an excellent 
reference utilizing ML models for risk assessment and mechanism 
analysis in QbD of 3D bioprinting (Fig. 5e). Besides, the me-
chanical response has also been used as inputs to predict degra-
dation properties [131] and cell behavior [138]. Furthermore, 
ML models have been employed to investigate the fabrication 
process of novel bioinks such as microgel particles [139].

In recent years, the emerging 4D bioprinting has opened an exciting 
avenue for engineering functional tissues and organs [140]. Through 
the application of specific external physicochemical stimuli, such as 
the temperature, pH, ion concentration, electric field, and magnetic 
field, these 4D BPPs can undergo controlled shape morphing, facil-
itating the attainment of specific biological functions. This requires 
bioink materials to exhibit stimuli-responsive swelling properties. In 
this context, there have been studies using ML models to build the 
mapping relationship between external physicochemical stimuli 
(such as the pH, temperature [141], time [142], and external force 
constraints [143]) and swelling properties of hydrogels (such as the 
swelling ratio and drug release ratio).

(ii) Structure-based scale: Analogous to the natural extracellular 
matrix (ECM) [144], bioink materials such as hydrogels possess 
microscale network structures. ML models have been utilized to 
predict various properties, including mechanical response 
[145–147], degradation properties [131], and swelling proper-
ties [148], with microstructures of bioink materials serving as 
inputs. For instance, Linxia Gu’s group [146] has integrated finite 
element analysis with CNN models, employing microstructural 
images as input to predict the mechanical properties of 
collagen-based biomaterials.

(iii) Molecule-based scale: Due to the challenges of conventional 
hydrogel-based bioinks in simultaneously meeting the re-
quirements for both printability and biocompatibility, various 
reinforcement strategies have emerged to improve bioinks’ 
properties [149]. For example, driven by supramolecular in-
teractions, such as hydrogen bonding, hydrophobic interactions, 

and electrostatic interactions, peptides can self-assemble to form 
supramolecular hydrogels [150]. The diversity of molecular 
structures and the complexity of supramolecular interactions 
present significant challenges in designing self-assembling pep-
tides. In this context, studies have emerged employing ML models 
to accelerate the discovery of self-assembling peptides 
[150–153]. For instance, Junfeng Shi’s group [150] has proposed 
the HydrogelFinder workflow, which utilizes molecular struc-
tures as inputs and gelation properties as outputs (Fig. 5f). This 
workflow has successfully identified nine novel self-assembling 
peptide hydrogels that had not been previously reported. To 
summarize, molecular-based modeling has demonstrated signif-
icant potential in mechanistically developing bioink materials 
with novel properties, particularly for supramolecular bioinks.

In contrast to the DoE paradigm, which relies on adjusting compo-
sition ratios, the ML-based data-driven paradigm can predict the mac-
roscacle properties of bioink materials using micro-nanoscale 
fingerprints, such as network structures and molecular structures, 
achieving multi-scale modeling. Machine learning serves as a powerful 
tool for comprehending diverse behavioral mechanisms of bioink ma-
terials, including rheology, gelation, mechanical response, degradation, 
swelling, and cell behavior, as well as for designing bioink materials 
with specific or even potentially groundbreaking properties.

4. AI-driven approaches for model structure

Upon finalizing bioink formulations, another critical element is the 
design of the printed models’ structure. Due to the tissue, structure, and 
function specificity of BPPs, structures of printed models necessitate 
personalized design to meet the property requirements. The typical 
process of designing printed models involves the following steps: first, 
acquiring medical images of the patient’s target organs/tissues using 
imaging modalities such as CT and MRI, as described in Section 4.1; 
second, performing 3D modeling based on these medical images to 
generate the macrostructure model, as described in Section 4.2 and 4.3; 
and finally, designing the internal microstructure, as described in Sec-
tion 4.4. AI technology can be applied to each UO within these processes 
to expedite the precise design of printed models with personalized 
structures (Fig. 6a).

For the precise design of in vivo implants, we summarize multi-scale 
fingerprints of printed models (serve as CMA/CPP) critical to achieve 
various properties (serve as CQA) (Table 2). For example, at the macro 
scale, the external shape of the implant (such as the bone implant) 
should match the anatomical shape of the defect, which can improve the 
cosmetic effect and structural support; at the micro scale, the radius and 
shape of the implant’s pores affect the transport properties, mechanical 
properties, and cell behavior responses; at the nano scale, the nano- 
topography affects cell behavior responses [13]. AI models aim to 
sense and optimize these fingerprints to enhance the overall perfor-
mance of printed models. It is worth mentioning that this chapter fo-
cuses on the design of structural fingerprints, where Sections 4.1-4.3
describe the design of the external macrostructure, and Section 4.4 de-
scribes the design of the internal microstructure. Additionally, the bio-
inks used for printed models discussed in this chapter include not only 
bioinks with cells (such as hydrogels) but also biomaterial inks without 
cells (such as thermoplastic polymers) [154].

4.1. Acquisition of high-resolution medical images

To acquire the macroscopic morphology of damaged organs/tissues 
in patients, medical imaging techniques such as CT, MRI, PET, and ul-
trasound (US) are indispensable. High-resolution medical images serve 
as the foundation for creating precise printed models. However, the 
resolution of conventional medical images, typically at the mm level, 
falls short of that of most 3D bioprinters, typically operating at the um 
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level. Consequently, this limitation hinders 3D bioprinters from fully 
realizing their manufacturing potential. Moreover, factors such as pa-
tients’ motion during the imaging process can lead to artifacts in certain 
areas of images, significantly diminishing the clarity. Despite ongoing 
advancements in higher-resolution medical imaging equipment [155], 
widespread clinical application remains challenging due to factors such 
as bulkiness, cost, and radiation exposure.

Super-resolution technology [156], employing the deep learning 
methodology, offers remedies to these challenges [45]. By utilizing al-
gorithms such as CNNs [157], convolutional recurrent neural networks 

(CRNNs) [158], variational networks [159], and attention mechanisms, 
this technology generates high-resolution images (HRIs) from 
low-resolution images (LRIs). It has found application across various 
medical imaging modalities, such as CT [160–162], MRI [163–165], and 
PET [166] in diverse organs, such as the brain, liver, lung, and abdomen. 
However, single image super-resolution (SISR) suffers from limited 
vertical resolution due to the absence of inter-layer information. Addi-
tionally, single imaging modalities lack the ability to adequately sense 
organs with complex tissue distributions, thus compromising resolution. 
To address these shortcomings, super-resolution technologies utilizing 
multiple medical images as inputs have emerged. These approaches can 
enhance the resolution beyond that achievable by SISR alone. Depend-
ing on the forms of input images, we categorize these methods into two 
main categories: 

(i) Based on volumetric images: Leveraging medical volumetric 
images allows for the consideration of hidden spatial relation-
ships between image layers. Studies have employed AI algorithms 
such as 3D convolutional neural networks (3D-CNNs) and GANs 
to perform super-resolution on brain MR images [167] and 
abdominal CT images [168].

Fig. 6. AI-driven approaches for model structure. (a) A pipeline of personalized design of printed models. (b) A schematic diagram of super resolution reconstruction 
based on multi-contrast MRI images. Copyright 2023, Elsevier. (c) A schematic diagram of organ segmentation and 3D reconstruction based on orthogonal CT images. 
Copyright 2022, Elsevier. (d) Experimental results of tooth gingival margin line reconstruction based on the adversarial learning method. Copyright 2022, Elsevier. 
(e) (i) A workflow of active learning loop for high-performance microstructure discovery with 3D-CNN, (ii) Experimental displacement-force curves of the ML- 
inspired design versus uniform design. Copyright 2023, Nature Publishing Group.

Table 2 
Multi-scale fingerprints of printed models.

Scale Examples of fingerprints Affected properties

Macro Macro morphology, physicochemical properties 
of bioinks, external physicochemical stimuli

Transport, 
mechanical, 
biological

Micro Fiber: orientation, size Transport, 
mechanical, 
biological

Pores: shape, size, distribution

Nano Surface pattern Biological
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(ii) Based on multi-modal images: In the field of MRI, multi- 
contrast super-resolution (MCSR) technology amalgamates in-
formation from multi-contrast images to produce high-resolution 
images with improved tissue contrast and reduced noise. This 
approach has been applied to enhance the resolution of MR im-
ages of tissues such as the brain and knee (Fig. 6b) [169].

4.2. 3D modeling of target organs/tissues

Upon acquiring high-resolution medical images, the subsequent task 
involves identifying and segmenting the region of interest pertaining to 
the target organs/tissues within the images, followed by constructing a 
3D model. AI-based methods for image segmentation and 3D recon-
struction offer advantages over manual operations, mitigating subjec-
tive errors while providing rapidity and repeatability. Studies have 
demonstrated the efficacy of employing AI algorithms, such as 3D-CNNs, 
to segment and reconstruct serial medical images (such as CT and MR 
images) depicting various organs (such as the abdomen [170,171], liver 
[172], kidney [173], chest [174], and head [175]) and tissues (such as 
the vasculature [176], muscles [177], and tumors [178–180]).

However, single-perspective and single-modal imaging methodolo-
gies present several limitations. To enhance the precision of segmenta-
tion and 3D reconstruction, we summarize two main approaches 
commonly utilized: 

(i) Based on multi-perspective images: AI algorithms can segment 
medical images from diverse perspectives, such as orthogonal CT 
and X-ray images. By voting or weighting the segmentation re-
sults, this approach can effectively reveal morphological features 
of target organs/tissues from multiple perspectives, which has 
been applied to various targets, including spines (Fig. 6c) [181] 
and liver tumors [182].

(ii) Based on multi-modal images: Leveraging multi-contrast MR 
images (such as T1, T1ce, and T2) or cross-sensor images (such as 
CT, PET, and MRI) and employing MML methods allows for 
harnessing the strengths of various image types. Studies have 
successfully achieved segmentation and 3D reconstruction of 
organs/tissues with the above methods, such as the pancreas 
[183], breast tumors [184], and brain tumors [185].

Last but not least, existing studies mainly focus on specific perfor-
mance metrics of AI models (such as ROC), with little attention paid to 
the regulatory and security aspects of models. In fact, the reproducibility 
of AI model training results is often poor due to variability stemming 
from multiple factors, including datasets, optimization processes, 
hyperparameter choices, model architecture, and hardware configura-
tions. In the context of clinical deployment, the lack of transparency in 
the training process and the poor reproducibility of results present sig-
nificant challenges for the regulation of AI models. To address these 
issues, the first step is to provide a standardized and detailed description 
of the model design and training process. Then, a robust evaluation 
system for model performance should be established. Finally, technical 
measures should be adopted to minimize variability from multiple 
sources [186].

4.3. Generation of implant models

Upon acquiring the 3D model of the damaged organ/tissue, the 
design of personalized implants necessitates consideration of the 
macrostructure to align with the site of damage. In the realm of cranial 
and tooth restoration, conventional virtual design methods, including 
mirroring technology, statistical shape models, and deformable tem-
plates, are operation-intricated and time-intensive, limited in the 
application of specific defect types [187]. In light of this, generative AI 
technology has emerged as a transformative solution for automating the 
generation of implant macrostructures based on any provided 3D model 

of damaged organs/tissues. This advancement supplants manual oper-
ations, significantly enhancing universality, rapidity, and reproduc-
ibility. In cranial restoration, researchers have applied AI algorithms 
such as GANs [188,189] and AEs [190] to fabricate personalized im-
plants. Similarly, in tooth restoration, investigations have leveraged AI 
algorithms such as 3D-CNNs [191] and GANs [192–194] to engineer 
crucial structures such as the occlusal surface and gingival edge of 
compromised teeth (Fig. 6d).

4.4. Design of microstructures

Following the aforementioned steps, the macro external shape (or 
macrostructure) of the printed model is obtained, necessitating 
personalized fine design of its internal microstructure to fulfill property 
requirements [195–197]. Given the prohibitive cost of clinical trials, the 
DoE paradigm is not viable. Instead, the computational paradigm can 
simulate the transport and mechanical properties of the microstructure 
through numerical simulation methods such as CFD and FEA. However, 
the high complexity of the microscacle topological structure results in a 
high-dimensional parameter space, demanding substantial computa-
tional resources. By incorporating the ML-based data-driven paradigm, 
datasets can be constructed from simulation data. The trained ML model 
can replace numerical calculations, significantly reducing the compu-
tational burden.

In the realm of metamaterials, leveraging the two approaches of 
inverse design outlined in Section 2.2.2, studies have combined machine 
learning and numerical simulation to inversely design microstructures, 
further details can be found in other comprehensive reviews [198,199]. 
Given their multi-scale structures akin to human natural organs/tissues 
(such as the bone, cartilage, and skin) [200–202], these theories and 
methods are emerging in the field of 3D bioprinting. Some studies first 
adopt ML approaches based on ANNs [203–206] or CNNs [68,69,207,
208] to establish forward design models, where the design parameters of 
microstructures (such as geometric parameters of unit cells) serve as 
inputs, and the resulting mechanical properties (such as the elastic 
modulus, stiffness, and yield strength) serve as outputs. These forward 
design models can replace finite element analysis and real experiments, 
enabling rapid prediction of candidate designs’ feasibility. Subse-
quently, searching strategies (such as particle swarm optimization al-
gorithms [204], genetic algorithms [203], Bayesian optimization [208], 
and active learning methods [68]) are integrated with the established 
forward design models to determine the optimal microstructure design 
with desired mechanical properties. For instance, Peng Wen’s group 
[68] has employed 3D-CNN models as forward design models, with 
active learning as the search strategy, to design topologies of printed 
scaffolds’ microstructures (Fig. 6e i). In animal experiments, this 
approach has ultimately achieved fixed elastic modulus and improved 
yield strength by 20 % compared to those through uniform design 
(Fig. 6e ii). Moreover, other studies utilize ML approaches based on AEs 
[69] and ANNs [205,206] to establish inverse design models, where 
expected mechanical properties serve as inputs, and the optimal 
microstructure design serves as outputs.

Notably, the transport and mechanical properties impose conflicting 
requirements on the microstructure (such as the porosity for stiffness 
and transport properties), thereby machine learning integrated with 
multi-objective optimization is necessary for the optimal design of mi-
crostructures [204]. In addition, ML models predicting properties 
rapidly facilitate the discovery of microstructures with rare or extreme 
properties, which is difficult for traditional paradigms [209,210].

Additionally, the emergence of 4D printing has introduced signifi-
cant challenges in microstructure design. In 4D bioprinting, the het-
erogeneous spatial distribution of stimuli-responsive bioinks dictates the 
unique shape-morphing behaviors of BPPs in response to external 
stimuli [211]. Given the complexity of these spatiotemporal dynamics, 
the conventional DoE paradigm faces significant limitations in effi-
ciently and precisely designing the spatial distribution of bioinks to 
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achieve the desired shape-morphing behaviors. Recently, in the field of 
4D printing of active composites, studies [211–213] have employed ML 
methods to design the spatial distribution of ink materials. This offers 
valuable insights for the application of ML approaches in the 4D bio-
printing field.

Last but not least, cell behavior is another critical consideration in 
microstructure design. Recent studies [214,215] have employed ML 
approaches to model the mapping relationships between microstruc-
tures (such as the fiber diameters/orientations and the pore size distri-
butions) and cell behaviors (such as the cell numbers and cell 
morphologies). However, the datasets in these studies are derived from 
post-bioprinting experimental results, which are costly and 
time-consuming. Concerning this, a promising development direction is 
multi-scale modeling integrated with spatiotemporal models of cell 
behavior [216]. Ideally, in the R&D stage, it is necessary to fully predict 
the properties of the printed model at both the spatial scale (organ, 
tissue, and cell) and the temporal scale (dynamic evolution over time) 
for systematic optimization design. However, currently, the design of 
printed models mainly focuses on the non-biological properties at the 
organ/tissue scale (such as the transport and mechanical properties), 
with less attention paid to biological properties at the cell scale. By 
combining spatiotemporal models of cell behavior and machine 
learning, it is expected to model the relationship between the micro-
environment and the dynamic response of cell behavior. Furthermore, 
by integrating them into numerical simulations, the multi-scale prop-
erties of printed models, including transport properties, mechanical 
properties and the evolution of cell behavior, can be fully predicted. In 
this regard, there have been preliminary attempts in relevant studies 
[217,218].

5. AI-driven approaches for printing process

Upon acquiring the printed model, the printing process element 
entails the precise manufacture of the designed multi-scale structure 
while ensuring cell viability. To enhance printing quality, the optimal 
printing parameters should be designed off-line before the formal 
printing process, as described in Section 5.1. Subsequently, during the 
formal printing process, the printing parameters need to be adjusted in 
real time to maintain control over printing quality, as described in 
Section 5.2.

5.1. Design of printing parameters

According to the QbD, the bioink parameters (serving as CMA) and 
printing parameters (serving as CPP) collectively determine the printing 
quality (serving as CQA), primarily focusing on printability and cell 
viability. Traditional paradigms have encountered the dilemma of 
“precision-cost”. In contrast, the ML-based data-driven paradigm can 
model mapping relationships between CMA/CPP and CQA at a 
manageable cost, facilitating rapid determination of the optimal design 
space to enhance printing quality.

Within the framework of Section 2.2.2, Table 3 provides a summary 
of examples in which AI technology has been employed for process 
modeling and parameter optimization across various 3D bioprinting 
processes. Different types of processes emphasize various aspects of 
CQA, CMA, and CPP, as documented in prior research [219–223]. For 
instance, in photocuring printing, digital masks serve as generalized 
CPP. Shaochen Chen’s group [224,225] has employed deep learning 
methods to optimize the design of digital masks, mitigating the impact of 
cell scattering on printability. The trained ML models can be used to 
determine the design space and optimal combinations of printing pa-
rameters. For instance, Newell R. Washburn’s group [226] has employed 
the hierarchical machine learning approach to optimize printing pa-
rameters, improving printability from 85.2 % to 98 % (Fig. 7a i). 
Furthermore, through the trained ML model, phase diagrams of the 
design space for printing parameters are generated, visually illustrating 

the distribution of printability (Fig. 7a ii). In addition, Bayesian methods 
have been utilized as active learning strategies to optimize printing 
parameters [227–230]. For instance, Gordon Wallace’s group [228] has 
employed Bayesian optimization to guide experimenters in adjusting 
printing parameters. As the number of experimental iterations increases, 
printability continuously improves until the optimal combination of 
printing parameters is found (Fig. 7b).

However, most existing studies are applicable only to single and 
straightforward working scenarios. As the construction of natural het-
erogeneous tissues necessitates increasingly complex bioinks and prin-
ted models, it is crucial for ML models to address such complexities. We 
identify two example aspects of these complexities: 

(i) Multiple components: Multi-component bioinks have intro-
duced tremendous diversity to bioink systems. However, existing 
ML models typically employ composition ratios as input, 
restricting their applications to specific bioink systems and 
lacking in universality. Essentially, ML models represent poten-
tial mappings between inputs and outputs. Therefore, for bioink 
systems sharing similar printing mechanisms, such as GELMA- 
based and HAMA-based used in the direct ink writing process, a 
universal ML model is theoretically feasible. In this regard, a 
critical step is the extraction of mechanism-level features that 
directly influence printing behavior as inputs, such as the rheo-
logical curves. Following training, for various bioinks, the single 
universal ML model can yield satisfactory prediction results with 
minimal experiments through fine-tuning of transfer learning 
methods.

(ii) Gradient structures: Naturally, heterogeneous tissues exhibit a 
zonal gradient structure, requiring dynamic adjustment of 
printing parameters over a large range in response to gradient 
changes of structures and properties [231]. Consequently, ML 
models must possess high prediction accuracy within a broader 
design space of printing parameters. A relevant study has been 
conducted in this regard [232].

Although ML methods have made progress in optimizing printing 
parameters, the process of manually constructing datasets is time- 
consuming. To expedite the search for optimal printing parameters, an 
increasingly promising approach involves constructing a fully automatic 
and universally applicable search procedure, offering significant prac-
tical utility. In this approach, the 3D bioprinter autonomously performs 
local printing tests for any input bioink and printed model, evaluates the 
printing quality, and adjusts the printing parameters to determine the 
optimal settings. Notably, the ML model transcends its conventional role 
of modeling mapping relationships between inputs and outputs; it also 
assesses printing quality and serves as the adjustment strategy of 
printing parameters. For instance, Jianhua Zhou’s group [233] has 
automatically traversed three printing parameters in a special-designed 
3D bioprinter, employing a CNN-based algorithm to classify printing 
quality into three categories and derived a process phase diagram to 
determine the optimal design space of printing parameters. Although 
this study achieved high-throughput screening of printing parameters, 
the process was partially automated. Carmelo De Maria’s group [234] 
has employed a CNN-based algorithm to classify printing quality into 
three categories and iteratively adjusted printing parameters using a 
dichotomy-like strategy to obtain the optimal settings (Fig. 7c ii). This 
process was fully automated but did not optimize all printing parame-
ters. Filippos Tourlomousis’ group [230] has employed Bayesian opti-
mization and active learning to automatically adjust the ratio of the 
collector speed over the jet speed in the MEW process, aiming to achieve 
the minimum Lag distance.

In the broader field of 3D printing, studies [73,75,235–238] have 
embraced the concept of closed-loop iteration by employing ML 
methods to automatically search for the optimal printing parameters. 
Analogously, such methodologies hold promise in the domain of 3D 
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Table 3 
Examples of AI applications for process modeling and parameter optimization in 3D bioprinting.

Process 
category

CMA CPP CQA AI Model Ref

EBB Cink Q, VT, Dnozzle Shape fidelity Hierarchical machine learning (HML) [226]
η, Gʹ ΔP,Dn ,Vn , Ln Printing resolution Rheology-informed hierarchical 

machine learning (RIHML)
[240]

GelMA composition Ink reservoir temperature, pressure, speed, 
platform temperature

Filament morphology, 
layer stacking

Bayesian optimization [228]

– Air pressure, biomaterial ink temperature, print 
speed

Print resolution Bayesian optimization [227]

FSA concentration Nozzle size, printing temperature, pneumatic 
pressure

Printability Gaussian process regression (GPR) [241]

– Rb, Rs, Lu, Ll, Rm (nozzle geometrical 
parameters)

Maximum shear stress Gaussian process (GP) [242]

Material composition Printing speed, printing pressure, scaffold layer, 
programmed fiber spacing

Printing quality RF [243]

Biomaterial concentration Nozzle temperature, printing path height Printability SVM [244]
Material concentration, 
solvent usage

Crosslinking mechanism and duration, printer 
settings, observation duration

Cell viability, filament 
diameter, extrusion 
pressure

Support vector regression (SVR), linear 
regression (LR), random forest 
regression (RFR), RF, logistic regression 
classification, SVM

[245]

Gelatin concentration Printing speed, flow rate, temperature Printability, Precision Fuzzy inference system (FIS) [246]
Dilution percentage of bioink Nozzle pressure, printing speed, Line width Fuzzy inference system (FIS) [247]
Viscosity, growth factor 
concentration

Gauge pressure, build orientation, printing 
speeds

Print resolution LSTM [248]

– Printing speed, pressure of extrusion, infill 
percentage

Gel weight, surface area, 
topographical 
heterogeneity

SVM, Gaussian model [249]

Biomaterial type, biomaterial 
concentration, crosslinker 
concentration, cell type, cell 
number

Crosslinking time, printing pressure, movement 
speed, nozzle size, cartridge temperature, bed 
temperature

Cell viability Bayesian optimization, ANN [229]

Material’s weight fraction Extrusion pressure, print speed, z-height Filament width Linear regression [250]
– Nozzle temperature, infill density, layer height, 

printing speed
Tensile strength Linear regression, RFR, XGB regressor, 

LGBM regressor, ANN
[251]

– Air pressure, biomaterial ink temperature, print 
speed

The width of printed 
filament

Bayesian optimization [227]

Material’s weight fraction Extrusion pressure, print speed, nozzle diameter, 
z-height

Filament width Linear regression [250]

– Layer height, nozzle travel speed, and dispensing 
pressure

Time, porosity, and 
geometry precisions

Multi-objective Bayesian Optimization [252]

– Printing speed, extrusion pressure Width average, width 
variance height average 
and height variance

SVM [253]

– Nozzle tip to collector distance Jet radius profile GP [230]
– Ratio of the collector speed over the jet speed at 

the point of interest
Lag distance

Cell type Wall shear stress, exposure time Cell viability Multi-layer Perceptron (MLP) [254]
DBB Viscosity, surface tension Voltage, diameter of the nozzle Droplet formation MLP [255]

Viscosity, surface tension Voltage, nozzle diameter Droplet deformation Fully connected neural network (FCNN) [256]
Polymer concentration Voltage, dwell time, rise time Droplet velocity and 

volume
Ensemble learning [257]

– Standoff height, applied voltage, ink flow rate Droplet diameter Regression analysis (RA), 
backpropagation neural network 
(BPNN), neural network trained with 
genetic algorithm (GA-NN)

[258]

The type and concentration of 
solute and solvent

Inner diameter (Din), outer diameter (Dout), the 
materials of the nozzle and grounded substrate, 
volumetric flow rate (Q), the distance (L) 
between needle and grounded substrate, the 
environmental gas, the applied voltage (V) 
between the ground electrode and needle

Spraying patterns ANN,SVM [259]

Viscosity (μ), Density (ρ), 
Conductivity (K), Surface 
tension (γ), Relative 
permittivity (κ)

Nozzle internal diameter (Din), nozzle external 
diameter (Dout), distance between nozzle and 
grounding electrode (L), applied voltage (V), 
flow rate (Q)

Droplet diameter ANN [260]

Dimensionless number Z Rise time, drive’voltage, dwell time, fall time Drop velocity, drop 
formation

SVM, KNN, RFs, extreme gradient 
boosting (XGBoost), MLP

[261]

Bioink viscosity, cell 
concentration

Nozzle size, printing time, printing pressure Droplet size DT, RF, PageRank, MLP, LSTM [262]

LBB – Digital mask Printing fidelity U-Net-like neural network [224,
225]

– Digital mask Printing fidelity 3D U-Net [263]
– Digital mask Printing fidelity Convolutional Auto-Encoder (CAE) [264]
– Digital mask Printing fidelity Deep neural networks [265]
GelMA concentration UV intensity, UV exposure time, layer thickness Cell viability Ensemble learning model [266]

(continued on next page)
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bioprinting. A critical consideration in this context is the selection of 
printability metrics. During the process of searching for optimal printing 
parameters prior to formal printing, it is judicious to print simple and 
standard test models rather than complex and complete input models. 
Therefore, it becomes imperative to swiftly identify printability metrics 
[37,239] (such as corners, filament diameters, and layer spacing) that 
may influence the final printing quality [238] and select test models 
accordingly, necessitating a comprehensive understanding of the 
printing process.

5.2. Control of printing processes

Owing to the inevitable occurrence of process drift and model error, 

deviations in the printing quality from the anticipated standards may 
arise within the actual printing process, if the optimal printing param-
eters derived from off-line design is continuously employed [10]. To 
maintain consistent control over printing quality, the implementation of 
in situ monitoring and in-line correction becomes imperative.

Within the framework of Section 2.2.3, Table 4 provides a summary 
of examples, where AI technology integrated into diverse sensors has 
been employed for in situ monitoring and in-line correction across 
various 3D bioprinting processes. Among them, the combination of 
cameras and CNN-based algorithms is the most common technical so-
lution [234,268–270]. Some studies [271,272] have utilized reinforce-
ment learning methods to ascertain adjustment strategies for printing 
parameters, enabling adaptation to the dynamic environment (Fig. 7d). 

Table 3 (continued )

Process 
category 

CMA CPP CQA AI Model Ref

– Exposure time, light intensity, print speed, laser 
current, laser power, infill density

Young’s modulus ANN [232]

Resin viscosity Cross section size used for synthetic dataset 
construction, manufacturing velocity, PDMS 
thickness, constrained surface type, duration of 
frame, video projection time, groove width, 
groove depth, cross section size used for 
separation force boundary construction

Printing success or 
failure, optimum 
printing speed

KNN, SVM, decision tree, logistic 
regression, quadratic discriminant 
analysis, GP, naiveBayes, ANN, 
ensemble learning model, 
Siamese network

[267]

Fig. 7. AI-driven approaches for printing process. (a) (i) Experimental results of printability improvement through machine learning optimization, (ii) Phase dia-
grams of the design space for printing parameters. Adapted with permission from J.M. Bone, C.M. Childs, A. Menon, B. Póczos, A.W. Feinberg, P.R. LeDuc, N.R. 
Washburn, Hierarchical Machine Learning for High-Fidelity 3D Printed Biopolymers, ACS BIOMATER SCI ENG, 6 (2020) 7021–7031. Copyright 2020, American 
Chemical Society. (b) Optimization process of printing parameters via Bayesian methods. Copyright 2021, Elsevier. (c) (i) Prediction results of CNN models on the 
printing status. (ii) Experimental results on automatic optimization of printing parameters. Copyright 2022, AccScience Publishing. (d) The schematic diagram of a 
closed-loop control strategy via reinforcement learning. Copyright 2022, ACM. (e) Prediction results on the evolution process of inkjet printing. Copyright 2023, 
Elsevier. (f) Sensing results of surface deformation using PCA algorithms. Copyright 2020, AAAS. (g) A schematic diagram of the printing head’s motion controllers, 
built by ANN models. Copyright 2023, Wiley.
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In addition, other studies [273,274] have leveraged deep learning 
methods to predict the entire droplet evolution process in inkjet print-
ing, enhancing the understanding of printing behavior and facilitating 
early defect detection (Fig. 7e).

Currently, various imaging sensors, such as visible light cameras 
[234,268,270], laser displacement scanners [275], and optical coher-
ence tomography (OCT) devices [276–279], are utilized for in situ 
monitoring of the printing process. While they share common attributes 
such as non-destructiveness, low latency, and ease of integration, each 
possesses distinct advantages and drawbacks. Visible light cameras are 
prevalent due to their affordability and wide field of view; however, 
they can only capture 2D external profile information with limited res-
olution. Laser displacement scanners enable 3D profile imaging but lack 
the ability to penetrate the surface for internal feature extraction. OCT, 
which possesses certain penetration capabilities, can detect internal 
defects such as air bubbles but is characterized by high cost and limited 
field of view. Combining multiple imaging modalities can enhance the 
prediction accuracy and robustness of CMA/CPP and CQA/process 
prediction models. Within the broader realm of 3D printing, there have 
been studies [50,280] using MML methods to monitor the printing 
process in situ, combining several types of sensor images, which has 
important reference significance for 3D bioprinting. Furthermore, while 

the predominant emphasis remains on printability, it is imperative to 
underscore the significance of cell viability, especially for the sustained 
printing of organs/tissues with clinical volumes over extended dura-
tions. In this regard, several studies suggested sensing methods for in 
situ monitoring of cell viability [281,282].

In instances where severe defects are detected during the printing 
process, discarding the printed part leads to substantial waste, particu-
larly concerning personalized small-batch BPPs. Therefore, compared 
with detecting the emerged defects, it is more meaningful to provide 
early warning of possible defects and intervene preemptively to main-
tain errors within acceptable limits. Analyzing the source of process drift 
is pivotal for achieving early defect warnings [283], encompassing 
environment-related (such as temperature fluctuations and mechanical 
vibrations), material-related (such as rheological nonlinearity of bio-
inks), system-related (such as motion errors in the driving mechanism) 
factors [17]. Setting up sensors to detect CMA/CPP related to process 
drift and collecting in-line data facilitate early defect warnings. ML 
models such as RNN, LSTM, gated recurrent unit (GRU), and Trans-
former excel in analyzing sequential information, enabling the predic-
tion of future printing quality by CQA/process prediction models [284]. 
Moreover, combining off-line and in-line data can enhance prediction 
accuracy [285]. While these theories and methods are nascent in the 

Table 4 
Examples of AI applications for in situ monitoring and in-line correction in 3D bioprinting.

Process 
category

Sensor Input Output AI Model Type of AI 
Model

Ref

EBB Camera Video frame Printing status CNN CQA 
prediction 
model

[234]

Camera Video frame Extrusion status LSTM autoencoder CQA 
prediction 
model

[302]

Camera Image Printing anomaly CNN CQA 
prediction 
model

[269]

Camera Video frame Velocity of the printing head, 
offset from the baseline 
printing path

Reinforcement learning Control 
Strategy

[271]

Infrared thermocouples Three features extracted from the 
raw sensor signals

Printing status strand width, 
strand height, strand fusion 
severity

KNN, SVM, RF, ANN CQA 
prediction 
model

[303]

Material temperature, extrusion 
pressure, print speed, the location 
in the strand

Regime classification, width 
prediction, height prediction

Stereo cameras Surface shape data Shape basis vectors PCA CPP prediction 
model

[292]

Camera, pressure sensor Time-varying 2D printing head 
position (X, Y), SMAMs pressure 
(p1, p2, p3, p4)

The displacement of syringe 
plungers (l1, l2, l3, l4)

ANN Control 
Strategy

[297]

DBB Camera Video frame Droplet evolution in the 
printing process

Deep recurrent neural network 
(DRNN)

Process 
prediction 
model

[273]

Camera Video frame Droplet evolution in the 
printing process

Network of tensor time series 
(TTS)

Process 
prediction 
model

[274]

Camera Video frame Jetting status MovileNetV2 CQA 
prediction 
model

[270]

Camera Droplet velocity at two different 
points

Cell count LR, SVR, decision tree regressor 
(DTR), RFR, extra tree regression 
(ETR)

CQA 
prediction 
model

[304]

Camera Droplet size, aspect ratio, droplet 
velocity, satellite droplet

Droplet mode Backpropagation neural network 
(BPNN)

CQA 
prediction 
model

[305]

FPGA module for self- 
sensing signals 
acquisition

Two features extracted from the 
raw sensor signals

Nozzle jetting status SVM, ANN, Gaussian naïve Bayes 
model

CQA 
prediction 
model

[306]

LBB Camera Video frame Printing status CNN-LSTM CQA 
prediction 
model

[268]

– Digital Mask Digital Mask Reinforcement learning Control 
Strategy

[272]
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realm of 3D bioprinting, relevant studies in 3D printing underscore the 
importance of similar methods [284–286].

Due to the limitations of traditional in vitro bioprinting [7], the 
emerging trend of in situ bioprinting technology, which directly prints at 
the patient’s defect site, presents significant potential for clinical 
application. In contrast to traditional 3D bioprinting operating on static 
and typically planar workbenches, in situ bioprinting typically operates 
on dynamic and often curved biological surfaces within the body, such 
as the breathing lung or beating heart [17]. In this regard, traditional 3D 
bioprinters face notable challenges in two key aspects: 

(i) Degrees of freedom (DOFs): The 3-DOF XYZ translational mo-
tion of traditional 3D bioprinters is difficult to match the 6-DOF 
surface.

(ii) Path planning strategy: The strategy of planning the printing 
path in the pre-bioprinting stage struggles to adapt to the surface 
deformation caused by shrinkage, expansion and bending. This 
can lead to potential collisions between the printing head and the 
patient’s body, resulting in printing failure or additional damage.

In addressing these challenges, in situ bioprinting technology 
leveraging robotics and AI offers promising solutions. Surgical robots, 
renowned for their high DOFs and precise control, have found wide-
spread use in clinical surgery. Integrating printing heads with the ends of 
surgical robots presents a viable approach for in situ bioprinting [17]. 
Additionally, considering the high cost of surgical robots, some studies 
have explored the integration of industrial robots with printing heads 
[287–291]. Furthermore, employing closed-loop control methods based 
on predictive AI technology allows for precise real-time planning of the 
printing path. We present this employment in two aspects: 

(i) Sensing and prediction of dynamic environment: Initially, 3D 
reconstruction is conducted based on visual features of real-time 
images to acquire the current printing surface morphology. A 
prior study utilized the PCA algorithm to extract key morpho-
logical features from the lattice information of pigs’ lung surfaces 
marked by stereo cameras, facilitating rapid modeling of surface 
deformation during in situ bioprinting processes (Fig. 7f) [292]. 
Subsequently, the prediction of future surface morphology can be 
achieved based on historical surface morphology. Studies have 
employed AI algorithms such as LSTM [293,294], attention 
mechanisms [295], and DenseNet [296] to analyze sequential 
medical images, enabling tracking and predicting the motion of 
the 3D surface of target organs/tissues (such as the tumor and 
abdominal cavity). This approach holds significant potential for 
predicting complex deformation patterns of organs/tissues dur-
ing in situ bioprinting processes.

(ii) Optimization of closed-loop control strategy: Upon achieving 
3D reconstruction of the printing surface, AI technology facili-
tates segmentation of the printing head and analysis of its spatial 
position, aiding in the correction of the printing path. In addition, 
AI technology can be used to construct control strategies and 
enable real-time correction of the printing head’s position and 
posture, such as utilizing ANN models to build motion controllers 
(Fig. 7g) [297]. Reinforcement learning methods have also been 
employed to automatically plan and adjust the path of surgical 
robots, enhancing movement precision, efficiency, and adapt-
ability to complex environments [298–301]. These advance-
ments hold significant reference value for in situ bioprinting 
based on surgical robots.

6. AI-driven approaches for function regulation

Upon completing the printing of high-quality structures, the final 
element is the function regulation of the printed structures. Primarily, 
the design of maturation conditions is imperative to functionalize the 

printed structures, thereby transforming them into BPPs with the 
requisite biological functions, as described in Section 6.1. Subsequently, 
for functionalized in vitro models and in vivo implants, their biological 
functions are characterized and assessed with non-destructive detection 
methods, facilitating applications such as drug screening, pathological/ 
pharmacological studies, and assessments of clinical functions, as 
described in Section 6.2.

6.1. Design of maturation conditions

Within bioreactors, specific external physicochemical stimuli 
(serving as CMA/CPP), including mechanical, electrical, photo, ultra-
sound, and soluble factors, are employed to modulate the biochemical 
and mechanical clues (or cell microenvironment) within BPPs [307]. 
And the cell behavior (serving as CQA) of BPPs is further regulated, such 
as proliferation, differentiation, and adhesion, to achieve the desired 
biological functions. Currently, the design of maturation conditions 
primarily relies on the DoE paradigm, which lacks quantitative theories 
and models. Recent studies have explored the utilization of the 
ML-based data-driven paradigm to model the mapping relationships 
between external physicochemical stimuli (such as biochemical stimulus 
[308], and drug stimulation [309]) and cell behavior (such as mecha-
nobiological states [308] and drug responses [309]). For example, Yu 
Yao’s group [309] has developed the GlioML workflow, incorporating 
nine ML models and a weighted ensemble model to predict the treatment 
response of glioma under different microenvironment characteristics, 
successfully identifying promising compounds and drugs for glioma 
treatment (Fig. 8a).

6.2. Characterization and assessment of functions

6.2.1. In vitro models
AI-based sensing technology enables non-destructive characteriza-

tion of the biological properties (serving as CQA) of in vitro drug/ 
pathological models across multiple scales for drug screening and pa-
thology/pharmacology studies. At the cell scale, studies have performed 
3D segmentation and classification of cells/nuclei in images (such as 
CLSM [47,310] and bright-field microscopy [311]) to evaluate biolog-
ical properties such as the cell shape and distribution. In addition, some 
studies have utilized spectral data (such as Raman spectroscopy [312,
313], dielectric spectroscopy [314], and dielectric impedance spec-
troscopy [315]) to assess biological properties including the cell type, 
shape, distribution, and density. At the organoid scale, studies have 
conducted 3D segmentation and classification of single organoids in 
images (such as OCT [316], high-speed live cell interferometry [317], 
and bright-field microscopy [318,319]) to extract morphological fea-
tures such as the shape and volume (Fig. 8b).

6.2.2. In vivo implants
Prior to the implantation of the BPP into the patient’s body, it is 

imperative to assess whether the properties of the BPP and the health 
status of the patient (serving as CMA/CPP) are conducive to surgical 
implantation (serving as CQA). In the field of organ transplantation, 
studies have utilized ML models (such as decision trees [320], RFs [321], 
and ANNs [322,323]) to predict postoperative survival rates based on 
the healthcare data of donors and recipients. These findings hold sig-
nificant reference value for the preoperative assessment of BPP im-
plantation suitability.

Following implanting the BPP into the patient’s body, monitoring the 
regeneration status of the damaged organs/tissues (serving as CQA) 
becomes essential using non-destructive detection methods. Several 
studies have employed non-destructive medical imaging techniques for 
continuous monitoring of implant regeneration status. For example, 
Julian Moosmann’s group has employed the U-net algorithm to segment 
micro-computed tomography (μCT) images, enabling the precise char-
acterization of the morphology of degradable bone implants and 
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facilitating the time-resolved, quantitative assessment of their degra-
dation efficiency (Fig. 8c) [324]. Daniel G. Anderson’s group has used a 
clustering method to track the spatiotemporal morphology of implants 
encapsulating pancreatic islet cells in MR images, enabling the charac-
terization of quantitative internal oxygen content [325].

In addition to facilitating regeneration of the damaged organs/tis-
sues, implants themselves can function as biosensors for monitoring 
patients’ health status [326]. Smart dressings applied to human wounds 
can utilize AI technology to sense the health status of the wound (such as 
the pH, temperature, humidity, and secretion concentration), which can 
evaluate and monitor wound regeneration status, as demonstrated in 
several studies [327–329].

7. Future directions

7.1. Construction of natural organs

7.1.1. Non-destructive and rapid construction of digital twin organs
Natural organs exhibit intricate multi-scale heterogeneous struc-

tures, while patient-specific digital twin organs aim to capture this 
multi-scale information to construct transplantable replacements for 
natural organs [76]. This entails information at organ scale (such as 3D 
macrostructures), tissue scale (such as microstructures), and cell scale 
(such as cell types, spatial arrangement, and microenvironment). 
Currently, non-destructive imaging technologies at the organ scale, such 
as CT, MRI, and US, are relatively advanced. However, obtaining 
non-destructive 3D multi-scale models containing information at the 
tissue and cell scale remains very challenging, for which relevant studies 
have made preliminary attempts. For instance, the Human BioMolecular 
Atlas Program (HuBMAP) aims to create a multi-scale spatial atlas of the 
healthy human body at single-cell resolution [330]. It has already 
developed spatial atlases of organs/tissues, including the intestine 

[331], kidney [332], and placenta interface [333]. Techniques such as 
serial tissue sectioning [46] and optical tissue clearing [334,335] can 
extend the scale in the depth direction, enabling the acquisition of macro 
spatial information. These methods hold promise for constructing 
high-resolution 3D models of large-scale tissues. However, it’s worth 
noting that these approaches rely on destructive sampling of in vitro 
organs/tissues, rendering them impractical for application in living 
patients.

Generative AI technology offers a promising solution for the non- 
destructive and rapid construction of digital twin organs. Multi-scale 
3D models derived from in vitro organs/tissues can serve as the data-
set to train the generative AI model, enabling it to learn spatial corre-
spondence across different scales. Utilizing the patient’s macrostructure 
model derived from non-destructive imaging as input, the trained AI 
model automatically populates the information at the tissue and cell 
scales that conforms to human anatomical principles, generating a dig-
ital twin organ enriched with multi-scale information. This approach 
circumvents the need for destructive sampling of patients’ organs/tis-
sues and lays the foundation for designing printed models of natural 
organ replacements. For instance, there have been relevant studies using 
AI methods to automatically generate hierarchical 3D vascular networks 
within organ-scale macrostructure models [336–338].

Another important issue to consider is the scale limitations of bio-
mimicry. The traditional forward-design approach strives to replicate 
the structure of natural organs as precisely as possible. However, some 
studies [9] suggest that biomimicry may reach a limit where increased 
complexity no longer enhances functional outcomes. Additionally, 
technical and cost constraints render endless biomimicry of natural or-
gans impractical, especially at the micro-nano scale. Considering clinical 
translation, the inverse-design approach aims to prioritize the regener-
ation of specific functions and the feasibility of manufacturing rather 
than emphasizing structural biomimicry. A potential strategy is to strike 

Fig. 8. AI-driven approaches for function regulation. (a) A flow chart of the GlioML workflow. Copyright 2024, Nature Publishing Group. (b) A workflow of in situ 
high-throughput characterization of organoids (segmentation, tracking, and classification). Copyright 2023, Nature Publishing Group. (c) A schematic diagram of 
biodegradable bone implants segmentation based on SRμCT images. Copyright 2021, Nature Publishing Group.
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a balance between these two approaches by employing appropriate AI 
models at different scales. At the macro scale, the forward-design 
approach is applied, with AI models focusing on mimicking the mac-
rostructures of natural organs. At the micro-nano scale, the 
inverse-design approach is used, with AI models prioritizing the 
enhancement of specific functions. The generated micro-nano structures 
are artificially designed rather than imitating natural organs, such as 
triply periodic minimal surfaces (TPMS). In this way, we can construct 
manufacturable digital twin organs.

7.1.2. Multi-material 3D bioprinting of high-content printed models
Subsequently, the obtained digital twin organs should be converted 

into printed models that 3D bioprinters can interpret. Given the 
complexity of natural heterogeneous organs/tissues, multi-material 3D 
bioprinting, involving various bioinks, cells, and even printing pro-
cesses, becomes one of the most promising construction techniques [18,
339]. Currently, hybrid bioprinters integrating multiple bioinks and 
processing techniques are emerging [340,341]. In this scenario, the 
obtained multi-scale information of the digital twin organ needs to be 
further dissected into a high-content printed model, encompassing de-
tails such as the bioink material, cell type, process type, printing path, 
and printing parameter to guide subsequent multi-material printing 
(Fig. 9a).

Meanwhile, the prolonged printing cycle due to the organ scale of 
printed models poses risks such as cell sedimentation and contamina-
tion. To enhance manufacturing efficiency, a promising approach in-
volves utilizing collaborative printing heads that independently deposit 
various bioinks simultaneously across distinct regions [291,340,342] 
(Fig. 9a). This collaboration of multiple printing heads introduces sig-
nificant challenges for path planning, such as avoiding path interfer-
ence. In the field of collaborative robots, studies have employed AI 

approaches to optimize path design for multi-robot arm collaboration, 
such as large language models, reinforcement learning, and computer 
vision [343–345]. These methods aim to enhance communication be-
tween robotic arms, ensuring interference-free operation while identi-
fying more efficient paths, thereby significantly improving 
manufacturing efficiency.

7.2. Active learning and hybrid learning

Within the realm of 3D bioprinting, the absence of publicly available 
datasets poses a significant challenge for data-driven design. Conse-
quently, the predominant cost of designing tasks stems from the con-
struction of datasets, typically undertaken by researchers themselves 
through manual experiments or numerical simulations. In scenarios 
where datasets can be constructed with high throughput and low cost, 
conventional brute-force learning approaches (or learning from scratch) 
can be employed [55]. Initially, the dataset is constructed completely, 
and the ML model serves solely as a backend tool for automatic data 
analysis [43], aiding in comprehending underlying mechanisms. How-
ever, in scenarios where datasets have to be constructed with low 
throughput or high cost, the aforementioned methods prove impractical 
in terms of time or financial burdens.

One promising methodology is active learning [57,346–349]. It can 
adaptively sample within the high-property region of the parameter 
space, which is typically the design space-related region of interest, 
while avoiding inefficient sampling in the low-property region [347]. 
The closed-loop active learning pipeline is illustrated in Fig. 9b. Initially, 
a set of preliminary experiments are conducted, and the built dataset is 
utilized to train the ML model. Subsequently, the trained ML model 
generates predictions across the parameter space, based on which the 
next experiment (or sampling point) is selected. The newly conducted 

Fig. 9. Future directions of AI technology in 3D bioprinting. (a) A pipeline of constructing natural organs. (b) A closed-loop active learning pipeline. (c) A “precision- 
cost” landscape of the brute-force learning, active learning, and hybrid learning.
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experiment is then incorporated into the dataset, fostering a dynamic 
feedback loop aimed at iteratively enhancing the ML model’s precision. 
Ultimately, once the ML model’s precision aligns with the specified re-
quirements, the training process concludes.

The selection of subsequent experiments holds paramount impor-
tance. Bayesian methodology, exemplified by Gaussian process (GP) 
models, can quantify prediction uncertainty. This capability facilitates 
the delicate balance between exploration and exploitation [57,346]. 
During the initial stage of active learning, experiments targeting regions 
of uncertainty are conducted to comprehensively explore the global 
parameter space. This process aids in discerning the distribution of 
properties and refining the ML model—a practice termed as exploration. 
As the ML model’s precision improves and uncertainty diminishes, the 
focus gradually shifts toward conducting experiments aimed at 
achieving high-property predictions—a practice termed as exploitation. 
Through this approach, the ML model can efficiently identify 
high-property regions at a reduced cost and with heightened precision. 
While the active learning methodology has found widespread applica-
tions in the field of materials science [57,346–349], its integration into 
3D bioprinting is emerging [68,127,132,152,227–230,261].

Compared to brute-force learning, active learning effectively reduces 
costs through adaptive sampling but remains grounded in data and 
statistics. Evolving directions of the data-driven paradigm aim to further 
diminish cost and enhance precision, leading to the development of the 
hybrid-driven paradigm (Fig. 9c) [55]. The hybrid-driven paradigm 
amalgamates prior knowledge with experimental data through hybrid 
learning, utilizing prior knowledge to impose constraints on the func-
tional space of ML models to accelerate the search process, facilitating 
modeling with small datasets, consequently reducing cost further [55].

Based on the forms of prior knowledge, the hybrid-driven paradigm 
can be divided into the following three categories: 

(i) Transfer learning: This approach fine-tunes the pre-trained ML 
models rather than training them from scratch, enabling high 
precision with minimal experimental data [350,351]. For 
instance, Jennifer M Bone [352] has employed the transfer 
learning method based on hierarchical machine learning (HML) 
to optimize bioinks and support media in embedded bioprinting.

(ii) Multi-fidelity learning: Combining high-cost/high-fidelity data 
from the DoE paradigm with low-cost/low-fidelity data from the 
theoretical, computational, and data-driven paradigms for 
training ML models can effectively address the lack of high- 
fidelity datasets [57,346]. For instance, Safa Jamali’s group 
[54] has employed the multi-fidelity learning method to train 
PINNs to construct rheological constitutive models of hydrogels 
with a limited amount of experimental data.

(iii) Learning integrated with domain knowledge: By incorpo-
rating domain knowledge such as expert experience [353,354] 
and physical laws [355] to constrain the functional space, ML 
models can achieve higher precision with minimal experimental 
data. For instance, Salil Desai’s group [248] has integrated the 
physics model into the LSTM algorithm to predict printing 
resolution.

In summary, the application of the hybrid-drive paradigm in the field 
of 3D bioprinting is still in its nascent stages but holds significant po-
tential for advancement.

7.3. Integrated automation of entire processes

In data-driven design, the quantity and quality of samples in the 
dataset are critical for ensuring the precision of the ML model. Con-
ventional manual sampling methods are inefficient and prone to data 
noise. Currently, across various fields, such as materials science and 
chemistry, endeavors have been made to integrate AI technology with 
automation equipment, such as robots, to supplant manual sampling. 

This integration enables machines to autonomously perform experi-
ments and optimize designs, a concept termed as self-driving laboratory 
(SDL) [55,356–362]. In UOs of 3D bioprinting, SDL methods hold 
promise to significantly enhance both the quantity and quality of sam-
ples, consequently reducing cost and enhancing precision, as demon-
strated in previous studies [230,363].

Looking ahead, the integration of AI with automation is poised to 
extend beyond discrete UOs to encompass entire processes (Fig. 10). The 
AI-based systematic design approach will unify the design of various 
objects, including bioinks, printed models, printing parameters, and 
maturation conditions. This integrated methodology will effectively 
consider their interdependent effects on diverse properties. For instance, 
through AI-driven multi-objective optimization, printed models’ mi-
crostructures and bioinks’ physicochemical properties can be jointly 
designed to meet the Pareto optimality of BPPs’ mechanical properties 
and cell behavior. Another example can be found in 4D bioprinting, 
where AI can be utilized to integrate the design of printed models’ mi-
crostructures, spatial distribution of bioink formulations, and external 
stimuli, enabling precise spatiotemporal responses of BPPs’ mechanical 
properties [211,212,364,365].

Furthermore, the establishment of AI-based smart factories will 
enable efficient management of the material and information flow 
through advanced technologies such as industrial clouds and digital 
twins, facilitating full life cycle quality management, which encom-
passes clinical diagnosis, raw material preparation, model design, 3D 
printing manufacturing, and efficacy evaluation.

8. Conclusions

The advancement of 3D bioprinting in clinical practice confronts 
challenges regarding the contraction between effectiveness and econ-
omy in personalization of design, compounded by constraints in scaling- 
up of production due to the numerous manual operations involved. In 
light of these challenges, AI-driven QbD emerges as a promising solu-
tion, enhancing precision, economy, rapidity, repeatability, and scal-
ability. This review seeks to delve into the latest advancements of AI 
technology applications in 3D bioprinting. Within the QbD framework, 
the application of AI technology in 3D bioprinting is scrutinized across 
three principal dimensions: multi-scale and multi-modal sensing, data- 
driven design, and in-line process control. Subsequently, a detailed 
overview of the current research status and potential applications of AI 
technology is provided for key elements of the 3D bioprinting process, 
spanning bioink formulation, model structure, printing process, and 
function regulation. Lastly, the development directions of AI technology 
in 3D bioprinting are discussed from three perspectives: construction of 
natural organs, active learning and hybrid learning, and integrated 
automation of entire processes. This comprehensive analysis aims to 
elucidate the potential of AI-driven approaches in catalyzing a paradigm 
shift in 3D bioprinting, paving the way for clinical applications.

Despite considerable progress in AI-driven 3D bioprinting, many 
challenges remain to be addressed. We discuss some typical challenges 
and their potential solutions as follows: 

(i) Scarce specificity and low quality of characterization data-
sets: Regarding the characterization issues in 3D bioprinting, 
existing datasets are rarely tailored to the unique scenarios of this 
field, impeding the direct implementation of AI models trained on 
these datasets. For instance, in organ-scale 3D bioprinting, the 
precise construction of vascular networks is crucial to ensure 
nutrient transport and cell survival. However, in medical imaging 
of blood vessels, most studies focus on the retina [366], with 
limited datasets available for the 3D reconstruction of vascular 
networks in large-scale organs. Similarly, organ-scale 3D bio-
printing requires a large number of cells. Yet, existing datasets for 
virtual staining are mostly predominantly derived from charac-
terization results of tissue or pathological sections, with a 
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significant lack of datasets available for non-destructive charac-
terization of stem cells during differentiation/proliferation pro-
cesses. Additionally, current datasets are typically derived from 
limited experimental results with narrow sources and small 
scales, resulting in high variability and reducing the generaliza-
tion capacity of AI models. Furthermore, the performance metrics 
of existing AI models are often derived from independent test 
sets, complicating the rigorous comparison of model performance 
and lowering their reliability for clinical deployment.

To address this issue, ensuring the specificity and quality of datasets 
is imperative. Given the scale of this task, individual efforts may be 
insufficient, thereby encouraging collaboration among researchers in 
the broader 3D bioprinting community. A shared database tailored to 
3D bioprinting can be established through the collection of experi-
mental results from various research groups on cloud platforms. In 
this context, the specialization of the 3D bioprinting field ensures the 
specificity of datasets, while the diversity of research groups gua-
rantees the multi-source and large-scale nature of datasets. 
Furthermore, benchmark datasets for 3D bioprinting could be 
established, akin to the role of ImageNet in the field of computer 
vision. Last but not least, during the construction of shared data-
bases, it is crucial to address ethical, privacy, and security concerns 
[367,368], particularly when patients or participants are involved 
(such as the appropriate use of patient healthcare data). In this re-
gard, relevant legislation should be established to regulate methods 
of data usage and the processes of dataset creation, accompanied by 
strict oversight and governance.

(ii) Insufficient universality of data-driven design for clinical 
deployment: Considering the clinical translation of 3D bio-
printing, patient-specific natural organs introduce a wide range 
of printed structures; the multi-material printing process brings 
numerous types of bioinks; and various bioprinter brands result 
in diverse 3D bioprinter configurations. This variability presents 
a multitude of working scenarios for data-driven design issues. 
While current ML models and datasets are typically built for 
specific scenarios, minor variations can render them unusable, 
requiring costly retraining.

Therefore, establishing universal ML models capable of adapting to 
various working scenarios will significantly reduce the need to 
construct datasets tailored to specific working scenarios, thereby 
resulting in substantial cost savings. Specifically, some design con-
siderations are related to continuous production, such as culture 
conditions and printing parameters. Across different working sce-
narios, they follow similar process mechanisms and share relatively 
fixed categories of CQA, CMA, and CPP, demonstrating a certain 
level of universality. As an example, consider the design of printing 
parameters in the direct ink writing process for hydrogel-based 
bioinks. Across different brands of 3D bioprinters, bioink materials, 
and printed models, the printing process follows similar physical 
mechanisms, primarily the rheology of extrusion process. And the 
concerned CQA (such as shape fidelity of printed structure), CMA 
(such as rheological properties of bioinks), and CPP (such as the 
printing speed and extrusion speed) also remain consistent. 

Fig. 10. A schematic diagram of integrated automation of entire processes.
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Consequently, in theory, a universal ML model could be developed to 
apply across all working scenarios.
Achieving this objective necessitates the accurate identification of 
CQA, CMA, and CPP, accompanied by their universal and stan-
dardized descriptions, which requires a profound understanding of 
the process mechanism. Subsequently, the acquisition of extensive 
experimental data under varied working scenarios becomes imper-
ative to construct comprehensive datasets. Ultimately, the successful 
development of universal ML models hinges upon meticulous 
architectural design and training methods predicated on the data 
structure of the inputs/outputs. To summarize, expertise in 3D bio-
printing and AI is required to ensure accurate predictions across 
diverse working scenarios.

(iii) Limited consideration of spatiotemporal dynamics in ML 
models: With the development of 3D bioprinting technology, the 
four key elements in this field have increasingly exhibited 
spatiotemporal dynamics. Firstly, with the advent of dynamic 
hydrogels, the implanted BPPs undergo multi-scale dynamic in-
teractions with the in vivo environment. At the macro scale, the 
degradation dynamics of BPPs should align with the host 
remodeling of the construct; while at the micro scale, the 
microenvironment provided by hydrogels regulates cell behav-
iors over time. Similarly, the emerging 4D bioprinting focuses on 
the stimuli-responsive shape morphing of printed structures over 
the additional temporal dimension. Additionally, in-situ bio-
printing is expected to accommodate the spatiotemporal changes 
of printing surfaces. In summary, these spatiotemporal dynamics 
present significant challenges to the design and manufacturing of 
3D bioprinting, yet most existing AI models are still confined to 
static scenarios.

In this context, ML models excelling at handling sequential data, 
such as RNN, LSTM, GRU, and Transformer, demonstrate strong 
temporal modeling capabilities, offering substantial potential for 
effectively managing these spatiotemporal dynamics.

Addressing the above-mentioned challenges will significantly 
advance the authentic development of human organ substitutes, facili-
tating the translation of 3D bioprinting from bench to bedside.
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