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Summary

Molecular de-extinction could offer avenues for drug discovery by reintroducing bioactive 

molecules that are no longer encoded by extant organisms. To prospect for antimicrobial peptides 

encrypted within extinct and extant human proteins, we introduce the panCleave random forest 
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model for proteome-wide cleavage site prediction. Our model outperformed multiple protease-

specific cleavage site classifiers for three modern human caspases, despite its pan-protease 

design. Antimicrobial activity was observed in vitro for modern and archaic protein fragments 

identified with panCleave. Lead peptides showed resistance to proteolysis and exhibited variable 

membrane permeabilization. Additionally, representative modern and archaic protein fragments 

showed anti-infective efficacy against A. baumannii in both a skin abscess infection model 

and preclinical murine thigh infection model. These results suggest that machine learning-based 

encrypted peptide prospection can identify stable, nontoxic antimicrobial peptides. Moreover, we 

establish molecular de-extinction through paleoproteome mining as a framework for antibacterial 

drug discovery.

Graphical Abstract

Introduction

The idea of reintroducing extinct organisms into extant environments has captured the 

public and scientific imagination, raising profound ethical and ecological questions1. Here, 

we introduce molecular de-extinction as an antibiotic discovery framework. Molecular de-

extinction is the resurrection of extinct molecules of life: nucleic acids, proteins, and other 

compounds no longer encoded by living organisms. While the societal benefit of organismal 

de-extinction is still unknown and contentious, technical challenges like incomplete genomic 

coverage remain significant1,2. By synthesizing only isolated compounds, molecular de-
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extinction circumvents many of the ethical and technical problems posed by whole-organism 

de-extinction. Molecular de-extinction is motivated by the hypothesis that molecules 

that conferred benefits to extinct organisms could be beneficial in the current global 

environment. Such molecules could be of biomedical or economic utility by bolstering 

defenses against future challenges that resemble stressors from environments past, including 

climate change or infectious disease outbreaks. The present work proposes molecular de-

extinction as a drug discovery framework for expanding the therapeutic search space through 

paleoproteome mining.

The global antibiotic resistance crisis, the threat of emerging pathogens, and the overuse 

of traditional antibiotic scaffolds necessitate new, computer-aided drug development 

paradigms3,4. Protein informatics is fertile ground for antibiotic discovery, as many peptides 

are known to modulate the host immune system, disrupt bacterial cell membranes, suppress 

biofilms, and promote wound healing5,6. Furthermore, 20n variants exist per n-length 

canonical amino acid sequence, presenting an enormous combinatorial space from which 

to select peptides with targeted activity. Antimicrobial peptides (AMPs) are an ancient 

class of host defense molecule found across the domains of life, representing an essential 

facet of innate immunity throughout evolution. Some AMPs are associated with collateral 

sensitivity in antibiotic-resistant bacteria and a low propensity to induce resistance5–7. The 

human cryptome is a subset of the proteome known to harbor AMPs that are released 

from precursor proteins by both host and pathogen proteases8,9. These bioactive encrypted 

peptides (EPs) can serve as natural templates for antibiotics and for bioinspired engineered 

therapies10,11.

Given the enormity of protein space, exhaustively searching for random AMPs is intractable. 

Instead, guided prospection can be constrained to sequences with desired physicochemical 

properties (e.g., charge and hydrophobicity)11, to the natural products of taxa known 

to synthesize antimicrobial compounds, or to other protein subspaces. The majority of 

antibiotics in use were derived from nature, including fungal and bacterial products12. 

AMP prospection has successfully mined diverse natural sources, including amphibian 

skin secretions13,14, snake venoms15, insect venoms16–20, and the gut microbiome21. By 

searching the human proteome for antimicrobial EPs, the present work builds on the 

tradition of guided prospection within natural resources. By proposing paleoproteome 

mining for AMP discovery, we contribute to a limited literature on the antimicrobial activity 

and resistance of isolates from ancient and extinct sources22–25 and on natural product 

discovery through paleobiotechnology26.

To mine extinct and extant human proteomes for potential encrypted peptides, we present 

the panCleave Python pipeline (https://gitlab.com/machine-biology-group-public/pancleave). 

This open-source machine learning (ML) tool leverages a pan-protease cleavage site 

classifier to perform computational proteolysis: the in silico digestion of human proteins into 

peptide fragments (Figs. 1, S1a). We experimentally validate panCleave for the prospection 

of antimicrobial EPs in modern human secreted proteins and in the archaic proteomes of 

our closest extinct relatives, Neanderthals and Denisovans (Fig. 1). Using panCleave, we 

discovered peptides encrypted within known precursor protein groups and rediscovered a 

known antimicrobial EP. An experimental comparison of peptide curation methods reveals 
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low but ranging positive hit rates, highlighting challenges in contemporary antimicrobial 

activity prediction. No positive hits discovered by panCleave were rediscovered by seven 

human protease-specific cleavage predictors27, suggesting that panCleave cleavage products 

are distinctive. By discovering AMPs through computational paleoproteome mining, this 

work offers a proof-of-concept for molecular de-extinction as an antibiotic discovery 

framework. Furthermore, this study introduces previously uncharacterized antimicrobial 

subsequences encrypted in archaic human proteins.

Results

Computational proteolysis for proteome-wide searches

The panCleave Python pipeline (Figs. 1, S1a) is a protein informatics tool that 

uses ML for computational proteolysis: the in silico fragmentation of human protein 

sequences into peptides. The development of this predictive tool was motivated by the 

hypothesis that protease-agnostic cleavage site prediction could facilitate biologically 

inspired prospection for encrypted host defense peptides. Prior cleavage site classifiers are 

specialized models that predict cleavage activity for only a subset of human proteases27–

38. Theoretically, protease-specific models could be expected to lose generalizability on 

inputs from distantly related proteases with different substrate specificities. A pan-protease 

design facilitates proteome-wide searches, circumventing the need to hypothesize protease-

substrate relationships. Obviating this need provides a unique advantage for bioinspired 

prospection and molecular de-extinction tasks by enabling preliminary explorations of 

under-characterized regions in modern and archaic proteomes.

Unlike prior cleavage site classifiers, panCleave was trained on all human protease 

substrates in the MEROPS Peptidase Database39. Training and testing data included 

substrates for 369 proteases representing 6 catalytic types, 31 clans, and 73 families. In 

comparison, DeepCleave features 43 proteases in its full dataset (20 caspases and 23 matrix 

metallopeptidases)29. Source code, training data (n = 39,707), and testing data (n = 9,927) are 

available on GitLab (https://gitlab.com/machine-biology-group-public/pancleave). Detailed 

descriptions of data preparation and model selection processes are available in the STAR 

Methods. Substrate amino acid frequencies, length distributions, protease representation, 

and precursor protein functions for all training and testing data are characterized in Figs. 

S1b–S2e.

The performance of the panCleave random forest can be quantified on an aggregated, 

protease-agnostic level and a disaggregated, protease-specific level. On the complete 

independent test set comprising substrates from 182 proteases (n = 9,927), panCleave 

achieved an overall accuracy of 73.3%. Ten-fold cross-validation on the training set 

(n = 39,707) yielded an average accuracy of 73.0%, indicating that panCleave did not 

overfit to the training data. Random forests can return the estimated probability of 

binary class membership (i.e., the probability that a subsequence is a cleavage site or 

non-cleavage site), which can be useful for providing a degree of confidence in model 

predictions40. Thresholding results in this way indicates increasing accuracy with increasing 

estimated probability: panCleave achieved 81.9% accuracy for predictions of 60% estimated 

probability or greater (62.8% of test set predictions) and a maximum accuracy of 96.6% 
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for predictions of 90% estimated probability or greater (2.1% of predictions) (Fig. 2a). The 

area under the receiver operating characteristic curve was 80.8% and the average precision 

was 80.3% (Fig. 2b,c). Negative predictive value, positive predictive value, sensitivity, and 

specificity were 73.2%, 73.5%, 73.0%, and 73.6%, respectively.

When disaggregating model accuracy by protease, panCleave performance ranged widely 

(Fig. 2d,e; Tables S1–S2). Among proteases with at least 100 test set observations, 

panCleave achieved greater than 80% accuracy on caspase-3 (C14.003; 99.2%), caspase-6 

(C14.005; 98.6%), granzyme B (S01.010; 93.2%), legumain (C13.004; 90.6%), and 

cathepsin S (C01.034; 81.9%) (Fig. 2d; Table S1). Among protease clans, panCleave 

achieved greater than 70% accuracy on endopeptidase clan CD (type protease caspase-1 

[C14.001]; 93.9%), endopeptidase/exopeptidase clan SB (type protease subtilisin Carlsberg 

[S08.001]; 88.6%), cysteine protease clan CA (type protease papain [C01.001]; 74.1%), and 

endopeptidase clan PA (type protease chymotrypsin A [S01.001]; 70.6%) (Table S1). The 

average accuracy was greatest for cysteine catalytic types (81.3%; 1858/2286 observations 

predicted correctly) and lowest for threonine catalytic types (34.6%; 18/52) (Fig. 2e).

When compared to pre-existing protease-specific models, panCleave outperformed for 

caspase-2 (C14.006; 100.0%), caspase-3 (C14.003; 99.15%), and caspase-1 (C14.001; 

92.68%) (Fig. 2f; Table S2). However, pre-existing models outperformed for multiple 

matrix metallopeptidases (Table S2). While the pan-protease design of panCleave does not 

preclude the possibility of high or state-of-the-art accuracy for specific proteases, the use of 

panCleave for protease-specific applications should be guided by the reported disaggregated 

accuracies (Fig. 2d,e,f; Tables S1–S2).

The random forest algorithm provides in-built feature importance calculations, which 

lends interpretability to the model. An analysis of feature importance based on mean 

decrease in impurity was conducted using functions provided by scikit-learn for random 

forest classifiers. As expected, results suggest that the most significant features are those 

corresponding to the residues most proximal to the cleavage site (i.e., the P1 and P1’ 

positions in the eight residue P4:P4’ flanking site) (Fig. S2f,g). However, relative feature 

importances are known to vary across importance scoring methods. Thus, we avoid 

overinterpretation of these results.

Modern encrypted peptides display antimicrobial activity in vitro

Eight of 80 (10.0%) modern secreted protein fragments were active against one or more 

pathogens in at least one of the conditions tested (Fig. 3; Table S3). Importantly, none of the 

tested sequences have yet been reported as AMPs or as AMP subsequences in the Database 

of Antimicrobial Activity and Structure of Peptides (DBAASP)41. The modern encrypted 

peptides (MEPs) identified by panCleave were found to have similar content of aliphatic 

(Ala, Gly, Ile, Leu, Pro, and Val), aromatic (Phe, Trp, and Tyr), and basic (His, Arg, and 

Lys) amino acid residues as AMPs described in the DBAASP41 (Fig. 2i–l). Relative to EPs 

recently identified by a non-ML scoring function11, MEPs identified here had 18% fewer 

basic residues and similar aliphatic and aromatic residue content, yet almost five-fold more 

acidic residues and 25% more polar residues11. Interestingly, the MEPs displayed more 

acidic (Asp and Glu) and polar (Asn, Cys, Gln, Met, Ser, and Thr) amino acid residues 
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than DBAASP AMPs (63% vs 26%, respectively). MEPs had notably higher median values 

for net charge and normalized hydrophobicity relative to archaic encrypted peptides (AEPs) 

(Fig. 2k,l), yet lower median values than recently reported EPs11 (Table S4). MEPs had 

slightly higher median length than AEPs and short AMPs (8–40 residues) reported in the 

DBAASP41 (Fig. 2j), with MEPs being enriched in glycine and arginine relative to AEPs 

(Fig. 2i). The physicochemical properties of each individual MEP are described in Table S4 

and Fig. S3a–c.

The mean estimated probability of flanking cleavage sites for MEPs did not differ 

substantially from that of inactive modern fragments (0.800 vs 0.803, respectively). To 

assess how many positive hits would have been missed if existing protease-specific 

predictors had been employed, we ran all MEP precursor proteins against the trypsin, 

ArgC, chymotrypsin, GluC, LysC, AspN, LysN, and LysargiNase models provided by 

DeepDigest27. With the exception of CALR-GWT20, no MEPs were predicted to be 

cleavage products of their respective precursors. However, CALR-GWT20 was identified 

by the LysargiNase model, the only DeepDigest model that is trained on yeast instead of 

human data.

The EP CBPZ-GSK24 from carboxypeptidase Z (UniProt ID: CBPZ_HUMAN) 

demonstrated the strongest antimicrobial activity in vitro, inhibiting Pseudomonas 
aeruginosa PA01 (8 μmol L−1), Pseudomonas aeruginosa PA14 (4 μmol L−1), Escherichia 
coli AIC221 (4 μmol L−1), Escherichia coli AIC222 (2 μmol L−1), and Acinetobacter 
baumannii ATCC19606 (16 μmol L−1). Fragment A7E2T1-SPR29 of uncharacterized 

protein A7E2T1_HUMAN also displayed activity against E. coli AIC221 (64 μmol L−1), E. 
coli AIC222 (64 μmol L−1), and A. baumannii ATCC19606 (8 μmol L−1). CALR-GWT20, 

encrypted in calreticulin (UniProt ID: CALR_HUMAN), displayed antimicrobial activity 

against colistin-resistant E. coli AIC222 at 128 μmol L−1 and A. baumannii ATCC19606 

at 64 μmol L−1. Fragment XDH-AVA32, a subsequence of xanthine dehydrogenase/oxidase 

(UniProt ID: XDH_HUMAN), was active at 32 μmol L−1 against both E. coli AIC221 

and AIC222 strains. ISK5-GKI32, part of the serine protease inhibitor kazal-type 5 

(UniProt ID: ISK5_HUMAN), was also active at 128 μmol L−1 against both E. coli 
strains. LYSC-AVA39, encrypted in lysozyme C (UniProt ID: LYSC_HUMAN), displayed 

activity at 128 μmol L−1 against P. aeruginosa PA14 and both E. coli strains. Fragment 

CO7A1-AIG15 from human long-chain collage (UniProt ID: CO7A1_HUMAN) displayed 

activity at 32 μmol L−1 against P. aeruginosa PA14, while the protachykinin-1 (UniProt ID: 

TKN1_HUMAN) fragment TKN1-SSI27 was active at 64 μmol L−1 against A. baumannii 
ATCC19606.

Archaic EPs display antimicrobial activity in vitro

Six of 69 (8.7%) archaic protein fragments displayed in vitro antimicrobial activity (Fig. 

3; Table S3). None of these fragments are reported as AMPs nor AMP subsequences 

in DBAASP41. The amino acid residue frequencies of AEPs differed from those of 

MEPs, recently described EPs11, and known natural and synthetic AMPs described in the 

DBAASP41 (Fig. 2). Similar to recently described EPs11, AEPs presented 9% and 16% 

higher content of aromatic residues than MEPs and DBAASP AMPs, respectively. AEPs 
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display 100% and 59% higher polar residue content than DBAASP AMPs and MEPs, 

respectively. AEPs presented the lowest frequency of basic residues across all groups 

analyzed, with frequencies 58%, 53%, and 62% lower than those of DBAASP AMPs, 

MEPs, and recently described EPs. AEPs also contain many acidic residues, similar to 

MEPs. Aliphatic amino acid content was similar across all analyzed groups.

AEPs had lower median values for net charge and normalized hydrophobicity relative 

to MEPs, recently describe encrypted peptides11, and AMPs reported in the DBAASP41 

(Figs. 2k,l; Tables S4). AEPs were enriched in threonine, isoleucine, methionine, and 

phenylalanine (Fig. 2i) and demonstrated an extremely high median propensity to aggregate 

(Tables S4). Although AEPs differed from MEPs and other EPs (Fig. 2i), their properties 

were still within the range of some known AMPs due to their (i) high hydrophobic 

content, (ii) low net charge, (iii) disordered conformation, and (iv) considerable tendency 

to aggregate (Fig. S3a–c). Physicochemical properties of each individual AEP are described 

in Table S4. The mean estimated probability of flanking cleavage sites for AEPs did not 

differ substantially from that of inactive archaic fragments (0.633 vs 0.617, respectively). 

As with MEPs, AEP precursors were run against the eight neural networks provided 

by DeepDigest27 to assess how many positive hits would have been missed by existing 

protease-specific predictors. No AEPs were rediscovered by these eight models.

Fragment PDB6I34D-ALQ29 of chain D of the Neanderthal glycine decarboxylase protein 

displayed activity against the largest number of organisms, moderately inhibiting both P. 
aeruginosa and E. coli strains (MICs from 32 to 128 μmol L−1). Denisovan transmembrane 

protein fragments A0A0S2IB02-AYT38 and A0A343EQH0-NVK38 displayed selective 

activity against P. aeruginosa PA01 at 128 μmol L−1. Similarly, fragment A0A343AZS4-

FMA25 from chain 1 of Denisovan NADH-ubiquinone oxidoreductase and fragment 

A0A343EQH4-LAM11 from Neanderthal ATP synthase subunit A displayed selective 

activity against A. baumannii ATCC19606 at 128 μmol L−1. Neanderthal adenylosuccinate 

lyase fragment A0A384E0N4-DLI09 moderately inhibited A. baumannii ATCC19606 (128 

μmol L−1), methicillin-resistant Staphylococcus aureus ATCC BAA-1556 (128 μmol L−1), 

and Staphylococcus aureus ATCC12600 (128 μmol L−1).

Resistance to proteolytic degradation

Among MEPs, those selected for clustering strongly with known AMPs were highly 

resistant to serum proteases (Fig. 3). Up to 85% of the initial concentration of these 

peptides remained after six hours of continuous exposure to serum proteases. Shorter MEPs 

(8-residues long) were less susceptible to cleavage than longer MEPs (up to 24 residues), 

with ~35% of the initial concentration present after six hours of exposure to proteases versus 

15–20%, respectively. On average, AEPs were more susceptible to proteolytic degradation 

than MEPs. An exception to this was the 9-residue-long A0A384E0N4-DLI09, the shortest 

AEP tested. This short peptide resisted degradation for two hours, decreasing to 80% of 

its initial concentration, with ~55% of its initial concentration remaining after six hours of 

exposure (Fig. 3). Our experimentally validated results (Fig. 3c,d) are consistent with the 

notion that sequence composition, cleavage site number, and length play a role in proteolytic 

degradation20,42.
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Membrane permeabilization and depolarization assays

MEPs and AEPs were investigated with fluorescent probes to determine how they affect 

the bacterial membrane. Positive control polymyxin B (PMB) is a peptide antibiotic 

having known permeabilizing and depolarizing effects (Figs. 3, S3d–k). In both assays, 

A. baumannii cells (Figs. 3, S3d,e, S9g,h) and P. aeruginosa PA01 (Fig. S3f,i) were exposed 

to the most active MEPs (CALR-GWT20, CBPZ-GSK4, TKN1-SSI27, and A7E2T1-SPR29 

for A. baumannii) and AEPs (A0A384E0N4-DLI09 and A0A343EQH4-LAM11 for A. 
baumannii; A0A343EQH0-NVK38 and A0A0S2IB01-AYT38 for P. aeruginosa) at their 

respective MICs (Figs. 3, S3d–i).

All MEPs except TKN1-SSI27 presented permeabilizing profiles similar to that of 

PMB. MEP TKN1-SSI27 initially demonstrated the slowest permeabilizing kinetics, yet 

progressively displayed the highest permeabilization efficiency (Figs. 3, S3d–k). The 

only peptide with an overall permeabilization efficacy lower than PMB was MEP CALR-

GWT20. All MEPs initially displayed relatively slow depolarizing kinetics that increased 

over time. After 30 minutes, modern peptides had stronger depolarizing effects than PMB, 

which were maintained until the end of the experiment (Fig. 3). No significant differences 

were observed among their depolarizing activities.

AEPs permeabilized A. baumannii cells similarly to (A0A343EQH4-LAM11) or less than 

(A0A384E0N4-DLI09) PMB, but had much stronger depolarizing effects (Figs. 3, S3d–k). 

AEPs A0A343EQH0-NVK38 and A0A0S2IB01-AYT38 permeabilized P. aeruginosa cells 

(Figs. 3, S3d–i), with higher relative fluorescence over time, indicating that P. aeruginosa 
was more sensitive than A. baumannii to these two peptides. Notably, A0A343EQH0-

NVK38 and A0A0S2IB01-AYT38 were more strongly depolarizing than PMB for P. 
aeruginosa cells (Fig. S3d–i).

Hemolytic and cytotoxic activities

Five AEPs and seven MEPs displaying antimicrobial activity were tested for their hemolytic 

and cytotoxic activities by exposing them to human red blood cells (RBCs) and human 

embryonic kidney (HEK293T) cells, respectively. HEK293T and red blood cells were 

selected as they are widely used to assess the toxicity of antimicrobial agents18,43,44. We 

estimated by non-linear regression the peptide dose that led to 50% hemolysis (HC50) and 

50% cytotoxicity (CC50).

Out of the seven tested MEPs, two (CBPZ-GSK24 and A7E2T1-SPR29) presented 

hemolytic activity at the concentration range tested, with HC50 values of 19.42 and 112 

μmol L−1, respectively. Interestingly, CBPZ-GSK24 and A7E2T1-SPR29 contain a high 

frequency of tryptophan and arginine residues, respectively. These amino acid residues are 

commonly linked to increased hemolytic activity due to their hydrophobicity45 (in the case 

of tryptophan) and guanidyl group and long side chain (in the case of arginine), leading 

to increased interactions with the lipidic portion of the phospholipids that form the cell 

membrane bilayers46.

Those two MEPs also presented detectable CC50 values at 44.19 (for CBPZ-GSK24) and 

12.78 μmol L−1 (for A7E2T1-SPR29). Additionally, the MEPs CALR-GWT20 and TKN1-
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SSI27 were not hemolytic (Table S3) but displayed CC50 values at 19.28 and 40.27 μmol 

L−1, respectively.

The three shorter AEPs tested (A0A384E0N4-DLI09, A0A343EQH4-LAM11, and 

PDB6I34D-ALQ29) did not elicit hemolysis. The two longer AEPs tested (A0A343EQH0-

NVK38 and A0A0S2IB02-AYT38; 38-residues long each), which were also the best 

bacterial cell depolarizers, displayed HC50 values of 54.72 and 88.11 μmol L−1, respectively. 

None of the five AEPs tested showed cytotoxic effects, i.e., they had CC50 values higher 

than the maximum concentration tested of 128 μmol L−1.

Anti-infective efficacy in preclinical animal models

To assess whether modern and archaic EPs retain their in vitro antimicrobial activity in 

complex living systems, we probed their antimicrobial properties in two mouse models (Fig. 

1): a skin abscess model and a preclinical murine thigh infection model.

For skin abscess experiments, we selected MEPs and AEPs with in vitro activity at 

concentrations lower than 64 μmol L−1 against A. baumannii. Bacterial loads of 106 cells 

in 20 μL of A. baumannii were administered to a skin abscess created on the back of each 

mouse (n = 6, Fig. 4a). A single dose of polymyxin B (control), MEP, or AEP was delivered 

as monotherapy to the infected area at MIC. Except for MEP A7E2T1-SPR39, all peptides 

demonstrated bactericidal effects in the skin abscess model (Fig. 4b). Activity levels were 

comparable to those of some of the most potent AMPs described to date in the literature 

using the same model, i.e., polybia-CP44 and PaDBS1R647. AEP A0A343EQH4-LAM11 

and MEP CALR-GWT20 markedly reduced bacterial loads by 5–6 orders of magnitude 

against A. baumannii. No deleterious effects were observed in the animals (Fig. 4c).

For the preclinical murine thigh infection with A. baumannii (n = 4, Fig. 4d), each peptide 

was injected at its MIC as a single intraperitoneal dose. The peptides used were active 

in vitro at concentrations lower than 64 μmol L−1 against A. baumannii. Two- and four-

days post-treatment (6 and 8 days since the beginning of the experiment, respectively), 

all peptides tested presented bacteriostatic activity (Fig. 4e). In contrast, the PMB control 

displayed bactericidal activity and cleared the infection four days post-infection (day 8 since 

the beginning of the experiment). No significant changes in mouse weight were observed 

(Fig. 4f). As weight loss is a proxy for toxicity, these results suggest that the tested EPs are 

non-toxic.

Positive hit rates by peptide curation method

As panCleave is designed for general purpose cleavage site prediction rather than end-to-

end bioactive EP detection, fragments were subsequently curated using various bioactivity 

prediction techniques. Modern and archaic protein fragment curation is described in the 

STAR Methods. We define a positive hit as a peptide that displays in vitro antimicrobial 

activity against at least one pathogen in at least one growth medium (MIC ≤128 μmol L−1). 

An experimental comparison of positive hit rates by MEP curation method revealed a range 

in success, with no single method exceeding 20%. Activity was observed for 5% (1/20) 

of randomly selected peptides; 6.7% (1/15) of peptides predicted to be antimicrobial by 
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a peptide chemistry expert; 20% (3/15) of peptides predicted to be antimicrobial by ML 

model consensus; and 15% (3/20) of peptides identified by CD-HIT-2D48 (Fig. 2g). All 

ten sequences predicted to be inactive were indeed inactive against all pathogens tested 

experimentally (10/10, 100%). Though ML model consensus outperformed other curation 

methods, individual models ranged in positive hit rate from 6.7% (1/15) to 20% (3/15) (Fig. 

2h). The results of exact tests indicated for low frequencies (Fisher, Boschloo, and Barnard) 

did not reveal statistically significant differences in hit rate across curation methods (at p 
≤0.01), with the lowest p-value associated with CD-HIT-2D vs random selection using LB 

medium (under the Barnard exact test; p <0.087).

Discussion

This proof-of-concept study for ML-facilitated molecular de-extinction offers preliminary 

support for pharmacological prospection in paleoproteomes. We report previously 

uncharacterized antimicrobial subsequences encrypted within archaic human proteins, 

allowing access to bioactive peptides with unusual amino acid distributions. Results 

suggest that the de-extinction of archaic hominin peptides could expand the search 

space for protein therapies while remaining within the subspaces previously selected 

by human evolution. We hope that future work will refine the concept of molecular 

de-extinction and extend it beyond paleoproteome mining, perhaps to genomic mining 

for small molecules. Additionally, this work lends further support for computational EP 

prospection in the modern human proteome, which was previously proposed as an antibiotic 

discovery framework11. Future work might consider whether prospection within modern and 

archaic humans might minimize pharmacological risks such as toxicity, relative to mining 

evolutionarily distant or synthetic protein spaces.

This proof-of-concept does not make claims regarding the evolutionary history of the 

discovered EPs, whether they are (or were) proteolytically released from their precursors 

in vivo, nor whether they actively participate (or participated) in innate immune responses 

to bacterial infection. Rather, our results demonstrate the potential for therapeutics 

engineering to draw biological inspiration from the evolutionary processes that give rise 

to antimicrobial EPs in nature. However, we feel that future work in EP discovery could 

shed useful evolutionary insights. For example, given the essential role of AMPs in 

innate immunity, host defense peptides derived from archaic introgression may have been 

retained in the modern human proteome. The mammalian immunity protein lactoferrin 

contains antimicrobial motifs and displays evidence of positive selection across primates, 

perhaps entering the human population through convergent evolution or introgression from 

Neanderthals25. The maintenance of archaic AMPs in modern proteomes may merit further 

inquiry.

The modern and archaic peptides presented here may offer prototypes for antibiotic 

development. The observed membrane depolarization was unexpected11 and may have 

resulted from physicochemical differences between these peptides and human EPs mined 

with other computational methods11, which do not depolarize bacterial cytoplasmic 

membranes. If EPs operate via mechanisms of action independent of cytoplasmic membrane 
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depolarization, antimicrobial EPs would be mechanistically distinct from AMPs from the 

DBAASP. EP diversity is, therefore, an intriguing area for future research.

While prior cleavage site classifiers favor protease-specific designs28–38, the panCleave 

random forest is trained on protease-agnostic data yet is highly accurate for multiple 

specific proteases (Fig. 2). To demonstrate the contributions of panCleave, we assessed 

how many positive hits would have been missed if existing protease-specific predictors 

had been employed instead. With the exception of fragment CALR-GWT20 from modern 

human calreticulin, no MEPs nor AEPs were predicted to be cleavage products of their 

respective precursors by eight protease-specific neural networks provided by DeepDigest27. 

This tool was selected for comparison due to its recent publication and accessibility as 

an open-source command line tool. Of note, CALR-GWT20 was rediscovered by the 

DeepDigest LysargiNase model, the only model in this suite that is not trained on human 

data. Instead, it is trained on yeast protease data and tested on E. coli protease data, 

making it unsuitable for human EP discovery. These results suggest that panCleave cleavage 

products may be distinct relative to those produced by existing protease-specific models. 

Further, the reasonable in silico performance of panCleave suggests that cleavage sites 

across the human proteome might share sufficient similarities to enable pan-protease model 

development, despite protease-substrate specificities. We hypothesize that algorithmic and 

data improvements could yield even better pan-protease models in the future, enabling 

higher quality proteome-wide searches.

Antimicrobial activity prediction remains challenging

The low accuracy of all peptide curation methods employed – including human expertise 

– suggests that the state-of-the-art in AMP activity prediction may be lacking (Fig. 

2g). No method was found to significantly outperform random selection, though we 

caution against overinterpretation of significance tests given small sample sizes and low 

observed frequencies. Small sample sizes aside, the marked difference in curation method 

accuracy for predicted positives versus predicted negatives might suggest that more is 

currently understood about non-antimicrobial protein space than about AMP diversity. 

Low agreement and poor accuracy among popular, publicly available ML models for 

AMP discovery49–53 (Fig. 2h) may suggest that models often overfit to their training-

testing distributions, rather than being generalizable across antimicrobial protein space. 

Furthermore, both CD-HIT48 and hierarchical k-means clustering (Fig. S3l,m,n) failed to 

identify insightful boundaries between peptides with and without antimicrobial activity. 

These results emphasize the importance of further characterizing antimicrobial protein 

space and highlight shortcomings in supervised and unsupervised learning for this research 

problem. Optimistically, while positive hit rates below 20% have been previously observed 

for ML-based AMP discovery54, recent deep learning models have enabled significantly 

higher hit rates21.

Rediscovery of a known antimicrobial motif

In addition to discovering antimicrobial EPs, the panCleave pipeline unintentionally 

uncovered a MEP containing a known bioactive subsequence. As lysozyme C is known to 

be bacteriolytic and to enhance immunoagent activity, it is unsurprising that a subsequence 
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of this enzyme might itself display antimicrobial activity. A known EP of human lysozyme 

C is a subsequence of panCleave-generated MEP LYSC-AVA3955,56. The unintentional 

rediscovery of this antimicrobial motif in lysozyme C supports the use of the present 

pipeline for antimicrobial EP discovery. Similarly, all antimicrobial EPs discovered in the 

present work originate from proteins belonging to groups previously described in the EP 

literature. As peptide fragments were not curated based on their precursor protein, this 

further lends support for panCleave as an antimicrobial EP discovery tool.

Precedents for modern precursor proteins

Secreted proteins have previously been targeted for bioactive EP discovery11,57. A prior 

whole-proteome search found an overrepresentation of secreted and membrane-bound 

proteins among antimicrobial EP precursors, perhaps because AMPs are more likely to 

encounter pathogens in the extracellular environment11. As has been thoroughly reviewed, 

enzymes are common precursors for encrypted host defense peptides58. MEP precursor 

proteins identified in this study generally display catalytic activity (Table S5), with all MEP 

precursor groups having precedents in the EP literature.

Proteases across the tree of life not only catalyze EP release but also contain antimicrobial 

EPs58. In the present study, the MEP CBPZ-GSK24 is derived from the protease 

carboxypeptidase Z, which may participate in prohormone processing59.

Fragment CALR-GWT20 is derived from calreticulin, a calcium-binding chaperone protein 

that is highly conserved in multicellular life and is primarily localized to the endoplasmic 

reticulum. Calreticulin has been implicated in innate immune responses to bacterial infection 

in mammals, marine vertebrates, marine and terrestrial invertebrates, and plants60–63. 

Vasostatin is a well-characterized anti-angiogenesis and anti-tumor EP that is part of 

calreticulin64, lending precedent for the presence of bioactive subsequences in this precursor.

Serine protease inhibitors in diverse marine organisms have displayed antibacterial and 

antiviral innate immunity functions65–67. The observed antibacterial and antifungal activity 

of a kazal-type serine protease inhibitor in honeybee venom appears to act through microbial 

serine protease inhibition16. MEP ISK5-GKI32 is encrypted within serine protease inhibitor 

kazal-type 5, which is known to yield EPs with protease inhibition activity when cleaved 

by the protease furin68. The downregulation, deletion, and mutation of serine protease 

inhibitor kazal-type 5 are associated with inflammation, compromised skin-barrier function, 

atopic dermatitis, rosacea, and Netherton syndrome69–71. Assaying ISK5-GKI32 against 

skin microbes implicated in these conditions could be an area for future research.

Oxidoreductases are known to contain antimicrobial EPs in modern humans57,58,72, 

Bacillus73, Desulfocurvibacter74, Saccharomyces75, and Physcomitrella76. In the present 

study, MEP XDH-AVA32 is a subsequence of the oxidoreductase xanthine dehydrogenase, 

which catalyzes the oxidative metabolism of purines. CO7A1-AIG15 is contained within the 

collagen alpha-1(VII) chain (syn. long-chain collagen), whose Gene Ontology molecular 

functions include serine-type endopeptidase inhibitor activity and extracellular matrix 

structural functionality77.
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MEP TKN1-SSI27 is contained within protachykinin-1, a neuropeptide implicated in 

antibacterial and antifungal humoral responses and defense responses to both Gram-

negative and Gram-positive bacteria59. A7E2T1-SPR29 originates from the uncharacterized 

protein fragment A7E2T1_HUMAN, which shares 99.21% identity with both the Homo 
sapiens neuropeptide W preproprotein (BLAST E-value 4e-78) and prepro-Neuropeptide 

W polypeptide (BLAST E-value 1e-77)78. A7E2T1_HUMAN enables G protein-coupled 

receptor binding, according to Gene Ontology77.

Archaic precursors in the mitochondrial proteome

As publicly available Denisovan and Neanderthal data originate from the mitochondrial 

proteomes of these species, the AEP precursor proteins we identified are generally 

mitochondrial transmembrane proteins associated with transport, mitochondrial activity, and 

purine or ATP synthesis (Table S5). Precursor proteins were submitted to BLAST78 to 

assess similarity to modern human analogs (Table S5). On average, AEP precursor proteins 

shared 99.49% identity with a modern human protein (standard deviation <0.003). All AEP 

precursors identified here belong to protein groups with precedents in the literature on 

encrypted host defense peptides, lending support for the use of panCleave for archaic human 

AMP prospection.

As discussed above, host defense peptides are known to be encrypted in oxidoreductases 

from across the kingdoms of life. AEP A0A343AZS4-FMA25 originated from the 

Denisovan transmembrane protein NADH-ubiquinone oxidoreductase chain 1 (EC 

7.1.1.2), while A0A343EQH0-NVK38 is a subsequence of the 347-residue Neanderthal 

NADH-ubiquinone oxidoreductase chain 2 (EC 7.1.1.2). AEP A0A0S2IB02-AYT38 is 

a subsequence of the Denisovan cytochrome C oxidase subunit 1 (EC 7.1.1.9), a 

transmembrane protein that participates in the respiratory chain by catalyzing the reduction 

of oxygen to water.

Precedents for lyases as precursor proteins include an AMP encrypted within the pterin-4-

alpha-carbinolamine dehydratase of Mus musculus74. AEP A0A384E0N4-DLI09 is a 

subsequence of the Neanderthal adenylosuccinate lyase (syn. adenylosuccinase; EC 4.3.2.2), 

a coiled lyase involved in purine biosynthesis. AEP PDB6I34D-ALQ29 originates from 

chain D of the 984-residue Neanderthal lyase glycine decarboxylase.

The ATP synthase of the blowfly Sarconesiopsis magellanica is known to contain an 

encrypted AMP, and compounds excreted and secreted by this species have displayed 

antibacterial activity79. Likewise, the Neanderthal ATP synthase subunit A was found to 

contain AEP A0A343EQH4-LAM11.

Comparative performance evaluation for the machine learning model

Direct comparative performance analyses were not possible for the panCleave model due to 

data availability, necessitating indirect comparisons (i.e., comparing reported performance 

metrics rather than testing each model on the exact same evaluation dataset). As panCleave 

is the only pan-protease cleavage classifier for human proteins, its overall accuracy cannot 

be benchmarked against an existing model. On the other hand, no existing protease-specific 

model was known to release exact training data, and very few models released test data. 
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Training and testing data for prior models would be necessary to cross-reference against the 

panCleave data splits in order to prevent data leakage (i.e., to ensure that testing instances 

were not present at training time), which could bias performance metrics in favor of any 

given model. The inability to directly compare panCleave with existing models highlights 

the importance of publicly releasing all training and testing data. Without the release of 

these data, the ML community is likely to face a significant reproducibility problem80–84.

Future questions for molecular de-extinction and evolutionary medicine

Although the potential for molecular de-extinction to support drug discovery is a new 

open question, this proof-of-concept study for ML-facilitated molecular de-extinction offers 

preliminary support for the value of pharmacological prospection in paleoproteomes. The 

influence of archaic genomes on contemporary innate immunity could guide future interest 

in this line of inquiry. Encounters among modern humans, Neanderthals, and Denisovans 

resulted in multiple known admixture events that produced reproductively viable hybrid 

offspring85,86. As Neanderthals and Denisovans evolved adaptive advantages in Eurasian 

environments over millennia, maintenance of introgressed alleles may have conferred 

fitness benefits to recently arrived modern humans87. An overrepresentation of introgressed 

alleles has been observed in innate immunity genes relative to other genomic regions88, 

resulting in a notable contribution to modern immune variation89,90. Of current interest, 

the Neanderthal OAS1 haplotype has been seen to provide protection against COVID-19 

infection in individuals of European descent91, though an elevated risk of severe infection 

has also been linked to a 50 kb region of Neanderthal origin92. Given their essential role 

in innate immunity, archaic host defense peptides may have entered the modern proteome. 

The present work does not pursue this question, though it may merit further inquiry. These 

questions of evolutionary medicine can be extended outside the Homo lineage, as has been 

done for ancient extant marsupial and monotreme host defense peptides22.

Limitations of the study

The following limitations should be noted when interpreting the present work. The quality 

of the panCleave model was impacted by multiple data limitations. The negative dataset 

is likely to be noisy, as these observations were drawn randomly rather than through 

experimental validation. Positive training data may also be noisy, as the database from which 

they originate39 is aggregated across diverse experimental data sources. Testing panCleave 

against out-of-distribution data could further attest to overfitting and model quality. Further, 

future work could address optimal input length: though MEROPS reports cleavage sites as 

8-residue P4:P4’ flanking sites, longer flanking sites might provide useful information for 

cleavage site prediction29.

The study design assumes that the extremely high similarity among the modern human, 

Neanderthal, and Denisovan proteomes is also suggestive of high conservation in protease 

activity (e.g., protease-substrate specificity). That is to say, we assume that a modern human 

protease with preference for a given amino acid sequence will also cleave Neanderthal or 

Denisovan proteins containing that subsequence. Though these assumptions leave claims of 

discovering naturally occurring archaic EPs unjustifiable, they do not undermine the present 

objective of bioinspired protein engineering. Relatedly, the panCleave model is designed for 
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cleavage site prediction, not bioactive EP detection. Thus, the success of the present pipeline 

hinges both on panCleave and on subsequent bioactivity prediction. Assuming sufficient 

data availability, future models could be designed for end-to-end antimicrobial EP detection. 

Such a model might lend itself to deeper evolutionary insights than the current pipeline.

Finally, the low positive hit rates observed across curation methods must be improved to 

make EP prospection tractable. While the present EP discovery method is not intended 

to compete with traditional industrial-scale bioprospecting, future research should consider 

commercial viability and efficiency at scale.

STAR METHODS

Resource availability

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact upon reasonable request, Cesar de la Fuente-Nunez 

(cfuente@upenn.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• Training data, testing data, and code used to develop the machine learning model 

are freely available on GitLab (https://gitlab.com/machine-biology-group-public/

pancleave).

• All data pertaining to the experimental validation of generated peptides are 

available in the Supplementary Data.

• Any additional information required to reanalyze the data reported in this paper 

is available from the Lead Contact upon request.

Experimental model

Bacterial strains and growth conditions—Escherichia coli ATCC11775, 

Acinetobacter baumannii ATCC19606, Pseudomonas aeruginosa PA01, Pseudomonas 
aeruginosa PA14, Staphylococcus aureus ATCC12600, Staphylococcus aureus ATCC 

BAA-1556 (methicillin-resistant strain), Escherichia coli AIC221 [Escherichia coli MG1655 

phnE_2::FRT (control strain for AIC 222)] and Escherichia coli AIC222 [Escherichia 
coli MG1655 pmrA53 phnE_2::FRT (polymyxin resistant; colistin-resistant strain)], and 

Klebsiella pneumoniae ATCC13883 were grown and plated on Luria-Bertani (LB) or 

Pseudomonas Isolation (Pseudomonas aeruginosa strains) agar plates and incubated 

overnight at 37 °C from frozen stocks. After incubation, one isolated colony was transferred 

to 5 mL of medium (LB) or basal medium with glucose (BM2), and cultures were incubated 

overnight (16 h) at 37 °C. The following day, inocula were prepared by diluting the 

overnight cultures 1:100 in 5 mL of the respective media and incubating them at 37 °C 

until bacteria reached logarithmic phase (OD600 = 0.3–0.5).
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Human embryonic kidney and red blood cells—Human embryonic kidney 

(HEK293T) cells were obtained from the American Type Culture Collection (ATCC) and 

grown 37 °C in a humidified atmosphere containing 5% CO2 in Dulbecco’s modified 

Eagle’s medium (DMEM) supplemented with 1% antibiotics (penicillin and streptomycin) 

and 10% fetal bovine serum (FBS). Red blood cells were purchased from Zen-Bio from a 

certified healthy donor (blood type A−).

Skin abscess infection mouse model—A. baumannii ATCC19606 cells were grown 

in tryptic soy broth (TSB) medium to an OD600 = 0.5. Next, cells were washed twice with 

sterile PBS (pH 7.4, 13,000 rpm for 1 min) and resuspended to a final concentration of 

2×105 colony-forming units (CFU) mL−1 for A. baumannii. Six-week-old female CD-1 mice 

from Charles River (stock number 18679700–022) were anesthetized with isoflurane for 

two minutes and had their backs shaved. A superficial linear skin abrasion was made with 

a needle to damage the stratum corneum and upper layer of the epidermis. An aliquot of 

20 μL containing the bacterial load resuspended in PBS was inoculated over the scratched 

area (day 0, beginning of the experiment). One hour after the infection, peptides diluted 

in water at their MIC value were administered to the infected area (day 0, beginning 

of the experiment). Animals were euthanized and the area of scarified skin was excised 

two- and four-days post-infection (days 2 and 4 since the beginning of the experiment, 

respectively), homogenized using a bead beater for 20 minutes (25 Hz), and 10-fold serially 

diluted for CFU quantification. Each group had a total of six mice (n = 6), where three 

mice were infected with one inoculum and the remaining three mice were infected with 

another inoculum. Statistical significance was determined using one-way ANOVA; p values 

are shown for each of the groups, all groups were compared to the untreated control group. 

The skin abscess infection mouse model was approved by the University Laboratory Animal 

Resources (ULAR) from the University of Pennsylvania (Protocol 806763).

Thigh infection mouse model—The 4–6 weeks old female CD-1 mice from 

Charles River (stock number 18679700–022) were rendered neutropenic by two doses of 

cyclophosphamide (150 mg Kg−1) applied intraperitoneally with an interval of 72 h (days 

0 and 3 since the beginning of the experiment, respectively). One day after the last dose of 

cyclophosphamide (day 4 since the beginning of the experiment), the mice were infected 

intramuscularly in their right thigh with a bacterial load of 106 CFU mL−1 of A. baumannii 
ATCC19606. The bacteria were grown in tryptic soy broth (TSB), washed twice with 

PBS (pH 7.4), and resuspended to the desired concentration. Two hours later, peptides 

resuspended in water were administered intraperitoneally. Prior to each injection, mice were 

anesthetized with isoflurane and monitored for respiratory rate and pedal reflexes11,18,44. 

Next, we monitored the establishment of the infection and euthanized the mice. The infected 

area was excised two- and four-days post-infection (days 6 and 8 since the beginning of the 

experiment, respectively), homogenized using a bead beater for 20 min (25 Hz), and 10-fold 

serially diluted for CFU quantification in MacConkey agar plates. The experiments were 

performed with 4 mice per group. Statistical significance in Fig. 4e (day 6) was determined 

using one-way ANOVA, and in Fig. 4e (day 8) using Kruskal-Wallis test because of the 

non-normal distribution and unequal variance across groups; p values are shown for each 

of the groups, all groups were compared to the untreated control group. The thigh infection 
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mouse model was approved by the University Laboratory Animal Resources (ULAR) from 

the University of Pennsylvania (Protocol 807055).

Method details

Antibacterial assays—The 69 curated fragments were subjected to broth microdilution 

assays to assess in vitro antimicrobial activity. Minimum inhibitory concentration (MIC) 

values of the peptides were determined by using the broth microdilution technique93 with 

an initial inoculum of 5×106 cells in LB or BM2 medium supplemented with glucose 

in nontreated polystyrene microtiter 96-well plates. Peptides were added to the plate as 

solutions in water at concentrations ranging from 0 to 128 μmol L−1. The MIC was 

considered as the lowest concentration of peptide that completely inhibited the visible 

growth of bacteria after 24 h of incubation of the plates at 37 °C. Plates were read in a 

spectrophotometer at 600 nm. All assays were done as three independent replicates.

Resistance to proteolytic degradation assays—To evaluate the resistance to 

enzymatic degradation, EPs were incubated in fetal bovine serum (FBS)94. Peptides were 

exposed to an aqueous solution of 25% FBS at a concentration of 2 mg mL−1 for 6 h at 37 

°C. Aliquots were collected after 0, 0.5, 1, 2, 4, and 6 h, and 10 μL of trifluoroacetic acid 

was added to each sample and incubated for 10 min at 4 °C. Samples were then processed 

in a Waters Acquity UPLCMS equipped with a photodiode array detector (190–400 nm data 

collection) and a Waters TQD triple quadrupole MSMS, with 5 μL injections. The column 

used was a Waters Acquity UPLC HSS C18, 1.8 μm (2.1 mm x 50 mm). The mobile phases 

used were A (100% water with 0.1%, v/v, formic acid) and B (100% acetonitrile with 0.1%, 

v/v, formic acid), Fisher optima grades. Measurements were made by ionization ESI +/− 

simultaneous over m/z 100–2000 Da. The percentage of remaining undamaged peptide was 

calculated by integrating the area under the curve related to the peptide at time point zero.

Time (min) A (%) B (%) Flow rate (mL min−1)

0 95 5 0.5

0.5 95 5 0.5

2.5 5 95 0.5*

3 5 95 0.5

3.25 5 95 0.5

*
linear gradient.

Membrane permeabilization assays—The membrane permeability of the peptides 

was determined by using the 1-(N-phenylamino)naphthalene (NPN) uptake assay11. NPN 

fluoresces weakly in extracellular environments and strongly when in contact with bacterial 

membrane lipids (Figs. 3e–g, S3d,e,f, and S3j), but only permeates the bacterial outer 

membrane when membrane integrity is compromised. A. baumannii ATCC19606 and P. 
aeruginosa PA01 were grown to an OD600 of 0.4, centrifuged (10,000 rpm at 4 °C for 

10 min), washed, and resuspended in buffer (5 mmol L−1 HEPES, 5 mmol L−1 glucose, 

pH 7.4). Next, 4 μL of NPN solution (0.5 mmol L−1 – working concentration of 10 μmol 
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L−1 after dilutions) was added to 100 μL of the bacterial solution in a white 96-well 

plate. The background fluorescence was recorded at λex = 350 nm and λem = 420 nm. Peptide 

solutions in water (100 μL solution at their MIC values) were added to the 96-well plate, and 

fluorescence was recorded as a function of time until no further increase in fluorescence was 

observed (20 min).

The relative fluorescence was calculated using a non-linear fit. The untreated control (buffer 

+ bacteria + fluorescent dye) was used as baseline and the following equation was applied to 

reflect % of difference between the baseline and the sample:

Percentage difference = 100 * (fluorescencesample − baseline)
baseline

Membrane depolarization assays—The ability of the peptides to depolarize 

the cytoplasmic membrane was determined by measurements of fluorescence of the 

membrane potential-sensitive dye, 3,3’-dipropylthiadicarbocyanine iodide [DiSC3-(5)]11, a 

potentiometric fluorophore that fluoresces in response to an imbalance of the cytoplasmic 

membrane transmembrane potential (Fig. 3h–j, S3g,h,i, and S3k). Briefly, A. baumannii 
ATCC19606 and P. aeruginosa PA01 were grown at 37 ºC with agitation until they reached 

mid-log phase (OD600 = 0.5). The cells were then centrifuged and washed twice with 

washing buffer (20 mmol L−1 glucose, 5 mmol L−1 HEPES, pH 7.2) and resuspended to 

an OD600 of 0.05 in the same buffer containing 0.1 mol L−1 KCl. The cells (100 μL) were 

then incubated for 15 min with 20 nmol L−1 of DiSC3(5) until the reduction of fluorescence 

stabilized, indicating the incorporation of the dye into the bacterial membrane. Membrane 

depolarization was then monitored by observing the change in the fluorescence emission 

intensity of the membrane potential-sensitive dye, DiSC3-(5) (λex = 622 nm, λem = 670 nm), 

after the addition of the peptides (100 μL solution at MIC values).

The relative fluorescence was calculated using a non-linear fit. The untreated control (buffer 

+ bacteria + fluorescent dye) was used as baseline and the following equation was applied to 

reflect % of difference between the baseline and the sample:

Percentage difference = 100 * (fluorescencesample − baseline)
baseline

A machine learning-based protein informatics pipeline for computational 
proteolysis—The panCleave Python pipeline is a protein informatics tool that uses ML 

to perform computational proteolysis: the in silico digestion of human proteins into peptide 

fragments (Figs. 1, S1a). As the MEROPS database reports cleavage sites in terms of 

8-residue P4:P4’ flanking sites39, the panCleave random forest model predicts cleavage sites 

within each 8-residue subsequence of a given protein. Thus, the minimum length for an 

input protein is also 8 amino acids. The domain model for this Python pipeline is visualized 

in Fig. S1a.

When presented with an 8-residue input, panCleave returns a binary label classifying 

the sequence as a cleavage site or non-cleavage site. Additionally, panCleave returns the 
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estimated probability of class membership (i.e., the estimated probability that the assigned 

label for a given input is correct). Estimated probability reporting allows the user to 

filter predicted fragments by probability threshold, e.g., to bias fragment curation toward 

predictions with high estimated probability.

The panCleave pipeline performs the following procedure per input protein:

1. Sliding window: Every 8-residue contiguous subsequence of the protein 

sequence string is computed.

2. Encoding: Each subsequence is converted to a numerical feature vector using the 

ProtFP encoding method95.

3. Prediction: The label and estimated probability of class membership are 

computed per subsequence.

4. Fragmentation: The full protein string is tokenized at each predicted cleavage 

site, yielding a list of peptide fragments.

Additional utility functions are also provided, including prediction filtering functionality and 

FASTA file conversion. Pipeline source code, tutorial notebooks, and documentation are 

available on GitLab (https://gitlab.com/machine-biology-group-public/pancleave).

Model training and testing data—The panCleave random forest was trained and 

tested on all human protease substrates in the MEROPS Peptidase Database as of June 

202039. Substrate sequences for all human proteases available in MEROPS encompassed 

369 proteases representing 6 catalytic types (Cysteine, Metallo, Serine, Aspartic, Threonine, 

and Mixed), 31 clans, and 73 families. Protease representation and amino acid frequency 

distributions for the MEROPS dataset are visualized in Figs. S1b–f.

Model training and testing used a balanced dataset of 49,634 observations. As MEROPS 

reports cleavage sites as 8-residue P4:P4’ flanking sites, all observations are 8 residues 

in length. Cleavage site data were curated from MEROPS (n = 24,817 unique positive 

observations) and combined with 8-residue sequences generated from the human proteome 

and random protein space (n = 24,817 unique negative observations). Redundant sequences, 

sites containing non-canonical amino acids, and sites of length shorter than 8 residues were 

removed from the positive dataset. Negative observations were generated by three methods, 

each constituting one third of the negative dataset: randomly selected 8-residue contiguous 

subsequences of the human proteome, randomly generated sequences adhering to the amino 

acid frequencies of the human proteome, and randomly generated sequences with no amino 

acid frequency constraints. No sequences were present in both the positive and negative 

datasets.

Training and 10-fold cross-validation were performed using 80% of total observations 

(n = 39,707). The remaining 20% of observations were reserved as an independent test set 

(n = 9,927). The train-test split was stratified by label to ensure that each split maintained 

a label distribution representative of the entire dataset (50% positive observations and 50% 

negative observations). The complete training dataset, testing dataset, and Python code are 
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available on GitLab and as supplemental files (https://gitlab.com/machine-biology-group-

public/pancleave).

Hemolysis assays—We evaluated the lysis of human erythrocytes upon treatment with 

AEPs and MEPs to assess hemolytic activity96. Human red blood cells (RBCs) were 

obtained from ZenBio from certified healthy donor. The cells were collected using heparin 

as an anti-coagulant. Briefly, the RBCs were washed four times with PBS (pH 7.4) through 

centrifugation at 800 g for 10 min. Next, we mixed aliquots of 200-fold diluted cells (75 

μL) with peptide solutions ranging from 2 to 128 μmol L−1 (75 μL) in round bottom 96-well 

plates and incubated the mixture for 4 h at room temperature. Following incubation, we 

centrifuged the plate at 1,300 g for 10 min to separate the cells and debris. Then, we 

transferred the supernatant (100 μL) from each well to new flat bottom 96-well plates 

for absorbance reading at 405 nm using a plate reader. The percentage of hemolysis was 

defined by normalizing the absorbance values obtained with those from the negative control 

samples (i.e., samples containing only PBS) and to those of the positive control samples 

(i.e., samples containing 1% SDS in PBS solution, v/v).

Hemolysis ( % ) = (Abs405 nm treatment − Abs405 nm negative control)
(Abs405 nm positive control − Abs405 nm negative control) × 100

Cytotoxicity assays—Human embryonic kidney (HEK293T) cells from the American 

Type Culture Collection were cultured in high-glucose Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with 1% antibiotics (penicillin and streptomycin) and 10% 

fetal bovine serum (FBS). The cells were grown at 37 °C in a humidified atmosphere 

containing 5% CO2. HEK293T cells were seeded into cell treated 96-well plates at the 

density of 5×103 cells per well one day before the treatment with increasing concentrations 

of peptide (8–128 μmol L−1). After the incubation with each peptide, we performed the 

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction assay 

(MTT assay)96. Briefly, MTT reagent dissolved at 0.5 mg mL−1 in medium without phenol 

red was used to replace cell culture supernatants (100 μL per well), and the samples were 

incubated for 4 h at 37°C to obtain the insoluble formazan salts. The resulting salts were 

then solubilized in 0.04 mol L−1 HCl in anhydrous isopropanol and quantified by measuring 

the absorbance at 570 nm using a spectrophotometer.

Hyperparameter tuning and final model selection—Six classifiers were 

implemented using scikit-learn (https://scikit-learn.org/) and TensorFlow (https://

www.tensorflow.org/): Gaussian Process (GP), K-Nearest Neighbor (KNN), Naive Bayes 

(NB), Random Forest (RF), Recurrent Neural Network (RNN), and Support Vector 

Machine (SVM). Each algorithm was trained and tested on 5 input representations: 

one-hot encoding, ProtFP95, ST-Scale97, Z-Scale98, and UniRep99. The resulting 30 

candidate models each underwent Bayesian search hyperparameter tuning using the skopt 

Python package (https://scikit-optimize.github.io/optimize.github.io/) on the Stampede2 

supercomputer (Texas Advanced Computing Center, The University of Texas at Austin, 

TX, USA). Hyperparameter tuning used 10-fold cross-validation on the training set.
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Three tuned finalists were selected on the basis of superior 10-fold cross-validation: RF, 

RNN, and SVM, each trained on the ProtFP encoding. Finalists were assessed via three 

performance metrics, each computed using scikit-learn (https://scikit-learn.org/): test set 

accuracy, area under the receiver-operating characteristic curve (AUC-ROC), and average 

precision. Additionally, accuracy was assessed when thresholding the estimated probability 

of class membership at ≥50%, ≥60%, ≥70%, ≥80%, and ≥90%. The tradeoff between 

increases in accuracy and decreases in total valid observations at a given estimated 

probability threshold was quantified and visualized.

Among the 30 candidate classifiers, an RF trained on the ProtFP protein encoding95 was 

selected as the final model on the basis of marginally superior 10-fold cross-validation 

accuracy, AUC-ROC, average precision, and estimated probability thresholding. The final 

RF used 400 estimators (i.e., individual trees) and a Shannon information gain criterion. 

Under scikit-learn version 0.23.2, the model object is expressed with the following 

hyperparameter values:

RandomForestClassifier(bootstrap = True, ccp_alpha = 0.0, class_weight = None, criterion 

= “entropy”, max_depth = None, max_features = 3, max_leaf_nodes = None, max_samples 

= None, min_impurity_decrease = 0.0, min_impurity_split = None, min_samples_leaf = 5, 

min_samples_split = 2, min_weight_fraction_leaf = 0.0, n_estimators = 400, n_jobs = −1, 

oob_score = False, random_state = 5, verbose = 0, warm_start = False)

The final preserved model and a Jupyter Notebook that replicates training are available 

on GitLab, with all hyperparameter values listed in the repository README (https://

gitlab.com/machine-biology-group-public/pancleave).

Modern protein fragment curation—The panCleave pipeline was run on all modern 

human proteins tagged with the keyword “secreted” in UniProt59 as of February 

2021 (n = 3,676). Length distributions, amino acid frequencies, and PANTHER (http://

www.pantherdb.org/)100 classification data characterizing the modern secreted protein 

dataset are visualized (Figs. S1b–S2e). The initial 80,729 unique cleavage products were 

reduced to 3,738 fragments by filtering such that peptide lengths were between 8 and 40 

residues, flanking cleavage sites were of an estimated probability of 0.8 or higher (mean 

0.803), and no fragments were subsequences of other fragments in the dataset.

Four curation methods were used to select panCleave-generated fragments for synthesis: 

1) human expert curation; 2) ML model consensus using six publicly available AMP 

classifiers49–53; 3) clustering against an in-house database of experimentally validated 

AMPs using CD-HIT-2D, an algorithm for sequence alignment and comparison of protein 

databases48; and 4) random selection with no sampling bias. Twenty fragments were 

selected by each curation method (n = 80 total). In each case, fragment length was restricted 

to 8 to 40 amino acids.

Selection by a human expert entailed fully manual curation of 15 peptides 

predicted to be antimicrobial and 5 peptides predicted to be inactive. Consensus 

prediction used six publicly available ML-based AMP models: amPEPpy (https://
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github.com/tlawrence3/amPEPpy)49, iAMPpred (http://cabgrid.res.in:8080/amppred/)50, 

Macrel (https://www.big-data-biology.org/software/macrel/biology.org/software/macrel/)51, 

and three models available from AxPEP (https://app.cbbio.online/ampep/home)52,53. A 

positive consensus vote by at least three of these six models was required for selecting 

the 15 peptides predicted to be active. A negative consensus vote by all six models was 

required for selecting the 5 peptides predicted to be inactive. Random selection used no 

biasing criteria. The CD-HIT-2D clustering algorithm (http://weizhong-lab.ucsd.edu/cdhit-

web-server/cgi-bin/index.cgilab.ucsd.edu/cdhit-web-server/cgi-bin/index.cgi)48 was used to 

rank fragments by percent similarity to an in-house dataset of experimentally validated 

AMPs, and the top 20 hits were selected as predicted AMPs for experimental validation.

Archaic protein fragment curation—The panCleave pipeline was run on all 

Neanderthal and Denisovan proteins available in UniProt59 and NCBI (https://

www.ncbi.nlm.nih.gov/protein/) as of February 2021 (n = 66 and n = 26, respectively). Six 

Neanderthal proteins (9.1%) and one Denisovan protein (3.8%) were identical to proteins in 

the modern proteome and were excluded. Results were filtered such that all fragments were 

between 8 and 40 residues in length and no fragments were subsequences of other fragments 

in the dataset. This filtering process yielded 249 unique Neanderthal cleavage products 

and 167 unique Denisovan cleavage products. No sequences were shared between modern 

human and Neanderthal panCleave results, nor between modern humans and Denisovans. 

There were 127 fragments common to both Neanderthals and Denisovans, leaving 289 

non-redundant archaic fragments in total.

Archaic fragments were removed if present as subsequences of any protein in 

the modern human proteome. Archaic sequences were cross-referenced against all 

annotated and non-annotated modern human proteins (n = 75,552) and all isoforms 

(n = 40,403) available in UniProt as of February 2021. Subsequently, 73 archaic-only 

fragments remained (73/289, 25.3%), each with flanking cleavage sites of an estimated 

probability of 0.6 or higher (mean = 0.618). Of these, four were not selected for 

chemical synthesis because of their high hydrophobicity and aggregation propensity (i.e., 
WIGGQPVSYPFIIIG, VVAGVFLLIRFHPLA, LYDYGRWLVVVTGWTLFVGVYVVIE, 

and MTMYTTMTTLTLTSLIPPILTTLINPN), leaving 69 archaic-only fragments to be 

tested in vitro. All peptides used in the experiments were purchased from AAPPTec 

(Louisville, KY; USA).

Quantification and statistical analysis

Reproducibility of the experimental assays—Unless otherwise stated, all assays 

were performed in three independent biological replicates as indicated in each figure legend 

and Experimental Models and Methods details sections. The values obtained for hemolytic 

and cytotoxic activities were estimated by non-linear regression based on the screen of 

peptides in a gradient of concentrations and represent the hemolytic and the cytotoxic 

concentration values needed to lyse and kill 50% of the cells present in the experiment. For 

the cytotoxic activity assays, two technical replicates were performed within each of the 

three biological replicates. In the skin abscess and thigh infection mouse models, we used 
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six and four mice per group, respectively, following established protocols approved by the 

University Laboratory of Animal Resources (ULAR) of the University of Pennsylvania.

Statistical tests—In the mouse experiments, the statistical significance was determined 

using one-way ANOVA followed by Dunnett’s test. In Fig. 4e (day 8) of the thigh infection 

model, the statistical significance was determined using Kruskal-Wallis test because of the 

non-normal distribution and unequal variance across groups. All the p values are shown for 

each of the groups, all groups were compared to the untreated control group.

Statistical analysis—All calculation and statistical analyses of the experimental data 

were conducted using GraphPad Prism v.9.1 and computational data were performed in 

Python. Statistical significance between different groups was calculated using the tests 

indicated in each figure legend. No statistical methods were used to predetermine sample 

size.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

1. Machine learning guides bioinspired prospection for encrypted antimicrobial 

peptides.

2. Modern and extinct human proteins harbor antimicrobial subsequences.

3. Archaic encrypted peptides display in vitro and in vivo activity with low host 

toxicity.

4. Paleoproteome mining offers a framework for antibiotic discovery.
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Fig. 1. Computational-experimental framework for molecular de-extinction of antimicrobial 
peptides.
Panel (A) demonstrates the computational proteolysis pipeline, where user-defined proteins 

are processed into 8-residue subsequences that are classified as cleavage and non-cleavage 

sites. Input proteins are then tokenized at predicted cleavage sites, and the resulting 

fragments can be filtered by user-defined curation methods. Curation methods can include 

machine learning-based activity prediction, human expert curation, or other methods. 

Successes in archaic and modern proteome mining are visualized in panel (B), where 
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precursors were computationally digested to reveal encrypted antimicrobial subsequences. 

The pipeline concludes with in vitro (C) and in vivo (D) experimental validation of 

fragment bioactivity, including proteolytic degradation assays, MoA assays, and mouse 

weight monitoring as a proxy for host toxicity. Figure created with BioRender.com and the 

PyMOL Molecular Graphics System, Version 2.1 Schrödinger, LLC.

Maasch et al. Page 32

Cell Host Microbe. Author manuscript; available in PMC 2024 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.biorender.com/


Fig. 2. Model performance and antimicrobial peptide data distributions.
Panels describe panCleave random forest performance evaluation (a-h) and physicochemical 

distributions for positive hits (i–l). Optimized panCleave random forest performance is 

reported for independent test data (n = 9,927): (a) accuracy-probability threshold tradeoff 

curves, comparing accuracy per estimated probability of class membership; (b) the receiver 

operating characteristic curve; (c) precision-recall curve; (d) panCleave test accuracy for 

proteases with at least 100 test observations; (e) panCleave test accuracy by protease 

catalytic type; (f) accuracy of panCleave relative to pre-existing models for three caspases 

(panCleave in red); (g) positive hit rate by fragment curation method; and (h) positive 

hit rate by antimicrobial activity classifier. Panels i–l compare amino acid frequency 

(i), fragment length (j), normalized hydrophobicity (k), and net charge distributions (l) 
for MEPs, AEPs, and AMPs reported in DBAASP41. Hydrophobicity scores employ the 

Eisenberg and Weiss scale30. Note that DBAASP data were restricted to fragments of 

length 8–40 residues for length, hydrophobicity, and charge distributions, with null values 

excluded. DBAASP amino acid frequencies were computed by excluding noncanonical 

residues.
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Fig. 3. Antimicrobial activity, resistance to enzymatic degradation, and mechanism of action of 
modern and archaic EPs.
(a) Antimicrobial activity of the EPs. Briefly, a fix number of 106 bacterial cells per mL−1 

was used in all the experiments. The modern and archaic EPs were two-fold serially diluted 

ranging from 128 to 2 μmol L−1 in a 96-wells plate and incubated at 37 °C for one day. 

After the exposure period, the absorbance of each well was measured at 600 nm. Untreated 

solutions were used as controls and minimal concentration values for complete inhibition 

were presented as a heat map of antimicrobial activities (μmol L−1) against nine pathogenic 

bacterial strains. All the assays were performed in three independent replicates and the heat 

map shows the mode obtained within the two-fold dilutions concentration range studied. 

(b) Schematic of the resistance to enzymatic degradation experiment, where peptides were 

exposed for a total period of six hours to fetal bovine serum that contains several active 

proteases. Aliquots of the resulting solution were analyzed by liquid chromatography 

coupled to mass spectrometry. (c) Modern and (d) archaic peptides had different degradation 

behaviors. In summary, archaic peptides are more resistant to enzymatic degradation than 

modern peptides. Experiments were performed in two independent replicates. (e) Schematic 

showing the behavior of 1-(N-phenylamino)naphthalene (NPN) the fluorescent probe used 

to indicate membrane permeabilization caused by the EPs. (f) Modern and (g) archaic EPs 

fluorescence values relative to the untreated control showing that MEPs are more efficient 
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at permeabilizing the outer membrane of A. baumannii cells than polymyxin B (PMB) 

and archaic EPs. (h) Schematic of how 3,3′-dipropylthiadicarbocyanine iodide [DiSC3-(5)], 

a hydrophobic fluorescent probe, was used to indicate membrane depolarization caused 

by the EPs. (i) Modern and (j) archaic EPs fluorescence values relative to the untreated 

control showing that archaic peptides are much stronger depolarizers of the cytoplasmic 

membrane of A. baumannii cells than polymyxin B (PMB) and modern EPs. Experiments 

were performed in three independent replicates. Figure created with BioRender.com and the 

PyMOL Molecular Graphics System, Version 2.1 Schrödinger, LLC.
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Fig. 4. Anti-infective activity of modern and archaic EPs in pre-clinical animal models.
(a) Schematic of the skin abscess mouse model used to assess the anti-infective activity 

of the modern and archaic EPs with activity against A. baumannii cells. (b) Peptides were 

tested at their MIC in a single dose one hour after the establishment of the infection. Each 

group consisted of six mice (n = 6) and the bacterial loads used to infect each mouse derived 

from a different inoculum. (c) To rule out toxic effects of the peptides, mouse weight was 

monitored throughout the whole extent of the experiment. (d) Schematic of the neutropenic 

thigh infection mouse model in which bacteria is injected intramuscularly in the right thigh 

and modern and archaic EPs were administered intraperitoneally to assess their systemic 

anti-infective activity. Mice were euthanized six and eight days after the beginning of the 

experiment, i.e., two- and four-days post infection. Each group consisted of four mice (n 

= 4) and the bacterial loads used to infect each mouse derived from a different inoculum. 

(e) All EPs, except TKN1-SSI17, showed bacteriostatic activity inhibiting proliferation of 

bacteria. Peptides with bacteriostatic activity were able to maintain their effect during the 

entire experiment (eight days), except for A7E2T1-SPR39 that was effective for six days. 

(f) Mouse weight was monitored throughout the duration of the neutropenic thigh infection 

model (8 days total) to rule out potential toxic effects of cyclophosphamide injections, 
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bacterial load, and the EPs. The antibiotic polymyxin B was used as positive control in 

both models. Statistical significance in b and e (day 6) was determined using one-way 

ANOVA, and in e (day 8) using Kruskal-Wallis test because of the non-normal distribution 

and unequal variance across groups; p values are shown for each of the groups, all groups 

were compared to the untreated control group; features on the violin plots represent median 

and upper and lower quartiles. Data in c and f are the mean plus and minus the standard 

deviation. Figure created with BioRender.com and the PyMOL Molecular Graphics System, 

Version 2.1 Schrödinger, LLC.
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Key resources table

Reagent or Resource Source Identifier

Bacterial and virus strains

Acinetobacter baumannii American Type Culture Collection ATCC 19606

Escherichia coli American Type Culture Collection ATCC 11775

Escherichia coli Escherichia coli MG1655 phnE_2::FRT AIC221

Escherichia coli
Escherichia coli MG1655 pmrA53
phnE_2::FRT (polymyxin-resistant;

colistin-resistant strain)

AIC222

Klebsiella pneumoniae American Type Culture Collection ATCC 13883

Pseudomonas aeruginosa PA01

Pseudomonas aeruginosa PA14

Staphylococcus aureus American Type Culture Collection ATCC 12600

Staphylococcus aureus American Type Culture Collection ATCC BAA-1556 (methicillin-resistant strain)

Cell lines and red blood cells

Human embryonic kidney (HEK293T) cells American Type Culture Collection ATCC CRL-3216

Red blood cells Zen-Bio SER-10MLRBC

Experimental models: Organisms/strains

Mouse: CD-1 Charles River 18679700–022

Chemicals

Luria-Bertani broth BD 244620

Tryptic soy broth Sigma T8907–1KG

Agar Sigma 05039

MacConkey agar RPI M42560–500.0

Phosphate buffer saline Sigma P3913–10PAK

Ammonium sulfate [(NH4)2SO4] Chem Cruz 7783–20-2

Dipotassium hydrogen phosphate (K2HPO4) Sigma SLBR8555V

Monobasic potassium phosphate (KH2PO4) Macron 164500

Iron (II) sulfate (FeSO4) Amresco 387

Magnesium sulfate (MgSO4) Amresco 1333C215

Glucose Sigma G5767

1-(N-phenylamino)naphthalene Sigma 104043

3,3’-dipropylthiadicarbocyanine iodide Sigma 43608

HEPES Fisher BP310–100

Potassium chloride (KCl) Sigma P3911

Fetal Bovine Serum (FBS) ThermoFisher 10437–028

Software and Algorithms

Python 3 https://www.python.org/
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Reagent or Resource Source Identifier

scikit-learn https://scikit-learn.org/
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